
Statistica Sinica 12(2002), 311-335

INFERENCE ON PEDIGREE STRUCTURE

FROM GENOME SCREEN DATA

Mary Sara McPeek

The University of Chicago

Abstract: The problem of error detection in general inbred and outbred pedigrees on

the basis of genome screen data is considered. We develop a novel characterization

of pairwise relationships, which is extended to k-wise relationships. Given an arbi-

trary pedigree specifying the relationship among a set of k individuals, we show how

to prune the pedigree so that no information on the genetic relationships is lost and

yet no excess meioses remain. We take a likelihood-based approach to inference.

Under the assumption of no interference, all the crossover processes in a pedigree

can be viewed jointly as a continuous time Markov random walk on the vertices

of a hypercube, so a hidden Markov method is a natural approach for likelihood

calculation. One strategy to make likelihood calculation feasible is to use aspects of

the pedigree structure to find the orbits of the group of symmetries on the hyper-

cube that preserve the information of identity by descent. We describe strategies

for accomplishing this for arbitrary pedigrees and give weak sufficient conditions

under which the resulting chain has the minimum number of states needed to both

contain all the information of the IBD process and to satisfy the Markov property

under no interference.

Key words and phrases: Crossover process, HMM, IBD, Markov chain, misspeci-

fied relationship, pairwise relationship, pedigree error, pedigree graph, relationship

estimation, relationship inference.

1. Introduction

Genetic linkage analysis is used to locate genetic variants associated with
traits of interest. The initial goal is to identify genetic markers whose alleles
tend to be co-inherited with the trait within families. This analysis depends on
accurate knowledge of the relationships among individuals in the study. If the
relationship among individuals is misspecified, this may lead to either reduced
power (e.g., when the the true relationship among individuals with similar trait
values is more distant than what is believed) or false positive evidence for linkage
(e.g., when the true relationship among individuals with similar trait values is
closer than what is believed). The importance of identification of relationship
errors in a linkage study is demonstrated by Boehnke and Cox (1997) in an
application to non-insulin-dependent diabetes mellitus.
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It is common in linkage studies for data to be collected on hundreds (or
thousands) of loci throughout the genome, in what is called a genome screen.
Relationships among individuals in the study are ascertained by other methods
and can be summarized by a pedigree. We consider the problem of using the
genome screen data collected for linkage analysis to detect errors in the assumed
pedigree. For outbred pairwise relationships, Thompson (1975) considers the
special case of unlinked loci, Browning (1998; 2000) assumes that continuous
identity by descent information is available, and Zhao and Liang (2001) further
assume gamete data. Practical methods for detection of errors in sibling pair
relationships from genotype data on linked loci include Göring and Ott (1997),
Boehnke and Cox (1997), Ehm and Wagner (1998), and Olson (1999). Methods
for a wider range of common outbred pairwise relationships are given by Thomp-
son and Meagher (1998), McPeek and Sun (2000), Epstein, Duren and Boehnke
(2000), and Sun, Wilder, and McPeek (submitted). To identify errors in pairwise
relationships in a complex inbred pedigree, Sun, Abney and McPeek (2001) use
a simple graphical method.

We take a likelihood-based approach to inference and use the MLLR test of
McPeek and Sun (2000), extended to k-wise relationships. We give a novel char-
acterization of pairwise relationships, which we extend to k-wise relationships.
This characterization allows one to determine which individuals in a pedigree
have an impact on the genetic relationship among any given set of individuals,
and it is particularly relevant for complex inbred pedigrees. The question of how
to automatically generate minimal-state hidden Markov chains to implement the
MLLR test for any given pairwise relationship was left as an open problem by
McPeek and Sun (2000). In the current work, we describe how to find the hidden
Markov model with the minimum number of states for a given k-wise relation-
ship, among those Markov chains that are aggregations of the joint crossover
process. This involves finding the orbits of the group of symmetries on a hyper-
cube that preserve certain sets of vertices. Furthermore, we give weak sufficient
conditions under which the resulting Markov chain has the minimum number of
states needed to both contain all the information of the IBD process and to satisfy
the Markov property under no interference. We discuss the practical problems
of inference based on genetic data.

2. Likelihood-Based Inference

Let X denote genotype data on a set of k individuals, and suppose that,
for each k-wise relationship R, we have a fully specified model for X and can
calculate the likelihood LR(X). In a linkage study, one would typically have
a pedigree obtained, for instance, by asking the individuals in the study how
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they are related. Suppose that the pedigree specifies some relationship R0 for
the k individuals. In performing linkage analysis, one would typically assume
that the relationship R0 is correct unless there are strong indications to the
contrary. Thus, one natural approach to pedigree error detection is hypothesis
testing with H0 : true relationship is R0 vs. HA : true relationship is not R0. We
choose some subset R of k-wise relationships and consider the statistic MLLR =
max{A∈R\{R0}} log(LA) − log(LR0) of McPeek and Sun (2000). We obtain an
empirical estimate F̂0 of the null distribution F0 of MLLR by simulation under
R0, using the same map of markers as in the data set. We calculate the p-
value associated with {MLLR = m} as 2min{F̂0(m), 1− F̂0(m)}. If the p-value
associated with R0 is sufficiently small, we reject the null hypothesis. As a
point estimate, we could set R̂ = B ∈ R for some B satisfying log(LB) =
max{A∈R} log(LA). More useful is a confidence set, which we could define to
consist of all relationships in R for which the p-value is greater than α, for some
chosen α > 0, in addition to all relationships not included in R. We discuss, in
Sections 3 and 4, the space of possible R and, in Sections 5 and 6, the model for
X assuming R. Likelihood calculation is discussed in Section 7.

3. Human Pedigrees

The defining characteristics of a pedigree depend on the mating system. For
instance, a pedigree for organisms capable of asexual reproduction would follow
different rules from one for humans. For humans (or other organisms that re-
produce similarly), we define a pedigree to consist of a directed graph P and a
function s, where P has nodes N (P ) ⊂ Z, |N (P )| <∞, corresponding to individ-
uals in the pedigree, and directed edges E(P ) ⊂ N (P )×N (P ), with (a, b) ∈ E(P )
precisely when a is a parent of b. Here s : N (P ) → {male, female} assigns a sex
to each individual. (For other ways to represent a pedigree, see Cannings and
Thompson (1981), Chap. 1 and Thompson (1986), Chap. 2.) Given b ∈ N (P ),
let p(b) = {a ∈ N (P ) : (a, b) ∈ E(P )} be the set of parents of b. For a, b ∈ N (P )
and k ≥ 2, we define (a, a1, . . . , ak−1, b) ∈ N (P )k+1 to be a directed path of
length k from a to b if {(a, a1), (a1, a2), . . . , (ak−2, ak−1), (ak−1, b)} ⊂ E(P ). We
define (a, b) to be a directed path of length 1 from a to b if a ∈ p(b). We
define A(b) ⊂ N (P ) to be the set of ancestors of b, A(b) = {a ∈ N (P ) :
there is a directed path of length l ≥ 1 from a to b}. In order to be a human
pedigree, (P, s) must satisfy the following conditions:
1. For all b ∈ N (P ), |p(b)| = 0, 1 or 2 (each individual has 0, 1, or 2 parents in

the pedigree).
2. For all b ∈ N (P ), if a1, a2 ∈ p(b) with a1 �= a2, then s(a1) �= s(a2) (if an

individual has two parents in the pedigree, they must have opposite sexes).
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3. For all a ∈ N (P ), a /∈ A(a) (an individual cannot be his or her own ancestor).
Let P be the set of all pedigrees, i.e., the set of all (P, s) satisfying the above

conditions. If |p(b)| = 0 we call b ∈ N (P ) a founder of the pedigree, if |p(b)| = 1
we call b a half founder, and if |p(b)| = 2 we call b a nonfounder. (We note that
it is conventional to further restrict the definition of a pedigree by disallowing
half founders; however, we find this restriction disadvantageous for our purposes.)
Let F(P ) ⊂ N (P ) be the set of founders of P , Hm(P ) ⊂ N (P ) be the set of half
founders with a mother in the pedigree, i.e., with s(a) = female where p(b) = {a},
let Hf (P ) ⊂ N (P ) be the set of half founders with a father in the pedigree, and
let NF(P ) ⊂ N (P ) be the set of nonfounders of P . Note that the number of
directed edges in the graph is always 2|NF(P )|+ |Hm(P )|+ |Hf (P )|. Finally, for
the purposes of this study, if a pair of individuals in the pedigree are monozygotic
twins, we identify their nodes and treat them as if they were a single individual.
The reason is that they are genetically identical (or virtually so).

We define two distinct individuals a, b ∈ N (P ) to be unrelated (with respect
to pedigree (P, s)) if they have no common ancestors and neither is an ancestor
or descendant of the other, i.e., [{a} ∪ A(a)] ∩ [{b} ∪ A(b)] = ∅. We define a
nonfounder a ∈ NF(P ) to be outbred (with respect to pedigree (P, s)) if a’s 2
parents are unrelated. In addition, all founders and half founders are considered
to be outbred. An individual who is not outbred will be said to be inbred. We
define a pedigree P to be outbred if a is outbred for all a ∈ N (P ). A pedigree
that is not outbred is said to be inbred.

4. Characterization of Pairwise Relationships, with Extension to
k-wise Relationships

The relationships encountered in linkage analysis can range from the very
simple, such as sibling and parent-offspring relationships, to the extraordinarily
complex. Examples of the latter can be found in the Hutterite data set described
in Abney, McPeek and Ober (2000). This data set involves 806 genotyped in-
dividuals related by a 1623-member, 13-generation pedigree with virtually every
genotyped individual inbred and most individuals related to one another through
multiple lines of descent. Motivated by the richness of relationships in such data
and by the need for efficient computational methods to cope with the correspond-
ing pedigrees, we develop below a characterization of k-wise relationships.

Suppose that within a pedigree, we wish to consider the relationship among k
chosen individuals. Consider the set Pk ⊂ P×Zk such that every (P, s, i1, . . . , ik)
∈ Pk satisfies {i1, . . . , ik} ⊂ N (P ) and |{i1, . . . , ik}| = k. We first focus on
P2 and define pairwise relationships to be equivalence classes of a particular
equivalence relation on P2. Given γ = (P, s, i, j) ∈ P2, we define an individual
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a ∈ N (P ) \ {i, j} to be superfluous with respect to γ if at least one of the
following two conditions holds:
1. a /∈ A(i) ∪ A(j) (a is not an ancestor of i or j).
2. A(a) ∩ {i, j} = ∅ (neither i nor j is an ancestor of a), and there exist c ∈

N (P ) \ {i, j} and d ∈ N (P ) such that for every e ∈ {a} ∪ A(a), for every
l ≥ 1, and for every directed path q = (q0, . . . , ql) of length l with q0 = e and
ql ∈ {i, j}, we have c = qm and d = qm+1 for some 0 ≤ m ≤ l − 1 (every
directed path from a or ancestors of a to i or j passes through directed edge
(c, d)).

Theorems 1 and 2 in Section 5 justify the terminology “superfluous” in this case.
Let S(γ) ⊂ N (P ) be the set of superfluous nodes with respect to γ.

Given γ1 = (P1, s1, i1, j1) and γ2 = (P2, s2, i2, j2) ∈ P2, we define γ∗1 =
(P ∗

1 , s
∗
1, i1, j1) and γ∗2 = (P ∗

2 , s
∗
2, i2, j2) to be the restrictions of γ1 and γ2, respec-

tively, to their nonsuperfluous nodes. That is, we define the directed graph P ∗
1

to have nodes N (P ∗
1 ) = N (P1) \ S(γ1) and directed edges E(P ∗

1 ) = {(a, b) ∈
N (P ∗

1 ) × N (P ∗
1 ) : (a, b) ∈ E(P1)}. Define s∗1 on N (P ∗

1 ) by s∗1(a) = s1(a). We
call (P ∗

1 , s
∗
1) the pruned pedigree with respect to γ1. Define (P ∗

2 , s
∗
2) to be the

pruned pedigree with respect to γ2. We say that γ1 and γ2 specify the same sex-
specific pairwise relationship, and write γ1 ≡ γ2 whenever there exists a bijection
g : N (P ∗

1 ) → N (P ∗
2 ) such that the following three conditions hold:

1. g(i1) = i2, g(j1) = j2 (the two focal individuals are preserved).
2. (a, b) ∈ E(P ∗

1 ) ⇔ (g(a), g(b)) ∈ E(P ∗
2 ) (directed edges are preserved, i.e., the

directed graphs P ∗
1 and P ∗

2 are isomorphic).
3. For all a ∈ N (P ∗

1 ), s∗1(a) = s∗2(g(a)) (sexes are preserved).
As defined above, “≡” clearly satisfies the requirements of an equivalence

relation. We define the set of sex-specific pairwise relationships to be the
resulting set of equivalence classes. Examples include father-daughter, paternal
aunt-niece, and maternal grandmother-grandson. It is usually convenient to fur-
ther aggregate relationships by removing Condition 3. This has the effect of, for
instance, combining the 8 possible avuncular relationships (maternal uncle-niece,
paternal aunt-nephew, etc.) into a single class. When Condition 3 is removed, we
call the resulting set of equivalence classes the set of pairwise relationships.
As an example, the pedigree graphs in Figures 1a and b specify the same pairwise
relationship for individuals i and j, while that in Figure 1c is different. We say
that a pairwise relationship or sex-specific pairwise relationship R is outbred if
for γ ∈ R, the pruned pedigree with respect to γ is outbred. This is clearly a
class property. A pairwise relationship that is not outbred is said to be inbred.
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Figure 1a Figure 1b Figure 1c

Figure 1. The pedigrees in Figure 1a and b specify the same relationship for
individuals i and j, while that in Figure 1c is different.

Note that our definitions of superfluous, pruned pedigree, sex-specific pair-
wise relationship, pairwise relationship, and inbred and outbred pairwise relation-
ships extend in a straightforward way to k-wise relationships. If (P, s, i1, . . . , ik) ∈
Pk, then, for instance, in the definition of superfluous, we require a ∈ N (P ) \
{i1, . . . , ik}, we change Condition 1 to specify a /∈ ∪kj=1A(ij), and we change
Condition 2 to specify A(a) ∩ {i1, . . . , ik} = ∅, c ∈ N (P ) \ {i1, . . . , ik} and
ql ∈ {i1, . . . , ik}.

In Theorem 1 of Section 5, we show that if γ1 and γ2 ∈ Pk specify the
same k-wise relationship, then they yield the same expanded IBD process on the
autosomal chromosomes, where the expanded IBD process is defined below in
Section 5. Furthermore, suppose γ∗ is the pruned pedigree corresponding to γ ∈
Pk. We show in Theorem 2 of Section 5 that if any directed edge is removed from
γ∗, then the resulting IBD process is different. These results justify the definition
of superfluous and the characterization of k-wise relationships given above. The
additional information on sex given by a sex-specific k-wise relationship is used
to determine the IBD process on sex chromosomes (the pairwise case is discussed
in Epstein, Duren and Boehnke (2000)).

Given (P, s, i, j) ∈ P2, if i and j are both outbred, we may further aggregate
relationships by setting (P, s, i, j) ≡ (P, s, j, i). The IBD process will be invariant
to the interchange of i and j in that case.



INFERENCE ON PEDIGREE STRUCTURE FROM GENOME SCREEN DATA 317

5. Crossover Process, Mendelian Inheritance at a Single Locus, and
Identity States

To each directed edge of a pedigree graph is associated a meiosis, and each
meiosis results in an independent realization of the crossover process. The
crossover process is a binary process {Ct} that describes at each point t along
the genome whether an offspring inherited from the given parent that parent’s
maternal (Ct = 0) or paternal (Ct = 1) DNA. Switches from 0 to 1 or 1 to 0 are
called crossovers. It is usually assumed that {Ct} and {1 − Ct} have the same
distribution. The restrictions of the crossover process to different chromosomes
are assumed to be independent within a meiosis. Crossover processes for different
meioses are also independent and will be assumed to be identically distributed.
There are special restrictions on the crossover process on the parent’s pair of sex
chromosomes. In humans, there are two types of sex chromosomes, X and Y .
Individuals possessing two X chromosomes are female, and individuals possessing
one X and one Y chromosome are male. In females, crossovers between the two
X chromosomes are permitted. In males, there is a region that is homologous
between X and Y , called the pseudoautosomal region, on which crossovers are
permitted, but crossovers are not permitted outside that region.

For a given pedigree (P, s), we can consider the joint crossover process con-
sisting of a component crossover process for each directed edge of the pedigree.
For the remainder of this section, we consider a single locus on an autosomal
(i.e., non-sex) chromosome. Then the joint crossover process results in a ran-
dom function V : E(P ) → {0, 1} where V (a, b) is equal to the value of the
crossover process associated with directed edge (a, b), at the given chromoso-
mal location (Donnelly (1983)). Assuming Mendelian inheritance, the distri-
bution of V puts mass 2−|E(P )| on each point of {0, 1}E(P ). Define the allele
function to be a random function α : N (P ) × {0, 1} → Z, where α(a, 0)
gives a’s maternal allele and α(a, 1) gives a’s paternal allele. Define FA(P ) =
[F(P )×{0, 1}]∪ [Hf (P )×{0}]∪ [Hm(P )×{1}]. We refer to the restriction of α
to FA(P ) as the assignment of founder alleles, and we let α(FA(P )) denote
the set of founder alleles. Given V and the assignment of founder alleles, which
we will assume to be independent, the function α is completely determined and
can be calculated by recursion.

The identity state (Gillois (1964), Harris (1964)) for γ = (P, s, i, j) ∈
P2 at a given locus can be defined as follows: suppose that each element of
FA(P ) is assigned a unique founder allele. Then for a given V , the value of
A = (α(i, 0), α(i, 1), α(j, 0), α(j, 1)) is determined from V and the assignment
of founder alleles. Each value of A can be mapped to one of the 15 identity
states depicted in Figure 2, where each node represents one of (i, 0), (i, 1), (j, 0)
and (j, 1), and an edge is drawn between nodes a and b whenever α(a) = α(b)
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(Jacquard (1974), Chap. 6). Since the founder alleles are assumed to be distinct,
it is apparent that the identity state depends only on V and not on the assignment
of founder alleles. The identity states can be viewed as equivalence classes on
the range of V . Then the distribution of V induces a distribution on the identity
state for γ ∈ P2 at the given locus. In Section 6, when we discuss genotype data,
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Figure 2. The 15 possible identity states for individuals i and j, grouped
according to their condensed identity states. Edges indicate alleles that are
inherited from the same founder.
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we will see that it is usually desirable to combine some of the 15 identity states
to yield the 9 condensed identity states (Harris (1964), Jacquard (1974,
Chap. 6)) depicted in Figure 2. These result from identifying elements v1, v2 ∈
{0, 1}E(P ) when their identity states are the same up to a permutation of α(i, 0)
and α(i, 1) and a permutation of α(j, 0) and α(j, 1). Let ∆ be the distribution
on the condensed identity states induced by the distribution of V , as shown in
Figure 2. Then ∆ can be used to define quantities of interest such as the kinship
coefficient for i and j, Φ(i, j) = ∆1+(∆3+∆5+∆7)/2+∆8/4, and the inbreeding
coefficients for i and j, H(i) = ∆1+∆2+∆3+∆4 and H(j) = ∆1+∆2+∆5+∆6.

The concepts of identity state and condensed identity state extend in a nat-
ural way from P2 to Pk. The details can be found in Thompson (1974). Given
γ ∈ Pk, we define the identity-by-descent (IBD) process {It} by It = the
condensed identity state for γ at location t (in the autosomal portion of the
genome). We define the expanded IBD process {Et} by Et = the identity
state for γ at location t (in the autosomal portion of the genome).

Theorem 1. If γ1 and γ2 specify the same k-wise relationship, then their ex-
panded IBD processes have the same distribution. It immediately follows that
their IBD processes also have the same distribution.

Theorem 2. Suppose γ = (P, s, i1, . . . , ik) ∈ Pk has no superfluous nodes.
Given A ⊂ E(P ), A �= ∅, define P ′ by N (P ′) = N (P ), E(P ′) = E(P ) \ A, and
set γ′ = (P ′, s, i1, . . . , ik). Then the IBD processes of γ and γ′ have different
distributions.

It follows that their expanded IBD processes also have different distributions.

Remarks. Theorem 2 provides only a partial converse to Theorem 1. It is
possible to have two distinct relationships that yield the same IBD process, e.g.,
half-first-cousin and grand-half-avuncular pairs, but note that neither relation-
ship is obtainable from the other by removal of edges. Theorems 1 and 2 do
not depend on the particular choice of model for the crossover process, as long
as Var (Ct) > 0 for some t. In particular, the theorems hold in the presence of
interference and when {Ct} and {1 − Ct} have different distributions.

Theorems 1 and 2 extend in a straightforward way to the X chromosome.
Given γj = (Pj , sj, ij,1, . . . , ij,k) ∈ Pk, j = 1 or 2, we first eliminate from Pj all
directed edges (a, b) for which sj(a) = sj(b) = male. Call the resulting pedigree
P̃j . Let γ̃j = (P̃j , sj , ij,1, . . . , ij,k) and let (P̃ ∗

j , s̃
∗
j) be the pruned pedigree for

γ̃j. We have: (1) if γ̃1 and γ̃2 specify the same sex-specific k-wise relationship,
then the expanded IBD processes for γ1 and γ2 on the nonpseudoautosomal X
have the same distribution; (2) given γ1 and γ2, if (P̃ ∗

2 , s̃
∗
2) is obtained from

(P̃ ∗
1 , s̃

∗
1) by removal of directed edges, then the IBD processes for γ1 and γ2 on

the nonpseudoautosomal X have different distributions.
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6. Models for Genotype Data

For each genotyped individual, data are typically collected on hundreds (or
thousands) of markers throughout the genome. Thus, information on {It} is ob-
tained only at discrete sites t. Furthermore, different individuals will typically
have missing data at different markers for various reasons, such as failure of the
experiment to determine the genotype at a marker. Recall that determination
of the identity state depends on observation of (α(i1, 0), α(i1, 1)), . . . , (α(ik, 0),
α(ik, 1)) ∈ α(FA(P ))2k. However, based on a single individual’s observed geno-
type data, when z1 �= z2, the two possibilities {α(a, 0) = z1, α(a, 1) = z2} and
{α(a, 0) = z2, α(a, 1) = z1} cannot be distinguished. Therefore, we define an
equivalence relation on α(FA(P ))2 by (a, b) ≡ (b, a) for all {a, b} ⊂ α(FA(P )).
Then an individual’s observed genotype at the given marker will be one of the
equivalence classes under this relation. The difficulty in distinguishing maternally
and paternally inherited alleles, together with the assumption that the crossover
processes {Ct} and {1 − Ct} have the same distribution, leads naturally to con-
sideration of the condensed identity states instead of the identity states (see
Figure 2 for the pairwise case and Thompson (1974) for the k-wise case). When
genotypes are observed for a single individual at two loci, say equivalence class
{(a1, a2), (a2, a1)} at marker a and equivalence class {(b1, b2), (b2, b1)} at marker
b, the genotype data for the individual do not determine whether a1 and b1
were inherited from the same or different parents. This missing information is
called phase. Note that if one has genotype data on other close relatives of the
individual, one may have full or partial information to determine phase and dis-
tinguish paternal and maternal inheritance. However, one would need to assume
that these relationships were correct in order to use this information. Thus, this
approach is less useful for relationship inference than for linkage analysis.

A further complication in real data is that founder alleles are generally not
unique. Thus, for example, in the case of a pairwise relationship, the observation
{α(i, 0) = α(i, 1) = α(j, 0) = α(j, 1)} is compatible with all the identity states.
In addition there is some rate of genotyping error, so that, in principle, any
observation is compatible with any identity state. The rate of genotyping error
is generally assumed to be low. However in the pairwise case, for example,
genotyping errors cause problems for any relationship for which ∆9 = 0, for
example parent-offspring or monozygotic twin relationships. A genotyping error
may cause the observation that the four alleles of individuals i and j are all
distinct, resulting in likelihood 0 under any relationship for which ∆9 = 0, unless
genotyping errors are included in the model (see e.g., Broman and Weber (1998)).

In order to calculate the likelihood for the data, we need to specify models
for the crossover process {Ct}, for the assignment of founder alleles, and for
genotyping errors. The most widely used model for {Ct} is a Poisson process,
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and failure of {Ct} to follow this model is known as interference. Note that in
linkage studies, distance t along the chromosome is scaled so that the expected
number of transitions of the process {Ct} in an interval of width s is equal to s.
Thus, we need not specify the intensity of the Poisson process or even whether or
not it is homogeneous, as long as we assume that the intensity function is bounded
(see McPeek and Speed (1995) for details). While the Poisson process model is
useful in a wide range of applications, it has long been known to provide a poor
fit to data. Although alternative models exist, their use with human data can
be computationally quite challenging because of the types of missing information
described above. In what follows, we use the Poisson process model and discuss
the extension to the Poisson-skip class of models (Lange, Zhao and Speed (1997),
Lange (1997, Section 12.5)). McPeek and Sun (2000) have performed simulations
to investigate the robustness to interference of pairwise relationship inference
based on the Poisson process model.

The model for assignment of founder alleles is determined by population ge-
netic assumptions such as Hardy-Weinberg equilibrium and linkage equilibrium,
and it requires allele frequency distributions for every marker. In practice, these
assumptions may not hold, and accurate estimates of allele frequencies may not
be available. The population genetic modeling assumptions certainly have an
effect on the analysis, and model misspecification can be problematic. With
closer relatives and more informative markers, the impact of such assumptions is
diminished.

As long as the rate of genotyping errors is low, they should not have much
impact on the analysis except in special cases, such as pairwise relationships with
∆9 = 0. To deal with this case, Broman and Weber (1998) assume that errors are
i.i.d. across loci and meioses. Their model is quite serviceable for relationship
inference, even though error rates are known to vary across loci.

X chromosome data can be important in linkage studies. On the non-
pseudoautosomal part of the X chromosome, the crossover process {Ct} depends
on the sexes of the parent and child. For a mother-child meiosis, {Ct} behaves
as on autosomes. For a father-daughter meiosis {Ct} is identically 0 on the
non-pseudoautosomal X chromosome, while for a father-son meiosis, no X chro-
mosome is transmitted. When data are available on the X chromosome in ad-
dition to the autosomes, relationships such as paternal aunt-niece and maternal
aunt-niece are potentially distinguishable (Epstein, Duren and Boehnke (2000)).
Methods for detecting relationship errors in linkage data have generally ignored
the Y chromosome. Differences among individuals on the non-pseudoautosomal
Y would have arisen exclusively by mutation. Thus, linkage disequilibrium is
not expected to decay with distance, and assumptions about the populations
from which founder males were drawn are critical for the likelihood calcula-
tion. Therefore, the mathematical problem of relationship inference based on
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non-pseudoautosomal Y data has salient features that distinguish it from the
problems of relationship inference considered here.

7. Likelihood Calculation

In light of the probability models and data issues described above, the ques-
tion arises as to how to calculate the likelihood of the data. Göring and Ott
(1997) have calculated the likelihood under the assumption of no interference for
the special cases of sibling, half-sibling and unrelated pairs, using the fact that
the IBD process {It} is Markov for these cases. Boehnke and Cox (1997) per-
formed the same calculations more efficiently by using the hidden Markov method
(Baum (1972)), with the hidden Markov chain given by restriction of the process
{It} to the marker positions, on which the data provide only partial information.
Broman and Weber (1998) extended this method to calculate the likelihood for
parent-offspring and monozygotic twins, which have It = 1 and It = 2 for all t,
respectively, by inclusion of a model for genotyping error in the observation dis-
tribution of the hidden Markov model. However, outside of a few special cases in
which the IBD process {It} is either trivial (parent-offspring, unrelated, monozy-
gotic twin) or Markov (sibling, half-sibling, grandparent-grandchild), {It} will
not in general be Markov, even under the assumption of no interference (Don-
nelly (1983); Feingold (1993)). For instance, {It} is not Markov for the cases of
avuncular and first-cousin relationships. On the other hand, the joint crossover
process {Vt} will always be Markov under the assumption of no interference
(Donnelly (1983)). Thus, one possible approach to likelihood calculation is to
apply the hidden Markov method with the hidden Markov chain taken to be the
restriction of the process {Vt} to the marker positions, and with the observed
data viewed as providing partial information on the function {It} of {Vt} at the
marker positions (Lander and Green (1987)).

This approach allows for data at a large number of loci, but the computa-
tional time is exponential in the number of directed edges in the graph P . The
first step in reducing the computational time is to apply the characterization of
k-wise relationships in Section 4 and Theorems 1 and 2 of Section 5 to deter-
mine which directed edges in the graph can be removed without changing the
IBD process {It}. Further dramatic reduction in the state space of the Markov
chain can be obtained by expanding on ideas discussed by Donnelly (1983). He
observed that {Vt} is a Markov random walk on a hypercube. Suppose there
is a non-injective map h from the set H of vertices of the hypercube to some
finite set (in our case, to the condensed identity states). Consider the group S of
symmetries of the hypercube, i.e., permutations of H that preserve all the edges
of the hypercube. Let G ⊂ S be the subgroup of symmetries of the hypercube
that also preserve values of h, and let O be the set of orbits of G. Define an
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equivalence relation on H by saying that for v1, v2 ∈ H we have v1 ≡ v2 when
v1 and v2 lie in the same element of O. Let {At} be the process taking values in
O, viewed as a function of {Vt}, defined so that if Vt = v, then At = the unique
element of O containing v. Then {At} is an irreducible Markov chain with a
state space no larger than that of {Vt}, and often substantially smaller.

In our case, {It} can be viewed as a function of {At}. Thus, to calculate
the likelihood for our observed data, we could apply the hidden Markov method
with the hidden Markov chain taken to be the restriction of the process {At}
to the marker positions. To implement this approach, one needs to determine,
for each k-wise relationship considered, the orbits O, the transition matrix P (t)
for {At}, and the stationary distribution for {At}. Let Q be the matrix of
infinitesimal parameters of {At}. Given v1, v2 ∈ {0, 1}E(P ), define |v1 − v2| =∑
k∈E(P ) |v1(k) − v2(k)|. Given the set of orbits O, the Q matrix is obtained

as follows: given k, choose v ∈ Ok. Then qkl = |{v′ ∈ Ol : |v − v′| = 1}| for
k �= l, qkk = −∑

l �=k qkl. It is not hard to show that this does not depend on the
choice of v. From the Q matrix, the transition matrix is obtained as P (t) = eQt.
For the restriction of {At} to the marker positions, we actually prefer to specify
the transition matrix in terms of recombination fraction θ rather than t, where
θ = (1 − e−2t)/2 under the assumption of no interference. In practice, we find
that specification of the transition matrix in terms of θ rather than t makes our
analysis more robust to the presence of interference, because data are usually
obtained on the value of θ between markers, with the value of t between markers
estimated from θ using some (incorrectly specified) model for interference. We
note that the one-step conditional distribution P (θ) itself does not depend on
assumptions about interference, although the assumption of no interference is
used to obtain the Markov property.

We now give sufficient conditions for the Markov process {At} obtained by
the above procedure to have the minimum number of states needed to both
contain all the information of the IBD process {It} and to satisfy the Markov
property under no interference. Suppose {At} is a continuous-time finite state
space Markov process, with cardinality of the state space equal to n, and suppose
that {It} is defined by a deterministic function of {At}, It = f(At), where f is
defined on the state space of {At}. Let S be the state space of {It}, and for
each s ∈ S, let ns = |f−1(s)|. Following Larget (1998), we define an observable
sequence (y, t) to consist of a finite sequence y of elements of S and a finite
nondecreasing sequence t of nonnegative real times, where |y| = |t| and the first
element of t is always 0. For each observable sequence (y, t) with |y| = |t| = k,
define

Q(y,t) = Iy1eQ(t2−t1)Iy2eQ(t3−t2)Iy3 · · · Iyk−1eQ(tk−tk−1)Iyk for k ≥ 2
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and Q(y,t) = Iy1 for k = 1, where Q is the matrix of infinitesimal parameters of
{At} and Is is the n× n diagonal matrix which is the identity on the submatrix
where f(i) = f(j) = s and is zero elsewhere. Furthermore, suppose π is the
initial distribution of {At} (which is the stationary distribution in our case) and
1 is a vector of ones.

Theorem 3. Suppose {At} is a continuous-time Markov process with finite state
space of size n, and suppose that {It} is defined by a deterministic function of
{At}, It = f(At), where f is defined on the state space of {At}. Then the
following conditions are sufficient to ensure that for any other continuous-time
finite state space Markov process {Bt} such that {It} is defined by a deterministic
function of {Bt}, the cardinality of the state space of {Bt} is no less than n:
(1) For each s ∈ S, there exist ns observable sequences {(y, t)i}ns

i=1 such that the
vectors {πTQ(y,t)iIs}ns

i=1 are linearly independent.
(2) For each s ∈ S, there exist ns observable sequences {(y, t)i}ns

i=1 such that the
vectors {IsQ(y,t)i1}ns

i=1 are linearly independent.

Remarks. Theorem 3 is a continuous-time analogue of a result by Gilbert (1959)
for discrete-time Markov chains. Conditions (1) and (2) are easily checked once
Q is constructed. Later in this section we give some examples to which Theorem
3 applies.

For the following kinds of outbred pairwise relationships, the orbits O, ma-
trix Q, and the stationary distribution are given by Donnelly (1983): ancestor-
descendant (i is a gth-generation ancestor of j for g ≥ 1); half-sib type (i is a
µth-generation descendant of a and j is a νth-generation descendant of b, for
µ, ν ≥ 0, where a and b are half siblings); cousin-type (i is a µth-generation
descendant of a and j is a νth-generation descendant of b, for µ, ν ≥ 0, where
a and b are first cousins); uncle-type (j is a µth-generation descendant of a,
for µ ≥ 1, where a and i are full siblings). The transition matrix P (θ) can
be found in Bishop and Williamson (1990) for the half-sib and grandparent-
grandchild relationships, for which {At} and {It} are the same, and in McPeek
and Sun (2000) for the avuncular and first-cousin relationships, for which {At}
and {It} are different. We now give P (θ) for the other pairwise relationship
types considered by Donnelly (1983). For the outbred gth-generation ancestor-
descendant relationship, in which i is a gth generation ancestor of j, with g > 1,
the pruned pedigree (P, s) has N (P ) = {i, j, a1, . . . , ag−1}, |N (P )| = g + 1, and
E(P ) = {(i, a1), (a1, a2), . . . , (ag−1, j)}. Let v′ assign to each (a, b) ∈ E(P ) the in-
dicator of whether a is male, and let v′−1 be the restriction of v′ to E(P )\{(i, a1)}.
Then Ok = {v ∈ {0, 1}E(P ) : |v−1 − v′−1| = k} and P (θ) has (k, l)th element

Pkl(θ) =
min(k,g−l−1)∑

m=max(0,k−l)
Ck,mCg−k−1,l−k+mθl−k+2m(1 − θ)g−l+k−2m−1,
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where Ca,b = a!/[(a − b)!b!]. Think of this transition matrix as a function of g
and call it Pg. Note that when g = 1 (parent-offspring), the Markov chain {At}
is trivial, with only a single state, so we can set P1 = 1. Then for the half-sib
type relationships, the transition matrix is Pµ+ν+1 ⊗H, where H is the matrix
for half-sibs given in Bishop and Williamson (1990) and ⊗ is Kronecker product.
For the cousin-type relationships, the transition matrix is Pµ+ν+1 ⊗ C where C
is the matrix for cousins given in McPeek and Sun (2000), and for the uncle-
type relationships, the transition matrix is Pµ⊗U where U is the matrix for the
avuncular relationship given in McPeek and Sun (2000). Thus, computation of
the likelihood can be accomplished for these types of relationships.

Note, however, that even if we restrict ourselves to outbred pairwise rela-
tionships for which the pruned pedigree has no directed paths of length greater
than 2, there are 23 distinct non-trivial types of relationships, only 8 of which are
covered by the above results. When inbred relationships are permitted, when the
lengths of directed paths are allowed to be greater than 2, or when individuals are
considered k-wise, the number of possibilities is enormous. Thus, it is desirable
to have more general, automatic ways of determining the {At} process. Note
that for the symmetry group S, we have |S| = 2d × d!, where d is the number
of directed edges in the pruned pedigree P . One could find O by considering
each of these permutations in turn, deciding whether or not it belongs in G, and
then finding the orbits of G. We describe below some shortcuts that make it
unnecessary to consider every element of S.

There are certain symmetries in the pedigree structure that can be easily
exploited to reduce the size of the state space of the Markov process. These
symmetries allow one to find a subgroup of G, resulting in a set of orbits O′ that
is a finer partition of the state space than O. For instance, the two parental alleles
within a founder individual a can be permuted without altering the condensed
identity state of γ. In the joint crossover process {Vt}, this amounts to replacing
Vt(a, b) by 1−Vt(a, b) for every child b of a at every locus t. By making use of this
symmetry, the state space is reduced from 2d elements to |O′| = 2d−f , where f =
|F(P )|. In the context of linkage analysis with moderate-sized outbred pedigrees,
this state-space reduction is used by Kruglyak, Daly, Reeve-Daly and Lander
(1996). Define a, b ∈ F(P ), a �= b to form a founder couple if {c : a ∈ p(c)} = {d :
b ∈ p(d)}. Another symmetry in the pedigree structure that can be used to reduce
the state space is that the permutation of individuals within a founder couple
does not alter the condensed identity state of γ, provided that neither individual
in the couple is one of the focal individuals {i1, . . . , ik}. In the crossover process
{Vt}, this amounts to interchanging Vt(a, c) and Vt(b, c) and switching Vt(c, d)
to 1 − Vt(c, d) for all c with p(c) = {a, b}, all d with c ∈ p(d), and all t. In the
context of linkage analysis with moderate-sized outbred pedigrees, this type of
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approach was used by Gudbjartsson, Jonasson, Frigge and Kong (2000). Let g
be the number of founder couples where neither individual is in {i1, . . . , ik} and
where they have at least one grandchild in the pedigree. For k = 1, 2, . . ., let c(k)
be the number of founder couples where neither individual is in {i1, . . . , ik} and
where they have k children and 0 grandchildren in the pedigree. Let n be the
number of founders who are not part of a founder couple or who are in a founder
couple in which one of the individuals is in {i1, . . . , ik}. By making use of the
orbits O′ of the subgroup of G generated by permutation of individuals within
founder couples and permutation of the two alleles within each founder, the state
space would be reduced from 2d elements to |O′| = 2d−3g−n ∏

k(2
−3 + 2−k−2)c(k).

For example, for a pair of full sibs, 2d = 16 and |O′| = |O| = 3, and for an
avuncular pair 2d = 32 and |O′| = |O| = 4. Thus, application of the above two
types of symmetry leads to the minimum number of states in these cases. (That
these are, indeed, the minimum number of states for these two relationships
follows from Theorem 3.) For a pair of first cousins, 2d = 64, |O′| = 8, and
|O| = 7, so application of the above two types of symmetry leads to 1 extra state
beyond the minimum, where application of Theorem 3 confirms that 7 is the
minimum. For l > 1, define the directed path q = (q0, . . . , ql) to be an isolated
branch of length l if qh ∈ [Hm(P )∪Hf (P )] \ {i1, . . . , ik} and qh has exactly one
offspring for all 0 ≤ h ≤ l − 1. A further symmetry in the pedigree structure
that, when present, can be used to reduce the state space is the permutation
of meioses within isolated branches. Given a permutation π on {1, . . . , l}, in
the crossover process {Vt}, permutation of meioses within the isolated branch
amounts to replacing Vt(qh−1, qh) by |1{s(qπ(h)−2) �= s(qh−2)}−Vt(qπ(h)−1, qπ(h))|
for all t and for h = 1, . . . , l, where we define q−1 to be the mother of q0 if
q0 ∈ Hm(P ) and the father of q0 if q0 ∈ Hf (P ). Let n(b) be the number of
isolated branches of length b. By making use of this symmetry, the state space
would be reduced from 2d elements to |O′| = 2d × ∏

b≥2(
b+1
2b )n(b). For a pair

of third cousins, 2d = 1024 and |O| = 35. If we make use of all three types of
symmetry described above, we obtain |O′| = 72.

A brute force approach to finding O is to consider each element of S, deter-
mine whether or not it is in G, and then find O from G. When the symmetries
described above are used to obtain the set of orbits O′, this can be used to find
the coarser partition O by consideration of fewer elements of S than would be
required by the brute force approach. Recall that if two elements of {0, 1}E(P ) are
in the same orbit of O′, then they lead to the same condensed identity state for γ.
Thus, to each orbit in O′ can be associated a condensed identity state. For each
condensed identity state φ, let h(φ) be the number of orbits in O′ with condensed
identity state φ. Let ψ be a condensed identity state such that h(ψ) ≤ h(φ) for
all φ. Then the set of orbits O can be obtained from the set of orbits O′ by
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consideration of no more than h(ψ)d! − 1 symmetries of H. For the case of an
outbred pairwise relationship, this can be reduced to h(ψ)d!2−f − 1, where f is
the number of founders excluding i and j. See Appendix D for details. For ex-
ample, for first cousins, d = 6, f = 2, and h(ψ) = 2. Thus, O could be obtained
from O′ by consideration of 359 elements of S instead of all 46,079 non-identity
elements.

8. Discussion

In practical applications, it may be useful to focus attention initially on infer-
ence for pairwise relationships, based on genome screen data for the pair. This
allows one to easily identify particular directed edges of the pedigree that are
likely in error, and it gives useful information for determining plausible alterna-
tives for the local pedigree structure. The pairwise approach can be supplemented
by considering multiple individuals jointly, with a set of alternative relationships
constructed on the basis of the pairwise results.

Likelihood-based inference on pedigree structure is closely related to likeli-
hood-based inference for linkage mapping, but there are important differences.
The goal in linkage mapping is to detect a local change in distribution of the
IBD process, whereas in pedigree inference, we are interested in the distribution
of the process throughout the entire genome. Use of other genotyped relatives
to provide additional information on the IBD process for a set of individuals is
important for linkage analysis, but is problematic for pedigree inference because
it depends on the accuracy of these relationships.

The likelihood calculations described in Section 7 depend on the fact that
{Vt} is Markov, which holds under the assumption of no interference. These
calculations could be extended to the Poisson-skip class of models for interference
(Lange, Zhao and Speed (1997), Lange (1997, Section 12.5)), of which the χ2

model (Zhao, Speed and McPeek (1995)) is a special case. For this class of
models, {Vt} is not Markov, but it can be viewed as hidden Markov, as described
by Lange (1997, Section 12.5).

There are many practical considerations not treated here. One involves the
choice of the set R of relationships over which the likelihood is maximized. Com-
putational feasibility places constraints on the size of R. Important considera-
tions in choosing R include, first, power to distinguish among relationships based
on the data. For instance, common ancestry that is too many generations away
will have little impact on the likelihood, even if the IBD process is observed on the
entire genome. Second, knowledge of individuals’ ages, or of the fact that they
were alive simultaneously, combined with knowledge of human generation times,
suggests restrictions on the numbers of generations separating a pair of geno-
typed individuals. For modest-sized outbred pedigrees, Sun, Wilder and McPeek
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(submitted) implement pairwise relationship analysis using R = {monozygotic
twins, parent-offspring, full siblings, half siblings plus first cousins, half siblings,
grandparent-grandchild, avuncular, first cousin, half-avuncular, half-first-cousin,
unrelated}. This set was chosen based on the pedigrees encountered in data and
based on the alternative relationships suggested by the estimation of (∆7,∆8,∆9)
by the method of McPeek and Sun (2000).

A somewhat simpler approach to pedigree inference was taken by Göring and
Ott (1997), who assigned prior probabilities to pairwise relationships, with prior
mass 1 on some small finite set R of relationships and then calculated posterior
probabilities for the elements of R. In Göring and Ott (1997), the reported
relationship was full sib, and R consisted of full sib, half-sib, and unrelated.
Aside from the fact that their approach is Bayesian and ours is frequentist, one
of the main differences between our approach and theirs is the performance when
the true relationship does not lie in R, which is always a possibility. For example,
in the case considered by Göring and Ott (1997), some reasonable alternatives
not in R (and which could certainly have an impact on the linkage results if
true) are (a) that the sibs are inbred in one of various ways, (b) that they are
half-sibs with, say, the same mother and fathers who are related, or (c) that they
have some other outbred relationship such as an avuncular relationship. If the
true relationship does not lie in R, then by Göring and Ott’s (1997) method
there is, in principle, no possibility of recognizing this as long as prior mass 1 is
assigned to R and not all likelihoods are 0 for the elements of R. For instance,
with the choice of R and prior distribution used by Göring and Ott (1997), a
pedigree error in which a true inbred sib pair is falsely reported as an outbred
sib pair would have essentially no chance of being detected. If prior mass less
than 1 is assigned to R, but likelihoods are calculated only for the elements of
R, then posterior probabilities for the elements of R are known up to a constant
multiple, and one cannot generally construct a confidence set; in particular, one
still cannot determine that none of the relationships in R is in the confidence set
(unless all likelihoods are 0 for the elements of R). The previous example of an
inbred sib pair being virtually undetectable still applies when prior mass on R is
less than 1. In contrast the Monte-Carlo-based method we use can, in principle,
and also sometimes in practice, have power to reject all relationships in R, even
though likelihoods are calculated only for relationships in R. In that case, the
method could report that the confidence set does not contain any element of R.
The trade-off is that our method is more computationally expensive than the
Bayesian approach, because simulations are required.

An additional difficulty with the Bayesian approach is that, in general, there
is no straightforward choice of prior distribution. One would presumably want
to incorporate prior information such as a higher probability for the reported
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pedigree and information on the frequencies of various types of errors. Rates of
non-paternity and inbreeding can depend on the population and the phenotype
under study and are not well-known. Problems can arise such as confusion of
individuals with similar names and relatedness of individuals thought to be un-
related, which are difficult to quantify. Other sources of error include switched
or duplicated samples.

An important set of questions beyond the scope of this paper involves how
to perform linkage analysis in light of the pedigree errors detected. In practice,
it may be possible to go back and collect additional data that confirm and ex-
plain some of the pedigree errors detected (e.g., see Epstein, Duren and Boehnke
(2000)). The uncertainty about other parts of the pedigree could, in principle,
be incorporated into the analysis.

Sampling of pedigrees for a linkage study is often based on the presence
of multiple relatives affected by a trait. Assuming that the trait has genetic
determinants, these relatives may be expected to share regions of the genome
containing these genetic determinants. This could have an impact on the distri-
butions of their IBD processes, but this ascertainment effect is not expected to
be noticeable in practice.
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Appendix A. Proof of Theorem 1

We employ Lemma 1 to show that the identity state for γ = (P, s, i1, . . . , ik)
at a given locus depends on V only through V ∗, where (P ∗, s∗) is the pruned
pedigree, and V ∗ is the restriction of V to E(P ∗). We assume throughout that
each element of FA(P ) is assigned a unique founder allele.

Lemma 1. Suppose {(a1, j1), . . . , (an, jn)} ∈ FA(P ∗), |{(a1, j1), . . . , (an, jn)}| >
1, and α(a1, j1) = α(a2, j2) = . . . = α(an, jn). Then (1) {a1, . . . , an} ⊂ [Hm(P ∗)
∪Hf(P ∗)] ∩ NF(P ) and (2) there exist c ∈ N (P ∗) \ {i1, . . . , ik}, d ∈ N (P ∗)
such that (c, d) ∈ E(P ∗) and, for every directed path q = (q1, . . . , ql) in P ∗ with
q1 ∈ {a1, . . . , an}, ql ∈ {i1, . . . , ik}, we have qm = c and qm+1 = d for some
1 ≤ m ≤ l − 1.

To prove Lemma 1, we consider (a, j) ∈ FA(P ∗) and consider each of the
following five possibilities in turn: (i) a ∈ F(P ∗) ∩ F(P ); (ii) a ∈ F(P ∗) ∩
Hφ(P ), φ = m or f ; (iii) a ∈ F(P ∗) ∩ NF(P ); (iv) a ∈ Hφ(P ∗) ∩Hφ(P ), φ = m

or f ; (v) a ∈ Hφ(P ∗) ∩ NF(P ), φ = m or f . In each of cases (i) through (iv),
we find that if (c, l) ∈ FA(P ∗) with (c, l) �= (a, j), then α(a, j) �= α(c, l). Part
(1) of the Lemma follows. Let D(P ) = [N (P ) × {0, 1}] \ FA(P ), and define the
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parent function β : D(P ) → N (P ) by β(c, 0) = a, where a is the mother of c,
and β(c, 1) = b, where b is the father of c. In case (v), if we let ψ = 1{φ = f},
we find that β(a, 1 − ψ) satisfies Condition 2 of superfluous with directed edge
(c, d), where either (a) (c, d) = (β(a, 1 − ψ), a) or (b) a /∈ {i1, . . . , ik} and every
directed path from a to {i1, . . . , ik} passes through (c, d). In case (a), we find the
same results as for cases (i)-(iv). For case (b), part (2) of the Lemma follows.

Using Lemma 1, we show that if unique alleles are assigned to the members of
FA(P ) then, at a given location t, the identity state E depends on V only through
V ∗. Consider the function α∗ defined on D(P ∗) and obtained as follows: assign
unique alleles to the members of FA(P ∗), then apply V ∗ to obtain α∗. Let E∗ be
the resulting identity state for A∗ = (α∗(i1, 0), α∗(i1, 1), . . . , α∗(ik, 0), α∗(ik, 1)).
We show that E = E∗. To do this, we construct for each V , an assignment of
unique alleles to the members of FA(P ∗) so that application of V ∗ yields A∗ = A.

Appendix B. Proof of Theorem 2

Define identity state δ to be “≤” identity state ε if the set of edges in the
defining graph of δ is a subset of the set of edges in the defining graph of ε, with
“=” holding precisely when δ and ε are the same identity state. Given V on E(P ),
let V ′ be the restriction of V to E(P ′). Let δ be the identity state for γ based on
V , and let ε be the identity state for γ′ based on V ′. It is apparent that ε ≤ δ.
In order to prove Theorem 2, we need to show that when γ has no superfluous
nodes, there is some choice of V for which the inequality ε ≤ δ is strict. It is
sufficient to show that given (a, b) ∈ E(P ), either (i) there exist e ∈ {a} ∪ A(a)
and directed paths q1 = (q11, . . . , q

1
m) and q2 = (q21, . . . , q

2
n) in P , with q11 = q21 = e,

q1m, q
2
n ∈ {i1, . . . , ik} such that q1 passes through (a, b), and q1 and q2 have no

common directed edges or (ii) F(P ) ∩ [{a} ∪ A(a)] \ {i1, . . . , ik} = ∅. To obtain
this result, we apply Lemma 2.

Lemma 2. Given A ⊂ N (P ), B ⊂ N (P ), k ≥ 3, and a k-tuple of directed paths
from A to B, if there is no directed edge (c, d) through which they all pass, then
there exists a disjoint pair of directed paths from A to B.

Proof of Lemma 2. Number the k directed paths 1 to k. Suppose there is
no single directed edge through which all k pass. For any (k − 1)-tuple of these
directed paths, describe their intersection by the set of directed edges through
which they all pass. Let Ek−1 be the union over all (k − 1)-tuples of these sets
of directed edges. Note that Ek−1 (which may be empty) is strictly ordered with
(a1, b1) < (a2, b2) if b1 ∈ A(a2). Write Ek−1 = {e1, . . . , el} where eφ < eφ+1.
Aggregate (e1, . . . , el) into blocks (b1, . . . , bo) of consecutive directed edges bφ =
(eψ, . . . , eψ+ν) such that within each block the same (k − 1)-tuple of directed
paths intersects at all directed edges, but from one block to the next the (k− 1)-
tuple of directed paths changes. Let fφ be the parent in the first directed edge of
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block bφ, and let lφ be the offspring in the last directed edge of block bφ. Let h
map φ to the unique ψ such that directed path ψ does not intersect the directed
edges of bφ. The proof of Lemma 2 proceeds by induction on k. To show the
result for k = 3, we construct a disjoint pair of directed paths as follows: one
path follows path h(2) to l3, then follows h(4) to l5, h(6) to l7, . . . , h(2[[l/2]]) to
B, while the other path follows path h(1) to l2, h(3) to l4, . . . , h(2[[(l−1)/2]]+1)
to B. At the induction step (going from k to k + 1), the existence of a disjoint
pair of directed paths from A to B is established by first showing the existence
of a disjoint pair of directed paths from A to f1 (note that if f1 does not exist,
then we are done), because the k paths intersecting at b1 do not have a common
intersection up to f1. Then the existence of a disjoint pair of directed paths, p1

and p2, from A to fm is used to show the existence of a disjoint pair from A to
fm+1 for 1 ≤ m ≤ l − 1. This holds because there is no common intersection
among the following k directed paths, where we consider each path as a path
terminating at fm+1: path h(m), path p2 from A to fm followed by one of the
k− 1 paths that has a directed edge in both bm and bm+1, path p1 from A to fm
followed by each of the other k− 2 of the k− 1 paths that has a directed edge in
both bm and bm+1. Finally, the existence of a pair of disjoint paths, r1 and r2,
from A to fl is used to show the existence of a pair of disjoint paths from A to
B. The k paths used to show this are: h(l), r2 followed by one of the k− 1 paths
that intersect at bl, r1 followed by each of a set of k − 3 paths that intersect at
bl, not including the one used with r2.

To prove Theorem 2 from Lemma 2, we show that given (a, b) ∈ E(P ),
either (i) there exist e ∈ {a} ∪ A(a) and directed paths q1 = (q11 , . . . , q

1
m) and

q2 = (q21 , . . . , q
2
n) in P , with q11 = q21 = e, q1m, q2n ∈ {i1, . . . , ik}, such that q1 passes

through (a, b) and q1 and q2 have no common directed edges or (ii) F(P )∩ [{a}∪
A(a)] \ {i1, . . . , ik} = ∅. Assume (ii) does not hold. To construct q1 and q2,
choose f ∈ F(P ) ∩ [{a} ∪ A(a)] \ {i1, . . . , ik}. Consider the intersection of all
directed paths from {f} to {i1, . . . , ik}. This must be empty. Otherwise f would
be superfluous. Thus, by Lemma 2, there is a disjoint pair of directed paths r1
and r2, from {f} to {i1, . . . , ik}. If either directed path contains (a, b) then we
are done, so assume not. Let r3 be a directed path from {a} to {i1, . . . , ik} that
passes through (a, b). Consider case (i) either r3 does not intersect r1 or r3 does
not intersect r2, and case (ii) r3 intersects both r1 and r2. In case (i), suppose
without loss of generality that r1 and r3 do not intersect. Then we have a disjoint
pair of directed paths, one from {a} to {i1, . . . , ik} that contains edge (a, b) and
one from {f} to {i1, . . . , ik}. In case (ii), suppose, without loss of generality, that
r1 intersects r3 before r2 does, i.e., the last node of the first intersecting directed
edge of r1 and r3 is ancestral to the first node of the first intersecting directed
edge of r2 and r3. Then set r′3 to follow r3 from a until the last node of the
first intersecting edge of r1 and r3, and then to follow r1. Then r2 and r′3 are
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disjoint and, as in case (i), we again have a disjoint pair of paths, one from {a} to
{i1, . . . , ik} that contains edge (a, b) and one from {f} to {i1, . . . , ik}. In either
case, choose r4 from {f} to {a}. If r4 intersects r2, let e be the last node of the
last edge of intersection. Then consider path r5 from {e} to {i1, . . . , ik} which
follows r2, and path r6 from {e} to {i1, . . . , ik} which follows r4 to {a} and then
r3 or r′3 in case (i) or (ii), respectively. Then e ∈ A(a) ∪ {a}, r6 passes through
(a, b), and r5 and r6 are disjoint, as required.

Appendix C. Proof of Theorem 3

Suppose {At} and {It} are such that Conditions (1) and (2) of the theorem
hold, with observable sequences {(y, t)1,i}ns

i=1 and {(y, t)2,i}ns
i=1, respectively. Let

{Bt} be any other continuous-time finite state space Markov process with finite
state space {α1, . . . , αm}, such that {It} is defined by a deterministic function
of {Bt}, say It = g(Bt). For each s ∈ S, let ms = |g−1(s)|, and write g−1(s) =
{βs,1, . . . , βs,ms}. Let ρ and M be the analogues for {Bt} of π and Q, which
are defined for {At}. Let Js be the m ×ms matrix with (i, j)th entry equal to
1αi=βs,j

. Let L be the matrix which is equal to the product of the matrix with
rows {πTQ(y,t)1,iIs}ns

i=1 and the matrix with columns {IsQ(y,t)2,j1}ns
j=1 Under (1)

and (2), L is ns × ns and of full rank. Furthermore, by the Markov property, L
is also equal to the product of the matrix with rows {ρTM (y,t)1,iJs}ns

i=1, which is
of dimension ns×ms, and the matrix with columns {(Js)TM (y,t)2,j1}ns

j=1, which
is of dimension ms × ns. If ms < ns, one has a contradiction because L could
not have rank ns. Thus, m =

∑
sms ≥ ∑′

s ns′ = n.

Appendix D

First note that an element of G is uniquely determined by specifying the
image of a single given vertex (call it v) as well as the images of each of the d
vertices connected by a single edge to v. To see that the set of orbits O can be
obtained from the set of orbits O′ by consideration of no more than h(ψ)d! − 1
symmetries of H, we choose from each O′

k ∈ O′ a representative element vk ∈ O′
k.

Denote the resulting set of elements E. Given v ∈ E, O′
l, O

′
m ∈ O′, O′

l �= O′
m

such that O′
l ∪O′

m ⊂ Ok ∈ O, then, by Lemma 3, there exists w ∈ O′
l and g ∈ G

such that g(v) ∈ E and g(w) ∈ O′
m. Thus if we choose v to have condensed

identity state ψ, we need only consider symmetries that map v to any of the
h(ψ) elements of E that have identity state ψ.

Lemma 3. Given v ∈ E, O′
l, O

′
m ∈ O′, O′

l �= O′
m such that O′

l ∪ O′
m ⊂ Ok ∈ O,

then there exists w ∈ O′
l and g ∈ G such that g(v) ∈ E and g(w) ∈ O′

m.

Proof of Lemma 3. O′
l ∪ O′

m ⊂ Ok implies that there exists w ∈ O′
l and

g1 ∈ G such that g1(w) ∈ O′
m. Let O′

n be the unique element of O′ such that
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g1(v) ∈ O′
n. Since O′ is the set of orbits under some subgroup G′ of G, there

must exist g2 ∈ G′ ⊂ G such that g2(g1(v)) = vn and g2(g1(w)) ∈ O′
m. Lemma 3

follows, letting g = g2 ◦ g1.
The reduction to h(ψ)d!2−f − 1 for a pairwise relationship when the pruned

pedigree is outbred follows from Lemma 4, which states that, for an outbred
pruned pedigree P ∈ P2, every founder, excluding i and j, has exactly 2 offspring.
(Note that this no longer holds for P ∈ Pk, k > 2.) Thus, for each founder in
F(P ) \ {i, j}, there is a pair of edges in E(P ) such that interchange of that
founder’s 2 alleles toggles the two bits corresponding to these edges, resulting
in a mapping that takes each v1 ∈ {0, 1}E(P ) to a v2 ∈ {0, 1}E(P ) such that
there exists v3 ∈ {0, 1}E(P ) with |v1 − v3| = |v1 − v2| = 1. Thus, for a given
w ∈ {0, 1}E(P ), there are f pairs of elements at distance 1 from w such that for
each pair there exists g ∈ G′ ⊂ G such that g interchanges the 2 elements of the
pair and preserves w, the other elements at distance 1 from w, and the orbits O′

(g will interchange the relevant pair of bits if these bits are equal in w, and g will
both interchange and toggle the relevant pair of bits if these bits are unequal in
w). As shown above, given v with condensed identity state ψ, it is sufficient to
consider all symmetries of H that map v to any of the h(ψ) elements of E with
identity state ψ. Suppose v is mapped to w ∈ E. We would ordinarily consider
d! possible ways to map elements at distance 1 from v to elements at distance
1 from w. However, as a consequence of Lemma 4, we need not consider those
maps that differ only by interchanges of elements within the f pairs at distance
1 from w mentioned above, giving only d!2−f maps to consider.

Lemma 4. For an outbred pruned pedigree (P, s) ∈ P2, every founder, excluding
i and j, has exactly 2 offspring.

Proof of Lemma 4. If a ∈ F(P ) \ {i, j}, then a must have at least 2 offspring;
otherwise a would be superfluous. For a pair of individuals a, b ∈ N (P ), write
a ≤ b whenever a ∈ {b} ∪ A(b). To avoid inbreeding, a could be ≤ at most one
parent of i and one parent of j. Given g ≥ 1, suppose that it is established that
a could be ≤ at most one gth-generation ancestor of i and one gth-generation
ancestor of j. Then, to avoid inbreeding, it follows that a could be ≤ at most
one (g + 1)th-generation ancestor of i and one (g + 1)th-generation ancestor of
j. Since F(P ) \ {i, j} ⊂ A(i) ∪ A(j), it follows that a can have no more than 2
offspring in P .
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