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Abstract: Protein threading has become a popular technique for protein fold recog-
nition and structure prediction. However it remains a challenging and unsolved

problem to assess the significance or reliability of a threading prediction result.

The lack of an effective mechanism for such an assessment has greatly limited fur-
ther applications of threading on a genome-scale. We have developed a practical

method for assessing the reliability of a threading result, using a neural network

approach. As a key goal of threading is to separate true sequence-fold pairs (a
pair of proteins that share the same structural fold) from false sequence-fold pairs,

we have examined the distribution of true pairs against the many times more false

pairs in the parameter space, and discovered that the vast majority of the true

pairs fall into a continuous region without any false ones, providing the basis for
pattern recognition using a neural network. We have trained a neural network

trying to capture the shape of this “true” region. Our preli minary results are

quite encouraging and show that our approach is more effective in assessing the
prediction reliability than another neural network-based approach employed in the

popular threading program GenThreader. This preliminary study also indicates

that our current neural network is too simple to accurately capture the overall
shape of the true region, and points to directions for further investigation on this

highly important and challenging problem. This neural network-based assessment

capability has been implemented in our threading program PROSPECT and used

during the CASP4 predictions. Our successful performance in CASP4 suggests
that even though this trained neural network is far from being perfect, it is fairly

effective.
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protein structure prediction, threading.

1. Introduction

A protein consists of a string of amino acids (of twenty different types), and
folds into a unique, stable three dimensional (3D) structure in its native state.
Though a protein structure may have some dynamic motion in solvent, its move-
ment is generally rather small, and hence a protein structure can be considered
as a static geometric object. The protein folding problem can be defined as deter-
mining or predicting the 3D structure of a protein from its amino acid sequence.



160 YING XU, DONG XU AND VICTOR OLMAN

This problem is of central importance to contemporary molecular biology as the
3D structures of proteins not only determine their biological functions, but also
provide a key to design drugs to target particular proteins.

Traditionally, protein structures are solved mainly by experimental methods
like X-ray crystallography or NMR. It typically takes months and possibly years
to solve one structure. The completion of over 40 genome projects has signifi-
cantly increased the demand for a higher rate of protein structure determination
– with tens of thousands of genes, which encode protein sequences, having been
determined. Traditional experimental methods for protein structure determina-
tion clearly cannot keep up with the pace at which protein sequences are being
generated.

Computational methods represent a promising alternative for protein struc-
ture determination. Though their prediction accuracy is not quite on the level of
experimental structures yet, the prediction capability of computational methods
have been clearly demonstrated in the bi-annual community-wide experiments on
the Critical Assessment of Techniques for Protein Structure Prediction (CASP)
(CASP (1995), CASP (1997), CASP (1999), CASP (2001)). In each CASP ex-
periment, predictors are given a list of protein sequences whose structures have
been solved experimentally (or are expected to be solved during the CASP pre-
diction season) but unpublished. The prediction teams submit their predictions
before an expiration date for each prediction target. Their prediction results are
then evaluated against the experimental structures at the end of the prediction
season. The success of CASP predictions has demonstrated that many predicted
structures are accurate enough to make some functional inferences. It is gen-
erally expected that a vast majority of the proteins, identified by the genome
projects, will be structurally predicted through computational approaches rather
than experimental ones within the next ten years.

The protein folding problem can be considered as an optimization problem
from a mathematical point of view. It is generally assumed that the native struc-
ture of a protein has the conformation corresponding to the lowest free energy.
Theoretically if one could model all the energy accurately and solve the optimiza-
tion problem, a protein structure could be predicted as accurately as experiments
can measure. However, this is unrealistic. Though all the interactions which gov-
ern protein folding can be described by known physical principles, the current
computing capability is many orders of magnitude too low to compute the interac-
tions using quantum mechanics because of the enormous amount of computation
involved. The folding problem can be simplified through using semi-empirical
physical energies, e.g., modeling a chemical bond as a harmonic spring and elec-
trostatics energy with an inverse-square potential as a function of the distance
between two charged atoms. A good example of such an energy function is the
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CHARMM potential (Brooks et al. (1983)). Some success has been reported in
predicting structures of protein segments (about 10 amino acids) through min-
imizing semi-empirical energies (Li and Scheraga (1987), Pedersen and Moult
(1997)). Nevertheless the computation is still too heavy to fold even a small
full protein (with less than 100 amino acids) using this type of energy function.
To further simplify the problem to make it practically computable, people have
used knowledge-based energy function (Skolnick and Kolinski (1991), Goldstein,
Luthey-Schulte and Wolynes (1992)), which is derived from the observed spatial
relationship of different types of amino acids in the solved structures, e.g., how
often a known structure may have an alanine and a proline at certain distance
under a particular solvent accessibility. This type of residue-based energy func-
tion has significantly decreased the complexity of the folding problem, and it is
often good enough to define the overall structure at the level of amino acid rather
than atomic detail. Recent study has shown that knowledge-based energy by and
large captures the detailed atomic potentials (Mohanty et al. (1999)). However,
the folding problem is still not computationally tractable for finding the globally
optimal solution, even with this level of simplification. Though some prediction
success has been reported with this type of energy function, successful methods
on a more consistent basis are yet to come.

Fortunately, nature provides a break to scientists working on this highly
challenging problem. It is found that proteins with no apparent sequence simi-
larity may have similar structural folds (a structural fold is the 3D conformation
of a protein’s backbone) (Levitt and Chothia (1981), Finkelstein and Ptitsyn
(1987)). Figure 1 shows such an example. Recent studies have further indicated
that the total number of different structural folds in nature may be quite small
(Li, Helling, Tang and Wingreen (1996), Wang (1998)), possibly in the range of
a few thousand or even fewer, which is at least two orders of magnitude fewer
than the number of known protein sequences. Statistics from PDB (Bernstein
et al. (1977)) have shown that 90% of the proteins solved in the past three years
share a similar structural fold with previously solved structures. This suggests
that, for a majority of the proteins, structure prediction problems (on the amino
acid level) can be effectively reduced to the problem of searching for the correct
folds among all possible structural folds. Even on the atomic level, the problem
is effectively decomposed to three significantly easier problems: (1) a protein fold
recognition problem, i.e., to determine which structural fold a protein sequence
will fold into; (2) an alignment problem, i.e., to find the optimal way to place the
protein sequence onto the identified structural fold; and (3) a modeling problem
of sidechain conformations, with a constrained backbone structure. This decom-
position has fundamentally changed the paradigm of protein structure prediction,
making the problem realistically solvable. NIH recently initiated a new project,
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called the Structural Genomics Initiative (National Institute of General Medical
Sciences (1999)). Its goal is to selectively solve a few thousand structures exper-
imentally to have a “complete” coverage of the fold space, and then to solve the
rest of the protein structures computationally.

Figure 1. Structure superposition between 1gox (glycolate oxidase, in blue)
and 1ak5 (inosine monophosphate dehydrogenase, in green). The sequence
identity between the two proteins is 17%, and the root mean square devia-
tion between the two structures is 2.5 Å for the Cα atoms. The structure
superposition is obtained through VAST (Gibrat, Madej and Bryant (1996))
and the figure is made using MOLSCRIPT (Kraulis (1991)).

In the rest of the paper, we will focus on issues related to the first two prob-
lems. For about 30% of new protein sequences, the first two problems can be
solved through sequence-sequence comparison (Gerstein (1998)), based on the
premise that significant sequence similarity implies significant structural similar-
ity. A more general technique, called protein threading, may cover 50-70% of new
proteins (Jones (1999)). Threading is particularly good at identifying native-
like structures when the query protein sequence and its fold template do not
share significant sequence similarity. It achieves its superiority through utiliz-
ing not only sequence-level information but also 3D structure information. The
threading method achieved its initial success in the pioneering work of Eisenberg
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and colleagues (Bowie, Luthy and Eisenberg (1991), Luthy, Bowie and Eisenberg
(1992)). Now threading has become a popular technique for protein structure
prediction through further developments by many other research groups (Sippl
and Weitckus (1992), Jones, Taylor and Thornton (1992), Godzik, Skolnick and
Kolinski (1992), Bryant and Altschul (1995), Fischer, Rice, Bowie and Eisenberg
(1996b), Alexandrov, Nussinov and Zimmer (1996), Xu, Xu and Uberbacher
(1998)).

The problem of protein threading can be formulated as follows. Given a
query protein sequence s of unknown structure, threading searches a structure
template library T to find the best sequence-structure alignment s-t, t ∈ T,
measured by the overall preference of individual residues to their structural en-
vironment and of residue-residue contacts (interactions). A threading method
typically consists of four components (Smith et al. (1997)): (1) a library T of
representative 3D protein structures as templates; (2) an energy function for
measuring the fitness between a query s and a template t, where t ∈ T; (3) a
threading algorithm for searching for the lowest energy among the possible align-
ments for a given s-t pair; (4) a criterion for estimating the confidence level of a
sequence-structure alignment.

Despite the success of the threading approach, there are still a number of
problems to be solved. Among them are (a) the correct folds (the templates
that most closely resembles the native fold of the query, or in biological terms,
structural homologs or analogs) are not always ranked as the best; and (b) even
when the correct fold is ranked the best, the alignment between the query se-
quence and the fold template is often not perfect, making further construction
of the detailed atomic structure unreliable. These problems have their roots in
each of the four threading components. First, the template library is incomplete:
though a query protein may have a similar fold in the library, the structural dif-
ference between this fold and the query’s native fold may be too large to achieve
a high ranking. We expect this problem to become less of an issue as more
and more new structures are added to the template library through the effort of
the NIH Structural Genomics Project. Second, in the algorithmic aspect, exist-
ing threading methods often fail to find the alignment with the lowest energy.
Significant progress has been made in solving this problem through our recent
work, which has resulted in an efficient algorithm that guarantees to find the
global energy minimum in threading (Xu, Xu and Uberbacher (1998), Xu and
Xu (2000)). The computational efficiency of our algorithm is achieved through
fully utilizing the fact that only local pairwise contacts need to be considered
for fold recognition and through a discovery that the dominating factor in the
computational complexity of our divide-and-conquer threading scheme (Xu, Xu
and Uberbacher (1998)) is how complex the overall structure of pairwise contacts
is, defined as the topological complexity (Xu and Xu (2000)) of a structural fold,
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and the topological complexities of all known structural folds are relatively low.
Third, there are many energy functions used in different threading programs.
Each of them has some discerning power (in terms of recognizing the correct fold
and producing the correct alignment), but all have their limitations due to the
crudeness of the function form.

The most challenging problem is the assessment of confidence in a threading
result. Due to the lack of more effective ways to score threading results, most
existing programs use the raw (total) score of threading energy terms to rank
sequence-fold alignments. Such a score should apparently be normalized against
the lengths of the query sequence and the template protein. In addition, we have
observed that other factors could also affect the threading scores. These may
include the amino acid composition, the overall geometric shape of a template,
etc. For example, we have found that certain templates tend to be ranked high
for many query sequences, indicating that the baseline threading scores (typical
threading score against an arbitrary protein sequence) for these templates are
relatively high compared to other templates (and lengths do not seem to be a
major contributor here). Due to the nontrivial nature of normalizing the thread-
ing scores, there has been no theoretically sound and practically effective method
to put all threading scores on the same scale so that score comparisons across
different queries and different templates are meaningful.

What has made the sequence-sequence comparison tools like BLAST
(Altschul et al. (1997)) or FASTA (Pearson and Lipman (1988)) so popular is
their ability to assess the statistical significance of their alignment results. These
significance values are estimated based on rigorous and sound statistical models
and a biologist can easily interpret the sequence comparison results based on
such values. However, there has been no similar model for assessing the statis-
tical significance of a threading result due to a number of complicating factors.
This has clearly limited the usage of the threading methods.

We have developed a practical method for assessing the significance of a
threading result using a neural network approach. To show our method, we first
introduce the mathematical formulation of protein threading. Then we describe
our assessment method and give some prediction results related to the confidence
assessment. We end with a discussion on future developments.

2. Problem Formulation

2.1. Mathematical representation of threading problem

A protein threading problem can be defined as to find a sequence-structure
alignment that optimizes the sum of three terms: (a) the singleton fitness energy,
(b) the pairwise contact energy, plus (c) the alignment gap penalties. A protein
3D structure is defined as a sequence of amino acids and their 3D coordinates,
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which may consist of three types of secondary structures: α-helices, β-strands,
and loops. For convenience, we call the α-helices and β-strands core secondary
structures. Generally, core secondary structures are well-conserved while loops
may not be among the homologous/analogous structures. Hence we consider
only core secondary structures in our energy calculation and penalize the length
difference between the aligned loop regions (without considering the detailed
fitness or contact energy). In our formulation of the threading problem, no
alignment gap is allowed in the core secondary structure regions. In modeling
the pairwise contact potentials, it is generally believed that only local residue-
residue contacts need to be considered for the purpose of threading alignment
(Jones, Taylor and Thornton (1992), Alexandrov, Nussinov and Zimmer (1996)).
We have used a simple cutoff distance between the Cβ atoms of two residues to
determine if they have enough contact to be considered.

More formally, we define a threading problem as follows. Let s = s1s2 · · · sn

be a query protein sequence, and (t, T ) be a protein structure template with
loops removed (loop lengths are kept), where t = t1t2 · · · tm is a sequence of
template positions with an array of physical properties attached to each of them,
and T = T1, . . . , TM is the sequence of core secondary structures partitioning t.
Thus the Ti are contiguous segments of t, Ti representing the ith core secondary
structure. Let “pairs(t, T )” be the set of all pairs of positions in the template
(t, T ) considered to have pairwise contacts (in our current implementation, a
pair of residues are considered to be in contact if their Cβ atoms are within 8
Å). Further, let “loop(Ti, Ti+1)” represent the length of the loop between Ti and
Ti+1. We use f(x, y) to represent the fitness of aligning (or placing) the amino
acid x to the template position y, x ∈ s and y ∈ t, with a collection of attributes
that describe the physical properties at position y. We use c(x1, x2) to denote
the contact potential of a pair (x1, x2) ∈ pairs(t, T ) and p(|r1 − r2|) to represent
the penalty for the length difference between a template loop (length r1) and
its “aligned” portion (length r2) of the query sequence. The protein threading
problem is to find a partition {S1, . . . , S2M+1} of s such that ‖S2i‖ = ‖Ti‖ for all
1 ≤ i ≤ M , and for which the following function is minimized:∑

i∈[1,M ]

∑
j∈[1,‖Ti‖]

f(S2i[j], Ti[j]) +
∑

(Ti[j],Ti′ [j′])∈pairs(t,T )

c(S2i[j], S2i′ [j′])

+
∑

i∈[2,M ]

p(| ‖S2i−1‖ − loop(Ti−1, Ti) |), (1)

where X[k] represents the kth element of X, ‖ · ‖ represents the cardinality of a
set, and S2i−1 represents the loop region between S2i−2 and S2i, for 2 ≤ i ≤ M .
Note here that each Si is a substring of s, some possibly empty.

We have developed an algorithm for solving this optimization problem. It
finds the globally optimal threading alignment, and runs efficiently when the
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cutoff for residue-residue contacts is 7 or 8 Å (Xu, Xu and Uberbacher (1998)).
We have implemented it as the computer program PROSPECT (Xu and Xu
(2000)).

2.2. Energy function

We now outline how the f , c and p terms found in expression (1) are calcu-
lated. In PROSPECT,

f = Emutate + Esingle, (2)

c is also called Epair, and p is a linear function which can be expressed for an
alignment gap of length g as in (Gonnet, Cohen and Benner (1992)):

p(g) = A + B ∗ (g − 1), (3)

where A and B are positive constants, and g > 0.
The mutation energy Emutate describes the compatibility of substituting

one amino acid type by another, and the singleton energy Esingle represents
a residue’s preference to its local secondary structure and its preference to being
in a certain solvent environment (either exposed to solvent or in the interior of
the protein). For Emutate, several matrices have been developed based on mu-
tation rates found in sequence databases. The most popular of these are the
PAM (Dayhoff (1978)) and BLOSUM (Henikoff and Henikoff (1992)) matrices.
The BLOSUM-62 is a widely-used matrix for detecting close homologs, while
PAM250 (Gonnet, Cohen and Benner (1992)) is more suitable for identifying re-
mote homologs. Experience has shown that PAM250 is one of the best mutation
matrices available for threading (Fischer, Rice, Bowie and Eisenberg (1996b),
Abagyan and Batalov (1997)).

Both Esingle and Epair are typically derived from Boltzmann statistics from
a set of non-homologous proteins. The basic idea is that if an amino acid is
frequently observed in the interior of protein structures, a favorable energy value
will be rewarded when it is aligned to an interior position of a template. We
calculate Esingle as Esingle =

∑
i esingle(i, ssi, soli), where esingle(i, ss, sol) repre-

sents the energy or preference for a particular combination of amino acid type i,
secondary structure type ss, and solvent accessibility type sol. It is expressed as

esingle(i, ss, sol) = − log
N(i, ss, sol)
NE(i, ss, sol)

, (4)

log is the natural logarithm, N(i, ss, sol) is the number of amino acids of type i
in the environment defined by ss and sol, as counted from the FSSP database
(Holm and Sander (1996)), NE(i, ss, sol) is the estimated number of amino acids
of type i in ss and sol assuming i, ss, and sol are independent. NE(i, ss, sol) is
calculated as

NE(i, ss, sol) =
N(i)N(ss)N(sol)

N2
, (5)
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where N(i) is the number of amino acids of type i, N(ss) is the number of residues
in secondary structures of type ss, N(sol) is the number of residues with solvent
accessibility sol, and N is the total number of residues in the non-homologous
protein database.

Similarly, Epair is calculated as Epair =
∑

i≤j epair(i, j), where epair(i, j) is
derived from the frequency of the inter-residue pairs. That is,

epair(i, j) = − log
M(i, j)
ME(i, j)

, ME(i, j) =
M(i)M(j)

M
, (6)

where M(i, j) is the number of pairs of residues of types i and j in the database
(within the cutoff), and ME(i, j) is the estimated number of i-j pairs assuming
that residues of types i and j form a pair without any apriori preference. Then
M(k) =

∑
s M(k, s) is the number of all pairs which consist of residue of type

k and M =
∑

ij M(i, j) is the total number of pairs in the database. In the
calculation, the number of pairs of residues of types i and j are partitioned
equally in M(i, j) and M(j, i), M(i, j) = M(j, i). In PROSPECT, the cutoff
distance for epair(i, j) is 7.0 Å between Cβ atoms, which accounts for most of
the important inter-residue interactions (Jones, Taylor and Thornton (1992),
Alexandrov, Nussinov and Zimmer (1996)). We only consider the residue pairs
that are separated by at least 3 amino acids in the protein sequence. Pairs
separated by one or two amino acids in the protein sequence represent local
interactions, which are less important in determining an overall fold.

2.3. Assessment of threading results

For applications, a threading program needs to calculate an optimal align-
ment between a query sequence and each structure in the template library. Then
a decision needs to be made as to which sequence-structure alignment likely gives
the correct fold recognition (and the “correct” alignment). This is a highly chal-
lenging and unsolved problem. In principle, one could build a probabilistic model
of the knowledge-based threading energy that accounts for different factors and
the correlations among these factors. Such a model could directly give a proba-
bility (or reliability) of a particular sequence-structure alignment being correct.
There have been a number of such attempts to do this. An early one was to use
z-score (Flockner et al. (1995)). For the energy E resulting from a particular
alignment, the z-score of E is

z =
E − Ē

σ
, (7)

where Ē and σ are, respectively, the average and standard deviation of the en-
ergy distribution resulting from the same alignment after re-shuffling the amino
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acids of the query sequence. However it has been shown that the z-score is not
effective (Marchler-Bauer and Bryant (1997)). There have also been attempts
to use the P-value scheme (Karlin, Dembo and Kawabata (1990), Karlin and
Altschul (1990)) to build such a model. A P-value estimates the probability of
having alignment scores between two random sequences higher than a particular
value, and has been successfully applied to sequence alignment, thanks to Kar-
lin’s seminal work on a rigorous model for gapless alignments (Karlin, Dembo
and Kawabata (1990), Karlin and Altschul (1990)). Due to the lack of a rigorous
model for threading, the P-values are typically estimated through compiling a
“large” number of threading scores between a query sequence and a template
after randomly shuffling its residues (Bryant and Altschul (1995)). While some
usefulness of the estimated P-value has been demonstrated, the problem of devel-
oping a rigorous and effective scheme for threading remains a challenging open
problem.
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Figure 2. Threading score distributions of four templates against 10,000
sequences randomly selected from the non-redundant protein sequences data-
base in PIR (Barker et al. (1999)). The x-axis is the threading score axis
and the y-axis represents the occurrences. (a) 1cei (85 amino acids). (b)
1ako (268 amino acids). (c) 1aszb (490 amino acids). (d) 1lci (523 amino
acids).
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To further illustrate the necessity of “normalizing” threading scores, we show
the scoring distributions of four template structures against the 10,000 protein
sequences in Figure 2. Clearly a particular threading score, say -2000, may
have a quite different meaning for different templates. Based on our current
understanding, the contributing factors to variations in score distributions not
only include sequence/template lengths, but also such characteristics as amino
acid compositions, structural features, etc. It is clearly very challenging to put all
these characteristics into one mathematical model in order to rigorously estimate
the significance or reliability of a threading result.

3. Results

We have developed a practical method for assessing the significance of a
threading result using a neural network approach. The basic idea can be de-
scribed as follows. We selected a large set of query sequences and threaded them
against our template library, using PROSPECT. The threading result is a set of
36,657 sequence-structure alignments, among which 1469 are true pairs and the
rest false. A true pair is defined as a pair of proteins that belong to the same fold
in the FSSP database (Holm and Sander (1996)), otherwise a pair is considered
false. A key distinguishing characteristic between true and false pairs is that the
number of structurally alignable residues (Alexandrov (1996)) in a true pair is
generally significantly higher than the number of structurally alignable residues
in a false pair. Table 1 summarizes the relative frequencies of true pairs among
all 36,657 pairs with numbers of structurally alignable residues in a particular
range:

Table 1. Relative frequency of true pairs vs. number of structurally alignables.

number of alignables 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-

relative frequency of true pairs 0.000 0.001 0.003 0.020 0.150 0.500 0.750 0.900 0.990 1.000

If the number of structurally alignable residues in a true query-template pair
is x, a perfect threading alignment should have these x pairs of residues aligned
accordingly. Due to the crudeness of existing residue-based energy functions, our
threading program generally does not consistently produce threading alignments
(for true pairs) with 100% accuracy. For a partially correct alignment, we can
assume that the score contribution from incorrectly aligned residues is consistent
with the background scores for this template, i.e., for scores of false pairs involving
this template. Hence a threading score for a true pair should essentially reflect
the number of structurally alignable residues that get aligned correctly, after
deducting the background scores for this particular template. The first goal of
our study is to find a function which can approximately map a threading score
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between a pair of proteins, along with various other contributing factors, to the
number of structurally alignable residues between the pair. Other contributing
factors should include enough information to help the mapping function to deduct
background scores. Here we have included as candidates (1) the lengths of the
query sequence and the template sequence, (2) information about the template’s
score distribution (including the extreme values, the average and the standard
deviation of the distribution), (3) the sequence identity between a query and
the template sequence, and (4) the number of core secondary structures in the
template and the total length of its core residues.

We used a neural network approach (Hertz, Krogh and Palmer (1991)) to
construct the mapping. We trained the network on a data set consisting of 50%
of the 36,657 pairs, and tested it on the remaining 50% of the data points. The
input vector to the neural network consists of the threading scores along with
parameters listed in (1) – (4), and the desired output value is the the number
of structurally alignable residues between each pair (in fact, we use frequencies
instead of the number of alignables – see Table 1).

Before we present the training details and results, we first describe some
preliminary results of our study on the distribution of the true pairs among all
pairs in the parameter space. Only if the true points occupy a region or regions
without significant numbers of false points, can we expect the neural network
training to lead to good separation between true and false pairs.

3.1. Properties of true-pairs

We represent each query-template pair by a vector of 10 parameters, in-
cluding its threading scores by PROSPECT and various parameters describing
various physical and geometric features of the template and the length of the
query, as listed in (1) – (4). We want to investigate the regions occupied only by
true pairs in the 10-D space. These are 36,657 vectors, 1469 of which represent
true pairs and the rest are all false pairs. Our initial attempt involves trying to
identify a small number of maximal spheres (or other convex sets), which consist
of only true pairs. A maximal sphere is defined as a sphere that contains only
true pairs and cannot be enlarged. The largest such sphere consists of 171 true
pairs. Further investigation leads to a number of such spheres consisting of at
least 50 true pairs. We found that some of these spheres overlap with each other.
As we lower the threshold on the size of a sphere to 2 true pairs, we found that
1425 out of 1469 true pairs are contained in a series of overlapping spheres, and
all these spheres are connected through the overlapping relationship, as schemat-
ically illustrated in Figure 3, forming a continuous region with no false pairs. The
remaining true pairs seem to be inseparable from the false pairs. Our preliminary
data also suggested the overall shape of this region seems to be quite complex.
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We are continuing our investigation to gain a better understanding of it. We
think, after all, that a significant portion of true pairs is separable from the false
ones in this parameter space, though actually separating them could turn out to
be highly challenging due to the very complex shape of the region.

Figure 3. Schematic 2D view of the parameter space. A “+” sign represents
a true pair, while a “-” sign denotes a false pair. The spheres show the
regions which contain only true pairs without false ones.

3.2. Neural network training and results

The ultimate goal of our neural network training is to identify true sequence-
structure pairs and to assess the number (or the portion) of correctly aligned
residues that are structurally alignable, by our threading program. The training
set consists of 50% of the 36,657 pairs that are randomly selected. Each vector
consists of 10 input values as described above, and the desired output is a value
∈ [0, 1] extracted from the second row of Table 1. We have used a commercial
package, STATISTICA/neural network (StatSoft (1993)), to do the training.
This software trains the neural net parameters on the training set, using the
standard back-propagation algorithm for a selected number of cycles, and tests
on the test set. It continues this process until the root mean square (RMS)
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errors for both the training and testing sets converge to similar values. During
the training process, the software automatically tries different numbers of hidden
nodes on each hidden layer, and keeps the network architecture with the best
performance up to each time point. The total number of network architectures
tried by the software depends on the time limit set by the user. Our current
neural network is a result of 100 hours of training on a PC/Pentium-II. It has
two hidden layers with 15 nodes on the first of them, and 12 nodes on the second.
The input nodes, the first-layer hidden nodes and the second-layer hidden nodes
are all fully connected.

For this particular network, we have achieved ∼11% of RMS errors on both
the training and the testing sets. Figure 4 shows the detailed performance on
all 36,657 pairs. What this preliminary study has achieved is that we have
constructed a mapping from a raw threading score to [0, 1], and each mapped
value has a well-defined meaning. For example, among threading results with a
neural net score 0.6, 75% of them come from true pairs.

neural network score
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Figure 4. Prediction performance. The solid line represents the conditional
probability of being a true pair for a threading given a neural network score.
The dashed line represents the percentage of true pairs being above a neural
network score. The dot-dashed line represents the average error of false
positive and false negative if one predicts a true pair when the neural network
score is larger than the threshold.

Jones has recently published a paper on using a neural network to help eval-
uate the significance of a threading result (Jones (1999)). The main technical
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difference between our work and his is that we have used “the number of struc-
turally alignables” as the objective function for training, while he has used 0/1
(true/false) as the desired training output. In addition, we expect our investiga-
tion on the overall shape of the region occupied by the true pairs in the parameter
space to lead to significant new insights into this challenging problem.

In the following, we provide a simple explanation of why the use of our
objective function should give at least as good result as that of Jones. Let θ
be the input vector of the neural network, and τ(θ, ω) be the neural network
output function to match the desired output, where ω represents the network
weights obtained from training. The input vector θ is generally insufficient to
determine whether a threading result indicates a true pair or not. Therefore, we
assume a probability of a true pair as a function of θ, say f(θ). The goal of the
neural network training is to minimize the error between the desired output d

and τ(θ, ω), i.e.,

min
ω

∫
L(τ(θ, ω) − d) dP (θ), (8)

where P (θ) represents the distribution of θ and L > 0 is a penalty function for
the error. A typical functional form is L(x) = x2. Here we do not use a special
functional form, but rather assume L is a convex function. When using 0/1 as
desired outputs, the function in (8) has two terms, representing true pairs and
false pairs. This can be written as

f(θ)L(τ(θ, ω) − 1) + [ 1 − f(θ) ]L(τ(θ, ω) − 0). (9)

Since L is convex function, λL(x) + (1 − λ)L(y) ≥ L(λx + (1 − λ)y). Hence, for
each θ, the value of (9) is larger than

L ( f(θ) [ τ(θ, ω) − 1 ] + [ 1 − f(θ) ] τ(θ, ω) ) = L ( τ(θ, ω) − f(θ) ) . (10)

The right side of equation (10) is what our neural network minimizes, i.e., instead
of minimizing the difference between the neural network output and two discrete
values of 0 and 1, we minimize the difference between the neural network output
and the probability of being a true pair. We conclude that our method can
achieve smaller errors between the neural network output and the desired output
than that of Jones.

Though our current neural network is far from being what we wish, we have
tested its performance on fold recognition on a number of query proteins with
a wide range of sequence identity levels against its ten native-like folds in our
template library. Here, we take one query sequence (PDB code 1bgc: 158 amino
acids), and thread it against a template library with 2177 unique templates of the
FSSP database (Holm and Sander (1996)). The sequence identities between 1bgc
and these ten protein are different. Table 2 shows the fold recognition results
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on those ten native-likes structures (plus 1bgc itself). The table consists of the
following information: (1) the template name, (2) the number of structurally
alignable residues (#alignables) between the template and 1bgc, (3) the sequence
identity between 1bgc and the template for the structurally alignable regions
(seq-ident), (4) the ranking in fold recognition by the raw threading score of
PROSPECT (rank-0), (5) ranking by the neural network scores (rank-neural),
(6) the neural network scores, and (7) the probability of the template being a
correct fold for 1bgc, respectively. Ideally, these templates should be ranked from
number 1 to number 11, for fold recognition.

Table 2. Threading performance with and without neural network.

template #alignables seq-ident (%) rank-0 rank-nn nn-score prob. being true
1bgc 158 100 1 1 1.00 1.00
1cd9c 157 81 2 2 1.00 1.00
1lki 141 12 5 13 0.20 0.25
1alu 140 16 3 5 0.28 0.31
1huw 134 10 6 4 0.33 0.37
1cnt3 128 22 4 9 0.23 0.27
1xsm 124 7 21 35 0.14 0.17
1r2fa 122 6 14 36 0.14 0.17
1eera 116 11 144 3 0.34 0.38
6prcm 71 9 128 24 0.17 0.20
6prcl 70 7 119 18 0.18 0.21

As we can see, the neural network scores generally do much better than raw
threading scores in ranking the native-like folds, particularly when the sequence
identities are low – that is where we need the most help in evaluating the thread-
ing results. In addition, the neural network score directly provides a probability
(or reliability) of a particular threading result (query-template pair) being a true
pair. In this example, all native-like folds receive a significant probability of being
true.

We have applied this neural network in our CASP4 predictions, and achieved
very good results (Xu et al. (2001)). PROSPECT recognized 25 correct folds from
33 prediction targets in CASP4, the highest among all participating teams. This
suggests that even though this trained neural network is far from being perfect,
it is highly useful.

4. Discussion

Confidence assessment of a threading result is a major bottleneck in improv-
ing the applicability of threading methods. Without a capability for reliable con-
fidence assessment, we cannot process threading results automatically as BLAST
or PSI-BLAST (Altschul et al. (1997)) does, nor conduct a high-throughput fold
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recognition by threading on a genome-scale, though this is clearly needed as over
40 genomes have been sequenced, and their genes identified. Confidence assess-
ment for threading is clearly a much more complicated problem than sequence
comparison. It involves many more scoring terms, in particular the pairwise in-
teraction, which are hard to fit into one probabilistic model. The distribution
of threading scores, as shown in Figure 2, generally does not follow the extreme
distribution observed in sequence comparisons, making it hard to adapt the the-
ories developed for sequence comparisons to protein threading. We have taken a
practical approach, rather than trying to develop a rigorous model, for assessing
threading results.

Our trained neural network has clearly improved our ability to interpret
a threading result and a practical way to determine to what extent it can be
trusted. This method also improves the sensitivity in detecting a native-like
fold, compared with fold recognition by raw scores. We have demonstrated,
both theoretically and through real applications, that our method to train neural
networks has much better performance than a similar method (Jones (1999)). We
have applied our method in threading with PROSPECT, which has significantly
improved the ability of its fold recognition, as shown in Table 2.
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