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Abstract: One of the key practices of the Human genome project is Sanger DNA

sequencing. Its data analysis part is called base-calling and attempts to reconstruct

target DNA sequences from fluorescence intensities generated by sequencing ma-

chines. In this paper, we present a modeling framework of DNA sequencing, in

which a base-calling scheme arises naturally. A large portion of DNA sequencing

errors come from the diffusion effect in electrophoresis, and deconvolution is the

tool to solve this problem. We present a new version of the parametric deconvolu-

tion which is motivated by the spike-convolution model and some recently obtained

results regarding its asymptotics. One application of the asymptotics is to look at

the resolution issue from the perspective of confidence intervals. We also report

on an empirical study of the progressiveness of electrophoretic diffusion by way of

estimating the slowly-changing width parameter in the spike-convolution model.

Furthermore, we include an example of complete preprocessing of DNA sequencing

data.
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1. Introduction

The core genetic material of a human being consists of 23 pairs of chromo-
somes. The main part of each chromosome is a DNA molecule composed of two
polymers called strands, each of which is a long sequence of four nucleotide bases
— Adenine (A), Cytosine (C), Guanine (G) and Thymine (T) — supported by
a sugar phosphate backbone. The two strands are complementary in the sense
that A, G, C, and T on one strand pair with T, C, G, and A, respectively, on
the other strand. One of the main goals of the Human Genome Project is to
sequence the 3 billion or so base-pairs that make up the human chromosomes
accurately. This blueprint is the basis of the genetic and genomic research that
will eventually lead us to discover new diagnostic tools and treatments of human
genetic diseases.

Current techniques cannot sequence more than about 1000 base-pair at a
time. Thus some kind of divide-and-conquer strategy is used to sequence the
human genome. In the early stage of DNA sequencing history, the directed
strategy was adopted by some genome centers. According to this strategy, we
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need to generate DNA clones from each chromosome at different resolution lev-
els, and in turn produce many short fragments which can be sequenced directly.
The fragments and clones should be generated in such a way that they cover the
entire chromosome, or nearly so. After these fragments have been sequenced, we
assemble and edit them, and then reconstruct the sequence of the chromosome.
The work of generating DNA clones at different resolution levels and generating
short fragments from clones is the task of physical mapping. With the sequencing
cost recently dropping dramatically, the shotgun strategy took over in the main
sequencing projects. It skips some of the intermediate steps and directly gen-
erates many random fragments for sequencing. To ensure that these fragments
cover the entire chromosome, a larger fold of sequencing working load is required.
An important mathematical model concerning the design and evaluation of these
strategies was given by Lander and Waterman (1988). More results on physical
mapping can be found in Waterman (1995). Yu and Speed (1997) studied the
problem from an information theory perspective.

The need of modeling DNA sequencing emerges because its output, the ge-
nomic content, is becoming a cornerstone of life sciences. Although the comple-
tion of the first draft of the human genome was a historical milestone, a solid
understanding of DNA sequencing will lead us to produce higher-quality genomes
in the future and enhance the research along vertical directions such as genomic
comparisons among individuals and across species. In this paper, we describe a
modeling framework of DNA sequencing resulting from our research in the last
few years. Based on existing knowledge, we propose a series of mathematical
and probabilistic models to mimic the real sequencing procedure that incorpo-
rates cutting edge technologies of biology, chemistry, and physics. This model
more or less enables us to simulate observations — DNA sequencing traces —
from a target DNA sequence. Consequently, a scheme of base-calling which at-
tempts to reconstruct the target sequence from observations arises naturally in
concert with the sequencing model. The significance of this framework is two-
fold. On the one hand, it provides researchers with some insights and guidance on
how to improve the hardware components of sequencing, such as enzyme designs
and instruments. On the other hand, our model brings out the important issues
of data analysis for the purpose of accurate base-calling. Like other researchers
in the literature, we adopt a two-step strategy for base-calling: pre-processing
followed by decision-making. To a great extent, we have found that the accu-
racy of base-calling hinges on two key issues in preprocessing: deconvolution and
color-correction, and especially the former. We have developed a parametric de-
convolution procedure, motivated by the so-called spike-convolution model, as a
solution to the first issue. In this paper, we present a new version of this procedure
that includes a width parameter in the model, along with some recently obtained
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results regarding its algorithms and asymptotics. One application of the asymp-
totics is a new look at the resolution issue from the perspective of confidence
intervals. We also report on an empirical study of the progressiveness of elec-
trophoretic diffusion by way of estimating the slowly-changing width parameter
in the spike-convolution model. We discuss our work on color-correction briefly,
and interested readers can find the references by following the given pointers.

We arrange the materials in this paper as follows. In Section 2 we describe
DNA sequencing and our modeling framework. In Section 3 we describe the spike-
convolution model and parametric deconvolution, and discuss several practical
issues relating to DNA sequencing. Section 4 contains proofs of some facts.

2. DNA Sequencing and Base-calling

2.1. DNA sequencing

Most sequencing schemes currently used are variants of the enzymatic method
named after its inventor, Frederick Sanger. Each of these sequencing schemes
consists of enzymatic reactions, electrophoresis, and some detection technique;
see the book edited by Adams, Fields, and Ventor (1994). First, four sepa-
rate reactions are set up with a single-stranded DNA fragment annealed with
an oligonucleotide primer. Each reaction contains the four normal precursors of
DNA — that is, the deoxynucleotides dATP, dTTP, dCTP, and dGTP, together
with the DNA polymerase as being used in the natural DNA replication. In
addition, appropriate amounts of four dideoxy nucleotide terminators, ddATP,
ddTTP, ddCTP, and ddGTP, are also present in the respective reactions. Thus
people sometimes term it by dideoxy sequencing. In the ddA reaction containing
ddATP, polymers are extended from 5’ to 3’ end (the DNA strand is directed, and
the two ends are named 5’ and 3’ due to their chemical structures) by polymerase
according to the template DNA, and the elongation of new strands is stopped
once a ddATP is incorporated. Because the incorporation of ddATP is random,
the ddA reaction should produce many copies of each possible sub-fragment start-
ing with the same primer and ending with ddATP. Similarly, the ddG, ddC, and
ddT reactions will produce many copies of each possible sub-fragment ending
with ddGTP, ddCTP, and ddTTP respectively; see Russell (1995).

Next, electrophoresis is used to separate the DNA sub-fragments produced
from the four reactions. DNA fragments are negatively charged in solution. If
we load the DNA fragments into a slab gel or a gel-filled capillary and add
an electric field, the fragments will move in the gel or capillary. The smaller
the size of a fragment, the faster it runs through the electric field. In order to
differentiate the four kinds of sub-fragments ending with ddGTP, ddCTP, and
ddTTP, we can place them into four different but adjacent lanes in the gel. A
more efficient color-coding strategy has been developed to permit sizing of all four
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kinds of DNA sub-fragments by electrophoresis in a single lane of a slab gel or in
a capillary. That is, in each of the four reactions, the primers (or terminators)
are labeled by one of four different fluorescent dyes. Laser-excited, confocal
fluorescent detection systems are then used to excite the dyes in a region within
the slab gel or capillary, and to collect and measure the fluorescence intensities
emitted in four wavelength bands. These four fluorescence intensities are the
raw data we can observe in practice. A segment of such kind of data — a
four-component vector time series — is shown at the top of Figure 1. The four
fluorescence intensities are not identical to the four dye concentrations passing
through the detection region; rather, they are a transformed version of them.
The four dye concentrations — another four-component vector time series —
corresponding to the fluorescence intensities mentioned earlier are shown in the
middle of Figure 1, and they can be obtained by an appropriate color-correction
which will be discussed in Subsection 2.3.
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Figure 1. Top: a segment of real DNA sequencing data — fluorescence
intensities. Middle: the color-corrected data — dye concentrations, with
proper normalization. Bottom: the output from parametric deconvolution
— a Dirac delta train, representing the occurrences of the nucleotide bases.
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The above Sanger sequencing procedure is schematically diagrammed in Fig-
ure 2. A hypothetical DNA fragment to be sequenced and its reverse complement
are shown at the top. Please notice that we color-code the base A, G, C and T
respectively by red, black, green and blue in all the figures of this paper. The four
enzymatic reactions are illustrated in the middle. For the sake of simplicity, only
one copy of each sub-fragment is presented. The hypothetical dye concentrations
passing through the detection region are shown at the bottom. The laser device
and detection system are skipped, and thus the fluorescence intensities are not
shown in the figure.

Figure 2. A schematic representation of Sange sequencing.

2.2. DNA Base-calling

Base-calling is the analysis part of DNA sequencing that attempts to re-
construct the target DNA sequence from the vector time series of fluorescence
intensities. In Figure 2, some peaks of four colors are displayed. The rationale of
base-calling is that each peak represents one base, and the order of peaks from the
four channels is consistent with the order of nucleotide bases on the underlying
DNA fragment. The hypothetical example in Figure 2 illustrates this process.
Base-calling becomes harder for the data shown at the top of Figure 1, or for
the data in the middle, if we focus on dye concentrations. The research in this
area aims to make accurate and automated base-calling, along with appropriate
assessment.
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The dominating DNA sequencing devices being used are ABI sequencers pro-
duced by Applied Biosystems, Inc. Other producers include Beckman Couler,
Inc., etc. Some institutions use their own home-made devices for research at rel-
atively small scales. ABI sequencers are accompanied by a base-calling software
(1996). Several academic groups have also been conducting research on base-
calling. Methods developed by Berno (1996) and Berno and Stein (1995) at MIT
(originally at Stanford), by Ives, Gesteland and Stockham (1994) at the Univer-
sity of Utah, and by Giddings, Brumley, Haker and Smith (1993) at the University
of Wisconsin, adopted a similar framework consisting of two steps: preprocessing
the data and decision-making. Preprocessing aims to clean up the data and in-
cludes color correction, baseline subtraction, spacing adjustment, mobility shift
adjustment, and peak sharpening. Decision-making is typically done by applying
ad hoc algorithms to preprocessed data. Tibbetts (1994) treated the translation
of sequencing images to DNA sequences as a pattern-recognition problem and
used neural networks to call bases. The base-calling software Phred, developed
by Ewing and Green (1998) and Ewing, Hillier, Wendl, and Green (1998) at the
University of Washington, has an error rate smaller than that of the ABI soft-
ware as reported; see Cawley (2000) for more comparison results. Our vision of
carrying on the research in this regard is to make the model as clear as possible,
for it provides a platform for further criticism and improvement. Nelson (1996)
and Nelson and Speed (1996) provide an overview of this subject and describe
some initial efforts towards increasing base-calling accuracy and throughput by
providing a rational, statistical model. This is the starting point of our modeling
research in DNA sequencing.

2.3. A model framework of DNA sequencing and a strategy of base-
calling

Our strategy of base-calling is to first model the DNA sequencing to the
best of our knowledge. That is, we examine each step of the physical DNA
sequencing procedure in which information of a DNA sequence is transformed
from one form to another, and eventually into a vector time series—fluorescence
intensities. A reasonable model should be able to simulate data similar to the
real sequencing trace. With such a model, we then can develop and optimize
appropriate methods using the “artificial truth” as a kind of reference.

We give a brief, not necessarily complete, account of the sources of uncer-
tainties and complications intrinsic to DNA sequencing. As seen later, they are
the issues we need to face in base-calling. First, in the enzymatic reactions,
the chance mechanism of replication and termination lead to viewing the con-
centrations of the different DNA sub-fragments as random variables. Roughly
speaking, this chance mechanism results in the variation of peak heights in the
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observations. It is also observed that the average peak heights decrease as time
goes on. Second, the peak shape in the times series shown in the middle of
Figure 1, or at the bottom of Figure 2, is a crucial factor for DNA sequencing,
and this shape is referred to as the point spread function (PSF) in spectroscopy.
The point spread function is determined by the dynamics of polymers in elec-
trophoresis, a complicated physical and chemical process. Some studies have
addressed this issue. A model using Brownian motion with drift results in an in-
verse Gaussian kernel function, with a scale parameter proportional to the square
root of time; see Nelson (1996). A more delicate model, the reptation theory,
results in an exponentially mediated Gaussian point spread function, which be-
comes wider and wider towards the end of electrophoresis; see Giddings (1965),
Lumpkin, DeJardin and Zimm (1985), Luckey, Norris and Smith (1993). Other
observed variability in spacing between peaks, peak width, mobility shifts of dif-
ferent dyes, temperatures, electronic field strength, and gel properties is rather
experiment-specific. Scattered reports on interactions between bases are also
found in the literature, but the issue is not among the primary considerations.
Next in the data collection stage, dye concentrations are not observed directly
by the detection system, as mentioned earlier. Instead we measure fluorescence
intensities emitted by the four dyes at four wavelength bands. Cross-talk comes
in at this step because the emission spectra of the four dyes overlap. Finally, a
slowly-changing baseline due to background fluorescence and other factors, and
measurement errors, are also added into observations at this step.

We formulate the DNA sequencing procedure by a series of models which are
diagrammed at the left hand column of Figure 3. First, the sequence of the target
DNA is encoded into a hidden Markov model (HMM), producing what we call
the virtual signal containing four components. Different aspects of the HMM can
be designed to incorporate variation in the concentrations of sub-fragments, the
spacings between peaks, the spread of peaks, and the mobility shifts of the four
dyes. We consider hidden Markov models because they have quite large modeling
capacity and have dynamic programming-type algorithms for computations. By
no means are they the only choice, and any machinery having enough modeling
capacity and good algorithms is worth consideration. Second, the four compo-
nents of the virtual signal are displaced with respect to one another according to
the average mobility difference, resulting in the shifted virtual signal. Third, each
component of the shifted virtual signal is convolved with a slowly-changing point
spread function, to represent the average diffusion effect in electrophoresis. This
convolved signal attempts to simulate the dye-labeled base concentrations trav-
eling through the detection area in electrophoresis. Finally, these concentrations
are further linearly transformed into fluorescence intensities to approximate the
cross-talk phenomenon. A slowly-changing baseline and white noise are added
to the observations at this step to simulate measurement errors.
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Figure 3. A modeling frame of DNA sequencing and base-calling.

The above modeling of the information flow in DNA sequencing provides us
with a natural framework for base-calling. That is, we undo each step in the
model which mimics the real DNA sequencing, as is shown on the right hand
column of Figure 3. Following the custom in the literature, we refer to these un-
doings by prefixing “de” to their corresponding mechanisms. Explicitly, we carry
out de-cross-talk — color correction to remove the dye effects, de-convolution
to reconstruct our shifted virtual signal, de-mobility-shift to adjust for average
mobility differences, and de-coding to make base calls. De-baseline — base-
line subtraction — could either be done separately or in combination with color
correction. Other work such as de-noising and normalization may be needed
depending on the methods being used, but are less important than the above
issues. In the decoding stage, we could try either the Viterbi or marginal algo-
rithm. However, the effectiveness of the decoding depends on the appropriateness
of the HMM. Thus the determination of the HMM is a subtle problem. That is,
we need to construct an appropriate hidden state space, design a topology of the
transition pattern, and find estimates of the transition and output probabilities.
Cawley (2000) continued the research of hidden Markov model decoding using
preprocessed data in his thesis. Most of our efforts have been devoted to color
correction and deconvolution.

Several color correction algorithms have been proposed in the literature,
such as Yin et al. (1996), Huang et al. (1997). To statisticians, the justification
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of an algorithm to a real problem remains unsolved until a model, in which as-
sumptions could be verified to some degree, is established. Notice that both dye
concentrations and the transformation representing the cross-talk phenomenon
are to be estimated in the problem of de-cross-talk. In fact, without additional
information this problem is ill-posed; or in statistical terms, the model is not
identifiable. Li and Speed (1999) proposed a cross-talk model, and verified a
crucial assumption in the model using data obtained from a specially designed
experiment. That is, we placed the sub-fragments generated from the ddA, ddG,
ddC and ddT reactions into four different yet adjacent lanes of a slab gel. In this
case the dye effects are restricted within each lane, and so the four dye concentra-
tions can be observed. However, what we need from this experiment is nothing
but the distribution of dye concentrations, for it is invariant with respect to dif-
ferent DNA sequence contents. With this piece of new information, the problem
of de-cross-talk becomes well-posed. Consequently, an algorithm arose naturally
from the model as a vehicle to achieve the goal of color correction. In Figure
1, the de-cross-talk was carried out by our algorithm. Moreover, Kheterpal, Li,
Speed and Mathies (1998) found that the information contained in three fluo-
rescence intensities is sufficient for reconstructing the four dye concentrations by
using nonnegative least squares and a model selection procedure. This discovery
brings more insights into the dye-based sequencing technique. For example, we
proposed a new design to solve an even more challenging problem: sequence two
DNA fragments in one lane — a first step towards high-order multiplex sequenc-
ing.

Once the data is properly color-corrected, we look at the problem of decon-
volution. In Figure 1, sometimes we observe two or three peaks of the same color
in a row. Four or more bases of the same kind are also observed in the genome,
though their occurrence is relatively rare. Lack of caution in these cases would re-
sult in insertion and deletion errors of base-calling. Chen and Hunkapiller (1992),
Koop et al. (1993), and Lawrence and Solovyev (1994) reported that a large por-
tion of DNA sequencing errors do come from these regions. In the next section,
we present a new version of the so-called parametric deconvolution procedure,
aiming to solve the above problem for DNA sequencing.

3. The Spike-convolution Model and Parametric Deconvolution

First some notation. We define the inner product of two functions y1 and
y2 in L2 [−π, π] by < y1, y2 >= 1

2π

∫ π
−π y1(t) y2(t) dt. For functions z1 and z2 well

defined at the lattice points tk = 2πk/n, where k = −[n/2], . . . , [(n − 1)/2], we

take < z1, z2 >n= 1
n

∑[ n−1
2

]

k=−[ n
2
] z1(tk) z2(tk). The norms induced by < · , · > and
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< · , · >n are ‖ · ‖ and ‖ · ‖n, respectively. We use the notation −→
p

to represent

convergence in probability. We also use GT to represent the transpose of a matrix
G. The material in this section is an expanded edition of the paper by Li and
Speed (2000), hereafter referred to as LS.

Our perception about the electrophoretic diffusion effect is represented by
the spike-convolution model as defined below. We assume that the four kinds
of sub-fragments, color-coded by four dyes, in a gel or capillary diffuse indepen-
dently of each other. Therefore, we operate deconvolution for the four kinds of
dye concentrations separately. It is conceived that the concentration of one fluo-
rescence dye, denoted y, is the convolution of the virtual signal in Figure 3 and
a point spread function wλ. Namely,

y = wλ ∗ x , (1)

where the point spread function, wλ(t) = w(t/λ), is generated from a prototype
w(·) and a scale parameter λ. We assume that the prototype of the point spread
function is unchanged while its associated width parameter changes slowly over
time, representing the progressive diffusion effect in electrophoresis. One strategy
of deconvolution is to cut the sequencing traces into pieces in such a way that
we can assume the width parameter λ is constant within each piece, and we
adjust this parameter when moving from one piece to the next. Throughout
this section, we assume that the width parameter can only take on values in a
relatively small range: λ0 < λ < λ1, where λ0 and λ1 are positive numbers. Let
vλ,k =< wλ, e

ikt > be the Fourier coefficients of wλ. We assume
1. wλ1 has finite support (−κ1, κ2), where 0 < κ1, κ2 < π;
2. w(·) ∈ C2[−π, π];
3. for some integer K0 larger than the number of peaks in the unknown signal
x, vλ,k �= 0, where k = 0 ,±1, . . . ,±K0.

Although the point spread function has possibly an infinite number of non-zero
Fourier coefficients, the third condition required by the parametric deconvolution
means that there is no vanishing trigonometric moment before the index K0. For
the unknown signal x we propose a specific form as follows:

x(t) = A0 +
p∑

j=1

Aj δ(t− τj), (2)

where δ(·) is the Dirac delta function, and the coefficients Aj , referred to by
“heights” of the spikes, are positive. Thus the underlying signal x(t) is a linear
combination of a finite number of spikes with positive heights, together with a
constant baseline. We denote the signal x in (2) by SC(δ; p;A; τ ), and refer to
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its convolution with wλ as in (1) by SC(wλ; p;A; τ ). We sample SC(wλ; p;A; τ )
at the lattice points: {2πk/n, k = −[n/2], . . . , [(n − 1)/2]}, add white noise to
the signal, and generate

z(tk) = y(tk) + ε(tk) = A0 +
p∑

j=1

Aj w(tk − τj) + ε(tk), (3)

where the {ε(tk)} are i.i.d. with E(ε(tk)) = 0, V ar(ε(tk)) = σ2, and a finite third
moment. We use this model to formulate the diffusion effect and the measurement
error mechanism of electrophoresis.

This setting leads us to the following idea of deconvolution: estimate the
parameters in the spike-convolution model. The unknowns include the baseline,
the error variance, the number, locations and heights of the spikes, and possibly
the width parameter associated with the point spread function. The version
without the width parameter can be found in Li (1998) and Li and Speed (2000).
Notice that our signal is on a continuous scale, and we introduce a sparse positive
Dirac delta train to represent occurrences of nucleotide bases. This leaves room
for a high resolution deconvolution.

3.1. Parametric deconvolution with a known width parameter

Following the general practice of statistical modeling, we first consider the
identifiability issue.

Proposition 3.1. The spike-convolution model is identifiable when the width
parameter is fixed. Thus if y and ȳ are SC(wλ; p;A; τ ) and SC(wλ; l; Ā; τ̄ ),
respectively, and the two sets of parameters are not identical, then ‖ y − ȳ ‖> 0.

Next we consider the estimation problem. If we assume the measurement
error is Gaussian and the number of spikes is known, then the maximum likeli-
hood estimate or one-step estimate, as in the standard i.i.d. case, is asymptot-
ically efficient; see LS. However, the maximization of the likelihood requires a
good starting point and this is a tough job because the likelihood surface is not
unimodal even in the asymptotic sense. In addition, it is desirable to have a
procedure which does not depend on distributional assumptions. Bearing these
considerations in mind, we propose a parametric deconvolution procedure. Be-
cause of the different roles played by the parameters in the model, it is of little
hope to estimate them all in one step. The parametric deconvolution bundles up
trigonometric moment estimates of the spike locations, least squares estimates of
spike heights and baseline, and model selection techniques. The core of paramet-
ric deconvolution consists of two parts: model fitting and model selection. We
do assume the width parameter known in this subsection.
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Algorithm 3.1. Model-fitting.
Compute the empirical trigonometric moments f̂k =< z, eikt >n. For any given
nonnegative integer m ≤ K0, where K0 is an upper bound on the number of
spikes, run the following steps.
1. Deconvolution: let ĝ0 = f̂0, ĝk = f̂k vλ,0/vλ,k, for k = ±1, . . . ,±m.
2. Solve an eigen-value-vector problem: construct the Toeplitz matrix Ĝm =

(ĝj−k), and compute its smallest eigenvalue Â(m)
0 (assuming multiplicity one),

and corresponding eigenvector α̂(m) = (α̂(m)
0 , . . . , α̂

(m)
m )T .

3. Trigonometric moment estimates of spike locations: on the unit circle of the
complex plane, find the m distinct roots of Û (m)(z) =

∑m
j=0 α̂

(m)
j zj, denoted

{eiτ̂ (m)
j }, j = 1, . . . ,m.

4. Eliminate those τ̂ (m)
j falling outside [−π+κ1, π−κ2], and denote the locations

of the remaining spikes by {τ̄ (m̄)
j , j = 1, . . . , m̄}, where m̄ ≤ m.

5. Estimate the heights Ā(m̄)
j corresponding to these spikes by minimizing

‖ z(t) − Ā
(m̄)
0 −

m̄∑
j=1

Ā
(m̄)
j w(t− τ̄

(m̄)
j ) ‖2

n . (4)

This results in the least squares estimates of the baseline and heights.

This algorithm outputs a SC(wλ; m̄; Ā(m̄); τ̄ (m̄)). We make some notes on
implementation. First, algorithms of the Fourier transform and regression needed
in steps 1 and 5, respectively, have been well developed. Second, we need only to
calculate the smallest eigenvalue A0 of the Toeplitz matrix G and its eigenvector,
or the largest eigenvalue of the inverse matrix G−1 and its eigenvector. As a
matter of fact, there is a nice solution to this problem. On the one hand, the
inverse of the Toeplitz matrix can be calculated using the Trench algorithm,
which requires only O(N2) flops; see Golub and Van Loan (1996). On the other
hand, for a symmetric matrix, the largest eigenvalue and its eigenvector can be
computed very quickly by the the power method. That is, we generate a sequence
{A0,{k}, α{k}} using the following iteration.




β{k} =Gα{k−1} ,

α{k} = β{k−1}/ ‖ β{k−1} ‖2 ,

A0,{k} = αT
{k}Gα{k} ,

where ‖ · ‖2 is the Euclidean norm of a vector. It can be proved that the
sequence converges to {A0, α} at an exponential rate if the smallest eigenvalue
has multiplicity one; see Riesz and Nagy (1955) or Golub and Van Loan (1996).
If the multiplicity is larger than one, then we may observe the so-called “wobbly”
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phenomenon. Theoretically, this is not a problem for parametric deconvolution
according to the argument following Proposition 5.1 in LS. Numerically, we have
not encountered this problem in analyzing real sequencing data. Finally, the
polynomial to be solved in step 3 involves complex variables. In general, solving
a polynomial of a complex variable is not an easy problem, for one has to search
through the whole complex plane. Surprisingly, it can be regarded as an equation
of a real variable defined on [−π, π] because the following result implies that all
the roots of

∑m
j=0 α̂

(m)
j zj are on the unit circle.

Theorem 3.1.
1. Given SC(δ;m;A; τ ), let Gm be the Toeplitz matrix constructed from its

Fourier coefficients {gk}. Write U (m)(z) =
∏m

j=1(z − eiτj ) =
∑m

j=0 αj z
j .

Then A0 is the smallest eigenvalue of Gm. Its multiplicity is one and its
eigenvector is (α0, . . . , αm)T . The {Aj} satisfy the following linear system:

1
2 π




1 1 · · · 1
eiτ1 eiτ2 · · · eiτm

...
...

. . .
...

ei(m−1)τ1 ei(m−1)τ2 · · · ei(m−1)τm







A1

A2
...
Am


 =




g0 −A0

g1
...

gm−1


 . (5)

2. Conversely, suppose we are given m + 1 complex numbers {gj , 0 ≤ j ≤ m},
let g−j = gj for 1 ≤ j ≤ m. Assume the smallest eigenvalue A0 of the
Toeplitz matrix Gm = (gj−i)i,j=0,...,m is simple. Let the smallest eigenvector be
α = (α0, . . . , αm)T , and set U (m)(z) =

∑m
j=0 αj z

j . Then there exists a unique
SC(δ;m;A; τ ) whose first m + 1 Fourier coefficients are {gj , 0 ≤ j ≤ m}.
The {τj} are determined from the m distinct roots {eiτj} of U (m)(z) lying on
the unit circle. The {Aj} are determined by the linear system (5), and the
resulting heights are positive.

This result is basic to the parametric deconvolution method. Thus, we men-
tion the proof in order to illuminate the structure of the spike-convolution model.
The first part is easy to check. We note that α = (α0, . . . , αm)T is conjugate sym-
metric up to a constant of modulus one. We can show this through the reverse
operator J defined as

Jm =




0 · · · 0 1
0 · · · 1 0
...

...
. . .

...
1 · · · 0 0


 .

Notice that JmGm Jm Jm α = A0Jm α, and Jm Gm Jm Jm α = A0Jm α, and thus
GmJm α = A0Jm α. By the uniqueness of the eigenvector, we know α = Jm α
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up to a constant of modulus 1. Because of this property, if z0 is a root of K(z),
then z−1

0 is also a root of K(z).
As for the second part, we give a measure-theoretic proof. We can regard

the positive spikes in the model as a kind of energy — point masses — generated
by the trains of nucleotide bases. The distributions of these point masses of the
four components characterize the target DNA sequence.

It is enough to take α0 = αm = 1. Otherwise, without loss of generality, say
α0 = αm = 0 but α1 = αm−1 �= 0, then by the structure of Toeplitz matrix, we
have (α1, . . . , αm−1, 0, 0)

T
Gm = A0(α1, . . . , αm−1, 0, 0)

T
. Thus (α1, . . . , αm−1, 0,

0)T is another eigenvector corresponding to A0. This contradicts the assumption
that A0 has a multiplicity of one. Let g̃j = gj , j = ±1, . . . ,±m, g̃0 = g0 − A0,
and construct Toeplitz matrices G̃m = (g̃j−i)i,j=0,...,m as usual. It is obvious
that G̃m ≥ 0. Its smallest eigenvalue is 0 and simple, and the corresponding
eigenvector is α = (α0, . . . , αm)T . For k > m let

g̃k = −
m−1∑
j=0

αj g̃k−m+j = −(α0 . . . αm−1)



g̃k−m

...
g̃k−1


 , (6)

and for k < −m let g̃k = g̃−k. This implies that for any k ≥ 0, we have



α0 α1 · · · αm 0 · · ·
0
... Im+k+1

0
0
...



G̃m+k+1




α0 0 · · · 0 0 · · ·
α1
... Im+k+1

αm

0
...




=




0 0 · · · 0 0 · · ·
0
... G̃k+m

0
0
...



,

where Im+k+1 is the identity matrix of order m + k + 1. By induction, we can
see that G̃m+k ≥ 0 for any k > 0. Thus by the Herglotz Theorem, there exists
a measure dF on [−π, π] such that g̃k = 1

2 π

∫ π
−π e

ikt dF (t). Now we decompose
F (t) into two parts F = F a +F s, where F a is the absolute continuous part with
respect to Lebesgue measure and F s is the singular part. Notice that

1
2π

∫ π

−π
|K(eit)|2 dF (t) = α G̃m α = 0 . (7)

Thus ∫ π

−π
|K(eit)|2 dF a = 0 , (8)

∫ π

−π
|K(eit)|2 dF s = 0 . (9)
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We can write dF a(t) = f(t)dt, so
∫ π
−π |K(eit)|2 f(t) dt = 0. Since |K(eit)|2 has at

most finitely many zeros, f(t) = 0 almost everywhere, which implies dF a = 0.
Next it is inferred from (9) that dF s has nonzero masses at m′ points, where m′ ≤
m, since K(z) has m zeros. Moreover, m′ < m is impossible. Otherwise, by the
first half of the theorem, there exists a β = (β0 · · · βm′)T such that G̃m′ β = 0. So
(β0 · · · βm 0 · · · 0)T is another eigenvector of G̃m corresponding to the eigenvalue
0, contradicting the assumption that the multiplicity of the eigenvalue 0 is one.
Hence F is a discrete measure with positive masses {Aj} at {−π < τ1 < · · · <
τm < π}. Next by (7), it is obvious K(eiτj ) = 0, for j = 1, . . . ,m. Thus all
the roots of K(z) reside on the unit circle. The rest can be easily checked. The
generalization of this result from SC(δ;m;A; τ ) to SC(wλ;m;A; τ ) is Theorem
3.2 in LS, and is the direct justification of Algorithm 3.1..

In Algorithm 3.1, take m = p. With an abuse of notation, let τ̂ = {τ̂j, j =
1, . . . , p} denote the the trigonometric moment estimates of the spike locations
obtained in steps 1, 2, 3. With probability tending to one they will not fall in
the boundary region, and be eliminated in step 4, because of their consistency.
This conclusion was proved in Theorem 3.3 in LS, where we also gave a central
limit theorem for the trigonometric moment estimates of the spike locations,
heights, and baseline. The trigonometric moment estimates of the spike heights
and baseline are given by the following Vandermonde linear system:

vλ,0




1 1 · · · 1
eiτ̂1 eiτ̂2 · · · eiτ̂p

...
...

. . .
...

ei(p−1)τ̂1 ei(p−1)τ̂2 · · · ei(p−1)τ̂p







Ã1

Ã2
...
Ãp


 =




ĝ0 − Â
(p)
0

ĝ1
...

ĝp−1


 ,

where (Ã1, . . . , Ãp) are the trigonometric moment estimates of (A1, . . . , Ap)T . It
can be inferred from Theorem 3.1 that (Ã1, . . . , Ãp) are positive. An efficient
algorithm requiring only O(N2) flops exists to solve this Vandermonde linear
system; see Golub and Van Loan (1996). However, the least squares method
adopted in Algorithm 3.1 has the following attractive asymptotics. Write Ξτ =
(ξτ0 , ξτ1 , . . . , ξτp)T , where the components ξτ0 = 1, ξτj = w(t − τj), j = 1, . . . , p
are functions defined on [−π, π]. Then the least squares estimates of the baseline
and spike heights are given by

(Â0, Â1, . . . , Âp) =< Ξτ̂ ,Ξ
T
τ̂ >−1

n < Ξτ̂ , z >n , (10)

where < Ξτ̂ ,Ξ
T
τ̂ >n= [< ξτ̂j

, ξτ̂k
>n]j,k=0,...,p, < Ξτ̂ , z >n= (< ξτ̂1 , z >n, . . . , <

ξτ̂p , z >n)T and the inner products < ·, · > and < ·, · >n are those defined at the
beginning of this section.



194 LEI LI

Proposition 3.2. (Â0, Â1, . . . , Âp) are consistent estimates; moreover, they are
asymptotically normally distributed with zero mean and variance σ2<Ξτ ,ΞT

τ>
−1.

In this asymptotic sense, the least squares estimates of baseline and spike
heights based on the trigonometric moment estimates of the spike locations per-
form as well as if the parameter values of the spike locations were known. There-
fore, we expect that the least squares estimates outperform the trigonometric
moment estimates of the baseline and spike heights. Indeed, this performance
has been observed in our simulation study. More generally, Proposition 3.2 holds
as long as we have a set of consistent estimates of the spike locations regardless
of their efficiency.

Algorithm 5.2 in LS serves as the model selection procedure in the paramet-
ric deconvolution. Unlike the usual practice of model selection, this two-stage
procedure has a dual purpose: estimate the model order and help to generate a
set of estimates of spike locations with smaller bias and variance. The simula-
tion study in LS showed that the bias and variance of the direct trigonometric
moment estimates are much larger than those obtained from this model selection
procedure under the Gaussian assumption, when the model order is assumed
known. Our strategy to achieve the goal is to find a ”best over-fitting” model
in the first stage and eliminate the false spikes in the second stage. First, let us
establish the following fact.

Proposition 3.3. In the first stage of Algorithm 5.2 in LS, the order will not be
under-estimated with probability tending to one. Namely, P (m̄0 ≥ p) −→ 1.

How does this two-stage model selection procedure complement the model
fitting procedure to offer a reasonably good solution to the parameter estimation
problem? This is an interesting yet challenging theoretical problem. Proposition
3.3 shows that the locations in the model SC(wλ; m̄0; Ā(m̄0); τ̄ (m̄0)), selected
from the first stage, are constructed from the Toeplitz matrix Ĝm̄0 = (ĝj−k),
where m̄0 ≥ p in the probability sense. Proposition 5.1 in LS, together with
the heuristic following it, imply that the spike locations obtained in this way,
τ̄

(m̄0)
1 , . . . , τ̄

(m̄0)
(m̄0) , contain a subset that are close to the true spike locations if the

sample size is large enough. The second stage of the model selection is essentially
a backward deletion procedure. As shown by An and Gu (1985), the backward
deletion procedure is generally consistent. Thus we expect that any false spikes in
τ̄

(m̄0)
1 , . . . , τ̄

(m̄0)
(m̄0) could be deleted in the second stage of Algorithm 5.2 in LS, and

this would result in an consistent estimate of the model order. Next, Proposition
3.2 shows that once we have a set of consistent estimates of the spike locations, the
baseline and spike heights can be estimated as well as if the spike locations were
known. The picture looks quite nice when these propositions are combined. Yet
we still cannot provides an analytical interpretation of the phenomenon observed
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in our simulation: the desired subset of τ̄ (m̄0)
1 , . . . , τ̄

(m̄0)
(m̄0) are fairly good estimates

of the true spike locations in terms of bias and variance; see Example 6.1 and
Table 1 in LS.

3.2. Adjusting the unknown width parameter

In this subsection, we regard the width parameter λ as one of the parame-
ters to be estimated. Remember that this width parameter in DNA sequencing,
probably in other cases too, takes values only in a narrow range. The identifia-
bility of the spike-convolution model with fixed width parameter is established
in Proposition 3.1. But life becomes more complicated when the free width pa-
rameter is included. We assume throughout this subsection that identifiability
remains valid in a local neighborhood of the true model. This assumption avoids
technical complications and it is reasonable for DNA sequencing data.

We first consider the likelihood method by assuming that the measurement
errors are i.i.d. Gaussian. Then −2 loglikelihood of the observations generated
from the model is given by

n log(2π σ2) +
1
σ2

∑
l

{z(tl) −A0 −
p∑

j=1

Aj wλ(tl − τj)}2 . (11)

We write θ = (λ,A0, A1, . . . , Ap, τ1, . . . , τp)T , and sometimes we use yθ(t) to
denote SC(wλ; p;A; τ ). Write the gradient vector with respect to θ as ∇θ =
(∂logL/∂θ)T . The Fisher information matrix is, as usual, Iθ = 1

nE[∇θ∇θ
T ].

Then the following can be checked.

Proposition 3.4. Let Ψθ = (ψλ, ψA0 , ψA1 , . . . , ψAp , ψτ1 , . . . , ψτp)T , where
ψλ =

∑p
j=1 Aj(t−τj)w′

λ(t−τj), ψA0 = 1, ψAj = wλ(t−τj), ψτj = −Ajw
′
λ(t−τj),

j = 1, . . . , p. Then Iθ = 1
σ2

∫ π
−π [Ψθ(t)Ψθ(t)T ] dt.

We can use the Gauss-Newton method — see Algorithm 4.1 in LS — to adjust
the parameter estimates. The above procedure of maximizing the likelihood
is equivalent to minimizing the residual sum of squares. Even if we drop the
Gaussian assumption, we still can use L2 norm as our loss function. We found
the following simple method is quite effective in tuning the width parameter for
DNA sequencing trace.

Algorithm 3.2. Width Tuning
Generate a set of lattice points in the range (λ0, λ1). For each of these values

of λ, apply Algorithm 3.1 and Algorithm 5.2 in LS to fit the data, and compute
the residual sum of squares. Choose the value of λ that minimizes the residual
sums of squares.
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3.3. Discussion and examples

Now we apply the parametric deconvolution procedure to the color-corrected
data shown in the middle of Figure 3. Bear in mind that we operate deconvolution
for each dye concentration separately. In the spike-convolution model, we assume
there are no spikes near the two ends. In practice, we cut the trace of one dye
concentration into pieces at the valley points in such a way that each piece has
room for about 12-20 bases. We then scale each piece to the range [−π, π], apply
the parametric deconvolution procedure — Algorithm 3.1 and Algorithm 5.2 in
LS — to it, and get the output back to the original scale. Because these pieces
are not necessarily of exactly the same length, the width parameters in their
corresponding spike convolution models vary slightly from one piece to another,
even though they are constant in the original scale. From now on throughout this
subsection, the width parameter will be meant in the original scale. We apply
Algorithm 3.2 to the four dye concentrations shown in Figure 3, and obtain the
estimates of their width parameters. They are approximately the same. That is,
the loss in terms of residual sum of squares is negligible by assuming the width
parameter is constant across the four components. This is equivalent to saying
that the electrophoretic diffusion effects of the four dyes progress at the same
pace. At the bottom of Figure 3, the output of the parametric deconvolution —
spikes — is depicted in comparison to the raw data, and color-corrected data.
There are 49 or so nucleotide bases in this window, and each dye component is
chopped into two or three pieces. The width parameter is taken to be 4.03 across
time and across the four components. The spike locations are rounded off to
the closest integers. It is noticed that all consecutive bases are well separated.
Correct base-calling can be even made by setting a proper threshold.

In the literature, the limitation and capability of peak separation is described
by the concept of resolution. According to Grossman, Menchen and Hershey
(1992) or Luckey, Norris and Smith (1993), this is defined in the case of the
Gaussian as

Resolution =
τ2 − τ1

2
√

2log 2λ
, (12)

where τ1 and τ2 are the centers of two adjacent Gaussians, and λ is the standard
deviation. If we assume the two Gaussians have the same heights, then the two
peaks will merge into one when the resolution falls below 0.5. Thus they are
indistinguishable by naive bump-hunting. The situation is even worse if the two
Gaussians’ heights are not identical. This simple view of resolution does not
take into account measurement errors, general point spread functions, or general
spike configurations, with possibly, more than two spikes. The spike-convolution
model provides us with another perspective to study the issue. According to the



DNA SEQUENCING AND PARAMETRIC DECONVOLUTION 197

asymptotics of the one-step estimate, see Theorem 4.1 in LS, we can construct
the confidence intervals for the spike locations and heights.

Proposition 3.5. Let the diagonal of the inverse of
∫ π
−π [Ψθ(t)Ψθ(t)T ] dt be

ρ; see Proposition 3.4. Let the one-step estimate of the parameter vector be
θnew. Then we have 100(1 − α)% asymptotically simultaneous confidence inter-
vals: θnew ± zα

2
σnew ρθnew/

√
n, where zα

2
is the 1 − α

2 quantile of the standard
normal distribution, σnew is the one-step estimate of σ.

In light of this result, we take a new look at the resolution issue: we can tell
apart two adjacent spikes at the confidence level 100(1−α)% if the following two
conditions are satisfied:
1. the confidence intervals of their locations do not overlap;
2. the confidence lower bounds of their heights are positive.
This characterizes the capability and limitations of the parametric deconvolution
— a model-based procedure. It is interesting to notice the interplay of the mag-
nitude of the measurement error, the spike configuration, and the point spread
function including the width parameter in this treatment.

To a great extent the width parameter λ determines the resolution in DNA
sequencing, for the change in the inter-arrival time is small compared with that
of the width in a local range. The width value depends on experimental factors
such as gel type, electric field strength, and temperature. The width value also
depends on the position of the nucleotide base relative to the primer because
diffusion becomes stronger as electrophoresis progresses. In order to study how
the width evolves, we look at a larger segment of sequencing data than that shown
in Figure 1. The data set starts with the 10th base from the primer and include
about 5000 scans. There are more than 500 nucleotide bases in this range, for on
average there are about 8 to 9 scans between adjacent bases. We color correct
the data and choose one dye concentration for further study. We do so because
the four dye concentrations share a similar width pattern, as mentioned earlier.
We cut the data into pieces, each consisting of about 100 to 150 scans. We
estimate the width parameters for a few pieces, including the two at the ends, by
manually checking the deconvolution results and residual sum of squares. Then
we interpolate the width across the whole range. This is the starting point for
further width tuning. For each piece, we add the two pieces just before it and
after it. This process creates a window consisting of about 300 to 450 scans.
Then we tune the width parameter by minimizing the residual sum of squares in
a neighborhood centered at the starting value, and letting it be the estimate of
width for the center piece. According to this scheme, adjacent windows overlap
by about two thirds. By doing so, we can obtain a more accurate estimate of
the width parameter for that region. By setting a bounded neighborhood for the
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parameter, we can avoid un-identifiability problem. The analysis in Grossman et
al. (1992) and Luckey et al. (1993) implies that the square of the width parameter
is proportional to the time. In Figure 4, we plot the square of the fitted width
parameter versus time. A straight line is fitted to the scatter plot by the least
squares method. A more or less linear trend can be seen, except for the widths
corresponding to nucleotide chains of small sizes.
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Figure 4. The square of estimated width parameter versus time.

Most existing deconvolvers such as Jansson’s method are non-parametric
in nature, because they do not assume a specific form for the unknown signal.
Jansson’s method has been widely used in spectroscopy. It demands very little
in computation and provides a reasonably good solution in many cases. Li and
Speed (2001) compared parametric deconvolution, Jansson’s method, and the
deconvolver which minimizes a Kullback-Leibler divergence, by both analysis
and numerical examples. The results on parametric deconvolution are quite
encouraging, and it seems modeling can indeed improve the data preprocessing
in DNA sequencing by a great deal. It is our hope that this new perception will
benefit researchers in other scientific areas as well.

4. Appendix

Proof of Proposition 3.1. Let x(t) and x̄(t) be the SC(δ; p;A; τ ) and
SC(δ; l; Ā; τ̄ ) corresponding to y and ȳ respectively. Their Fourier coefficients
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are denoted {gk}, {ḡk}. According to the convolution theorem, the Fourier co-
efficients of y are fk = gk vλ,k, and those of ȳ are f̄k = ḡk vλ,k. If ‖ y − ȳ ‖= 0,
then the Fourier coefficients of y and ȳ are identical. Consequently, we have
{gk} = {ḡk} for 0 ≤ k ≤ K0. Without loss of generality, we assume p ≥ l.
According to Theorem 3.1, the parameter values in SC(δ; p;A; τ ) are uniquely
determined from the smallest eigenvalue and its eigenvector of the Toeplitz ma-
trix (gj−k)k,j=0,...,m, and so is SC(δ; l; Ā; τ̄ ). This contradicts the assumption
that SC(wλ; p;A; τ ) and SC(wλ; l; Ā; τ̄ ) are different.

Later we need the following lemma.

Lemma 4.1. If Â−→
p
A, and τ̂ −→

p
τ , then ‖ Âwλ(t− τ̂)−Awλ(t− τ) ‖n −→

p
0.

The Taylor expansion Â wλ(t− τ̂) around Awλ(t− τ), and the boundedness
of w′

λ(t) gives

|Âwλ(t− τ̂) −Awλ(t− τ)| ≤M1|Â−A| +M2|τ̂ − τ | ,
where 0 < M1, M2 <∞, and independent of t. The conclusion holds.

Proof of Proposition 3.2. First notice that

< ξτ̂j
, ξτ̂k

>n − < ξτj , ξτk
>n=< ξτ̂j

, ξτ̂k
− ξτk

>n + < ξτ̂j
− ξτj , ξτk

>n

≤ ‖ ξτ̂j
‖n‖ ξτ̂k

− ξτk
‖n + ‖ ξτ̂j

− ξτj ‖n‖ ξτk
‖n −→

p
0 ,

where we apply the Cauchy-Schwarz inequality to the second last step, and
Lemma 4.1 to the last step. Hence we have< Ξτ̂ ,Ξ

T
τ̂ >n −→

p
< Ξτ ,ΞT

τ >n. Next

notice that < ξτ̂j
−ξτj , ε >n≤‖ ξτ̂j

−ξτj ‖n‖ ε ‖n −→
p

0 because ‖ ξτ̂j
−ξτj ‖n −→

p
0

according to Lemma 4.1, and ‖ ε ‖n −→
p
σ2 according to the Law of Large

Numbers. Therefore we have < Ξτ̂ − Ξτ , ε >n −→
p

0. Similarly we have

< Ξτ̂ − Ξτ , y >n −→
p

0; hence < Ξτ̂ − Ξτ , z >n=< Ξτ̂ − Ξτ , y >n + < Ξτ̂ −
Ξτ , ε >n −→

p
0. These results together with the decomposition < Ξτ̂ , z >n=<

Ξτ , z >n + < Ξτ̂ − Ξτ , z >n , allow us to apply the Slutsky Theorem to the
least squares estimates in (10), and come to the conclusion that (Â0, Â1, . . . , Âp)
has the same asymptotic distribution as < Ξτ ,ΞT

τ >−1
n < Ξτ , z >n, in which the

spike locations are assumed to be known. Then an application of the Lindeberg-
Feller Theorem for triangular arrays — see Durrett (1991) — tells us that it is a
normal distribution with zero mean, and variance (σ2 < Ξτ ,ΞT

τ >−1
n −→) σ2 <

Ξτ ,ΞT
τ >−1. The consistency of the estimates is implied by the Central Limit

Theorem.

Proof of Proposition 3.3. To focus on the main point, we ignore the occur-
rence of false peaks near the boundary because the probability of this event tends
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to zero as the sample size gets large. We need to prove that Prob(MGIC1(p) <
MGIC1(l)) −→ 1 for any integer 0 ≤ l < p. We denote the empirical model
of order p fitted from Algorithm 3.1 by ŷ(t) = Â0 +

∑p
j=1 Âj wλ(t − τ̂j). In-

terestingly, if we replace the observation z(t) by y(t) in Algorithm 3.1, then
it can be confirmed that the fitted model of order p is exactly the true model
y(t) = A0+

∑p
j=1Aj wλ(t−τj). Similarly, we denote the theoretical and empirical

model of order l fitted from Algorithm 3.1, using the hypothetical observation
y(t) and real observation z(t) respectively, by y(l)(t) = A

(l)
0 +

∑l
j=1A

(l)
j wλ(t−τ (l)

j )

and ŷ(l)(t) = Â
(l)
0 +

∑l
j=1 Â

(l)
j wλ(t − τ̂

(l)
j ). We want to prove: ‖ z − ŷ ‖2

n−→ σ2

and ‖ z−ŷ(l) ‖2
n−→ σ2+c in probability, where c ≥ inf ȳ ‖ y−ȳ ‖= d > 0, and the

infimum is taken over all ȳ ∈ SC(w;m; Ā; τ̄ ), where m < p. From Theorem 3.3
in LS and Proposition 3.2, we know that {τ̂j , j = 1, . . . , p} and {Âj , j = 0, . . . , p}
are consistent estimates. According to Lemma 4.1,

‖ ŷ − y ‖n≤‖ Â0 −A0 ‖n +
p∑

j=1

‖ Âj wλ(t− τ̂j) −Aj wλ(t− τj) ‖n −→
p

0 .

Hence

‖ z − ŷ ‖2
n=‖ ε+ y − ŷ ‖2

n=‖ ε ‖2
n +2 < ε, y − ŷ >n + ‖ y − ŷ ‖2

n −→
p
σ2 ,

because < ε, y − ŷ >n≤‖ ε ‖n‖ y − ŷ ‖n and ‖ ε ‖2
n −→

p
σ2. Along the same

line, we can show that Â(l)
j −→

p
A

(l)
j , τ̂ (l)

j −→
p
τ

(l)
j , and hence ‖ ŷ(l) − y(l) ‖n −→

p
0.

Theorem 2.1 in LS shows that ‖ y − y(l) ‖n= c ≥ d > 0. Using the Weak Law
of Large Numbers for triangular arrays, see Page 35 in Durrett (1991), we can
show that < ε, y − y(l) >n −→

p
0. This implies

‖ ε+ y − y(l) ‖2
n=‖ ε ‖2

n +2 < ε, y − y(l) >n + ‖ y − y(l) ‖n −→
p
σ2 + c .

Putting these together, we have

‖ z − ŷ(l) ‖2
n=‖ ε+ y − y(l) + y(l) − ŷ(l) ‖2

n

= ‖ ε+ y − y(l) ‖2
n +2 < ε+ y − y(l), y(l) − ŷ(l) >n + ‖ ŷ(l) − y(l) ‖2

n −→
p
σ2 + c .

Finally

Prob[MGIC1(p) < MGIC1(l)]

= Prob[‖ z − ŷ ‖2
n +

c1(n) log n
n

p <‖ z − ŷ(l) ‖2
n +

c1(n) log n
n

l]

= Prob[‖ z − ŷ(l) ‖2
n − ‖ z − ŷ ‖2

n>
c1(n) log n

n
(p − l)]−→

p
1 .
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