
Statistica Sinica 12(2002), 297-309

A UNIFIED MULTIPOINT LINKAGE ANALYSIS

OF QUALITATIVE AND QUANTITATIVE TRAITS

FOR SIB-PAIRS

I-Shou Chang1,2, Miao-Ying Chen2, Chin-Fu Hsiao2 and Chao A. Hsiung2

1National Central University and 2National Health Research Institutes

Abstract: By introducing functions of the phenotypes of a sib-pair as weight func-

tions in the study of IBD processes, we present a unified non-parametric approach

to linkage analysis of qualitative and quantitative traits in sib-pairs based on IBD

data obtained from a set of polymorphic markers. With the introduction of weight

functions and an appropriate conditional expectation of IBD processes, these sta-

tistical methods should be more efficient in the detection of genetic factors for

complex diseases. These methods will be also useful in planning genetic studies.

Large sample properties of these methods are demonstrated.
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1. Introduction

Most traditional methods for the analysis of quantitative trait loci (QTL)
are based on examining phenotypes conditional on IBD (identity by descent)
sharing, see for example Haseman and Elston (1972), Amos (1994) and Kruglyak
and Lander (1995). Noticing the low power of these standard QTL methods to
detect linkage to loci influencing complex traits, Risch and Zhang (1995, 1996)
recommended ascertaining sib-pairs with extremely discordant or highly concor-
dant phenotypes, and making analysis conditional on phenotypes so as to obtain
the greatest power to detect linkage.

Recently, Dudoit and Speed (2000) considered the likelihood of IBD data
from sib-pairs conditional on the phenotypes of the pairs, and studied the problem
of testing the null hypothesis of no linkage between a marker locus and a gene
influencing the trait using a score test in the recombination fraction between the
two loci. This approach unifies the linkage analysis of qualitative and quantitative
traits into a single inferential framework and allows the selection of sib-pairs
based on their trait values and the analysis of only those pairs having the most
informative phenotypes. An extension of this score-test statistic can be used in
the context of a genome scan to test for linkage at loci which are not necessarily
typed marker loci.
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Another interesting development is due to Liang, Huang, and Beaty (2000),
who proposed a unified sampling approach for multipoint mapping of genes for
both qualitative and quantitative traits in sib-pairs. Their method builds on a
parametric representation for the expected IBD statistic at an arbitrary locus,
conditional on an event reflecting the sampling scheme, such as affected sib-pairs
for qualitative traits, or extremely discordant sib-pairs for quantitative traits.

In this paper, we present a unified non-parametric approach to linkage anal-
ysis of qualitative and quantitative traits in sib-pairs based on IBD data obtained
from a set of polymorphic markers. Our approach can be regarded as an extension
of the non-parametric allele-sharing methods for qualitative traits in sib-pairs.
The extension is made possible by considering functions of the phenotypes of a
sib-pair as weight functions in the study of the IBD process.

We study two non-parametric statistical methods. The first consists of a class
of tests for the null hypothesis that the phenotypes of a sib-pair are independent
of the IBD process. If the null hypothesis is rejected, we provide an estimate to
indicate the region of enriched or diluted identity of descent on a chromosome.
By choosing appropriate weight functions, these methods can be used for linkage
analysis.

We note that statistical methods for genome-wide search for a trait locus us-
ing relative pairs were studied by Feingold (1993), Feingold, Brown and Siegmund
(1993), Dupuis, Brown and Siegmund (1995), Feingold and Siegmund (1997), and
Tu and Siegmund (1999) for qualitative traits, and by Goldgar (1990), Fulker and
Cardon (1994), and Guo (1994) for quantitative traits. The methods for quanti-
tative traits are different from ours in that they are extensions of Haseman and
Elston (1972) and based on examining phenotypes conditional on IBD sharing,
while our work is more in line with the methods for qualitative traits. Even
for qualitative traits, our approach is different in the assumptions on the IBD
process. In particular, we make no assumption on the map functions.

We need some notation to facilitate the discussion. For k = 1, 2, . . ., let
(Ik,Mk, φk) be i.i.d. random elements with Ik(t), t ∈ [0, 1], being the IBD process
on a particular chromosome region, Mk being the set of genotypes taken at
certain markers in this region, and φk being the phenotype values for the kth
sib-pair, respectively. Here, for simplicity, we assume the chromosome region is
parametrized by [0, 1].

Since the IBD process Ik(t) is rarely observable, it is natural to consider
the conditional expectation of Ik(t) given Mk, E(Ik(t)|Mk), as a substitute. For
the calculation of E(Ik(t)|Mk), one still needs to know the distribution of the
IBD process Ik(·). For example, Kruglyak and Lander (1995) assume Ik(·) is a
stationary Markov chain and calculate E(Ik(t)|Mk) by means of computational
techniques developed for hidden Markov models. With the recent availability of
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linkage databases (cf. Bishop (1999), pp. 47-48), we can get an estimate of the
distribution of the IBD process. In this paper we propose to use the distribution
of Ik(·), as estimated by Chang, Wang, Chen and Hsiung (2001) using one such
linkage database, as the prior distribution and to calculate E(Ik(t)|Mk) using
Bayes Theorem. Further elaboration on this approach is given in Section 4, where
a remark on the computational feasibility is included. In view of the chiasma
interference reported by Broman and Weber (2000), the crossover process on a
meiosis product, and hence the IBD process, may not be stationary Markov. We
think our approach to E(Ik(t)|Mk) is a useful alternative.

Let

GK(t) ≡ 1√
K

K∑
k=1

J∑
j=1

ajWj(φk)E(Ik(t) − 1|Mk). (1.1)

Here Wj is a weight function and
∑J

j=1 a2
j = 1. We show that GK converges

weakly to a mean zero Gaussian process, indexed by a = (a1, · · · , aJ ) and t, under
the null hypothesis. This suggests that we reject the null hypothesis if supa,t |GK |
is large. In case

∑
j ajWj ≥ 0 gives more weight to highly concordant sib-pairs, we

would reject the hypothesis that there is no trait locus in the region if supt GK(t)
is large. In case

∑
j ajWj ≥ 0 gives more weight to extremely discordant sib-pairs,

we would reject this hypothesis if inft GK(t) is a large negative number.
To estimate the location of a gene influencing the trait when there is one

on the chromosome, we consider the M -estimator τK maximizing the empirical
criterion function

PKm(t) ≡ 1
K

K∑
k=1

J∑
j=1

(ajWj(φk))2E((Ik(t) − 1)2|Mk). (1.2)

Weight functions are useful in both the testing and estimation problems. We
can increase the power of the test in certain situations, and decrease the variance
of the estimate, by putting more emphasis on sib-pairs having more informative
phenotypes. In fact, for a given set of data, we can even use our statistics to
indicate the sib-pairs having more informative phenotypes. See Section 3.

In view of the concerns over the low power of linkage analysis to detect ge-
netic factors for complex diseases (cf. Risch and Merikangas (1996)), we hope
the introduction of weight functions and the more appropriate conditional ex-
pectation of IBD processes will result in more efficient linkage analyses.

The paper is organized as follows. Section 2 studies the linkage analysis under
the idealistic assumption that the IBD process is observable. This helps us to
clarify certain arguments and to simplify the presentation. The only assumptions
we make on the IBD process are the existence of an upper bound on the total
number of discontinuities of the process, and the existence of bounded densities
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for the joint distributions of these discontinuities. For each procedure, we present
an asymptotic distribution result that is proved by empirical process theory (cf.
van der Vaart and Wellner (1996)).

Section 3 treats linkage analysis under the more realistic assumption that
only the phenotype values and the genotypes at each of a set of polymorphic
markers are available. The asymptotic distributions of the test statistic and the
estimator are established by refining the arguments in Section 2. For the test
statistic, we note that a bootstrap method may be used to obtain an approxi-
mate p-value. Section 4 introduces two methods to calculate E(I(t)|M). Section
5 is a brief discussion, indicating possible extensions in terms of the informative-
ness of the phenotypes. Readers are referred to McPeek (1996), Speed (1996),
Hauser and Boehnke (1998), Sham (1998), and Ott (1999) for an introduction to
recombination and linkage analysis.

2. Inference Based on IBD Process

This section proposes statistical methods for linkage analysis under the (ide-
alistic) assumption that the IBD process is itself observable. We produce a test
statistic for the null hypothesis that the genes influencing the traits are not in the
chromosome region under study, and an estimator of the map position of an un-
observed susceptibility gene under the assumption of some preliminary evidence
of linkage in the region.

In order to describe the IBD process precisely, we introduce the following
notation. Let 0 = T0 ≤ T1 ≤ · · · ≤ Tn0 be a sequence of random variables, and
suppose (T1, . . . , Tn0) has a bounded density on T n0 ≡ {(t1, . . . , tn0)|0 ≤ t1 ≤
· · · ≤ tn0} relative to Lebesgue measure on Rn0 .

Let X1, . . . ,Xn0+1 be a sequence of {0, 1, 2}−valued random variables with
P (Xi+1 = 1|Xi = 2) = P (Xi+1 = 1|Xi = 0) = 1, P (Xi+1 = 2|Xi = 1)
= P (Xi+1 = 0|Xi = 1) = 1/2, i = 1, 2, . . . , n0. Assume (T1, . . . , Tn0) and
(X1, . . . ,Xn0+1) are independent.

Define I(t) =
∑n0+1

i=1 Xi1[Ti−1,Ti)(t), where Tn0+1 = ∞. Our IBD process is
I(t), t ∈ [0, 1]. Let φ be a random vector valued in [0, 1]2. We use Xi to represent
the number of IBD sharing at the ith discontinuity Ti of the process if Ti < 1.
Here we denote the phenotype of a sib-pair by a point in [0, 1]2. Let (Ik, φk) be
a sequence of independent random elements with distribution identical to that
of (I, φ).

2.1. A class of test statistics

Consider the stochastic process

ḠK(t, a1, . . . , aJ) ≡ 1√
K

K∑
k=1

J∑
j=1

ajWj(φk)(Ik(t) − 1), (2.1)
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where Wj : [0, 1]2 → R is a bounded function and the aj satisfy
∑J

j=1 a2
j = 1.

Let S = {(aj , . . . , aJ )|∑J
j=1 a2

j = 1}. Let �∞([0, 1] × S) denote the space of
real-valued bounded functions on [0, 1]×S. In view of the following theorem, we
propose to reject the hypothesis H0 that I(·) and φ are independent if supt,a |ḠK |
is too large.

Theorem 2.1. If E(I(t)|φ) = 1 for every t ∈ [0, 1], ḠK(·) converges weakly to a
mean zero tight Gaussian process Ḡ(·) in �∞([0, 1] × S).

Proof. The proof is an application of empirical process theory as presented, for
example, in van der Vaart and Wellner (1996) (hereafter V and W ). Since ḠK is
an i.i.d. sum of bounded random elements, it suffices to show that the relevant
class of functions is Donsker in order to get the desired weak convergence.

Observe that, for a > 0,
{
(T1, . . . , Tn0 ,X1, . . . ,Xn0+1, s)|s < aI(t)}

= (T n0 × {0, 1, 2}n0 × (−∞, 0))⋃
{(T1, . . . , Tn0 ,X1, . . . ,Xn0+1, s)|s ≥ 0, s < aI(t)}

= (T n0 × {0, 1, 2}n0 × (−∞, 0))
n0+1⋃
i=1

{(T1, . . . , Tn0 ,X1, . . . ,Xn0+1, s)|s ≥ 0, s < aXi1[Ti−1,Ti)(t)}

= (T n0 × {0, 1, 2}n0 × (−∞, 0))
n0+1⋃
i=1

{(T1, . . . , Tn0 ,X1, . . . ,Xn0+1, s)|s ≥ 0, Ti−1 ≤ t < Ti, s < aXi}. (2.2)

It is straightforward to show that the class of sets {(T1, . . . , Tn0 ,X1, . . . ,

Xn0+1, s)|s ≥ 0, Ti−1 ≤ t < Ti, s < aXi}, t ∈ [0, 1] and a ∈ R, is a VC-
class (cf. Problem 2.6.14 in V and W ). Hence we can conclude from (2.2)
and the permanence property, Lemma 2.6.17 (iii) in V and W , that (2.2) in-
dexed by t ∈ [0, 1] and a ∈ R is a VC-class. Therefore, the class of functions
(T1, . . . , Tn0 ,X1, . . . ,Xn0+1, φ) → aI(t), indexed by t ∈ [0, 1] and a ∈ R, is a
VC-class. This together with the permanence property, Lemma 2.6.18 (vi) in V

and W , that the class of functions

(T1, . . . , Tn0 ,X1, . . . ,Xn0+1, φ) → ajWj(φ)I(t), (2.3)

indexed by t ∈ [0, 1] and aj ∈ R, is a VC-class. We note also that (2.3) is a
P -measurable class for every P , because [0, 1] ×R has a countable dense subset
(cf. Example 2.3.4 in V and W ).
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Since a VC-class satisfies the uniform entropy condition, we know (2.3) is
Donsker (cf. Theorem 2.6.7 and Theorem 2.5.2 in V and W ). It now follows
from a permanence property for Donsker classes that the class of functions

(T1, . . . , Tn0 ,X1, . . . ,Xn0+1, φ) →
J∑

j=1

ajWj(φ)I(t), (2.4)

indexed by t ∈ [0, 1], a = (a1, . . . , aJ ) ∈ S, is Donsker (cf. Corollary 2.10.13 in
V and W ). This completes the proof.

2.2. A class of estimators

Let m̄a(t) be the function defined by

m̄a(t)(T1, . . . , Tn0 ,X1, . . . ,Xn0+1, φ) =
J∑

j=1

(ajWj(φ)(I(t) − 1))2 (2.5)

for t ∈ [0, 1], a = (a1, . . . , aJ) ∈ S. Because (T1, . . . , Tn0) has a bounded den-
sity, we know the maps t → Em̄a(t) and (t1, t2) → Em̄a(t1)m̄a(t2) are twice
continuously differentiable. Let

PKm̄a(t) ≡ 1
K

K∑
k=1

J∑
j=1

(ajWj(φk)(Ik(t) − 1))2 (2.6)

and let τ̃K be a maximizer of PKm̄a(t). (A more illuminative notation for τ̃K is
τ̃K(a).) Let D̄ = {(τ, a)|a ∈ S, 0 < τ < 1, Em̄a(t) ≤ Em̄a(τ) for every t ∈ [0, 1]
and t → Em̄a(t) has non-zero second derivative at τ}.
Theorem 2.2. Assume D̄ is non-empty and let (τ, a) ∈ D̄ be given. Then
τ̃K → τ in outer probability, and

√
K(τ̃K − τ) is asymptotically normal with

mean 0 and variance −( ∂2

∂t2 Em̄a(t)|t=τ )−1( ∂2

∂t1∂t2
Em̄a(t1)m̄a(t2)|(t1,t2)=(τ,τ)).

Proof. Using (2.4) and the arguments in the proof of Theorem 2.1, we know the
class of functions (T1, . . . , Tn0 ,X1, . . . ,Xn0+1, φ) → ∑J

j=1(ajWj(φ)(I(t) − 1))2,
indexed by t ∈ [0, 1], is Donsker. This implies that supt∈[0,1] |PKm̄a(t)−Em̄a(t)|
converges to 0 in probability. This together with the Argmax Theorem shows
that τ̃K → τ in outer probability (cf. Corollary 3.2.3 in V and W ).

We now establish the asymptotic normality by checking the conditions in
Problem 3.2.1 of V and W , which concerns the asymptotic normality of an M -
estimator.

Let Mδ = {m̄a(t) − m̄a(τ)||t − τ | < δ} for δ > 0. Since the arguments lead-
ing to (2.3) imply that the class of functions (T1, . . . , Tn0 ,X1, . . . ,Xn0+1, φ) →
(ajWj(φ)(I(t) − 1))2, indexed by t ∈ [0, 1], is a V C-class, we can use Theorem
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2.6.7 in V and W to show that it satisfies the uniform entropy integral bound
(3.2.8) of V and W . Using this and Theorem 2.10.20 in V and W , we know Mδ

also satisfies (3.2.8). Since all the other conditions in Problem 3.2.1 can be easily
verified, the conclusion of the theorem follows.

3. Inference Based on Marker Data

This section presents linkage analysis under a more realistic situation. Let
M(t) be a {1, 2, . . . , L}−valued stochastic process indexed by T = {t1, . . . , tJ} ⊂
(0, 1). We use M(t) to denote the genotype values of a sib-pair at locus t, and
use M to denote the set of these values at each locus t in T . Let (Ik,Mk, φk) be
a sequence of independent random elements distributed as (I,M, φ). We assume
the conditional expectation of Ik(t) given Mk, E(Ik(t)|Mk), is available. The
problem of calculating E(Ik(t)|Mk) is postponed to Section 4.

Consider

GK(t, a1, . . . , aJ) ≡ 1√
K

K∑
k=1

J∑
j=1

ajWj(φk)E(Ik(t) − 1|Mk). (3.1)

In view of the following, (3.1) can be used to test the null hypothesis that I(·)
and φ are independent.

Theorem 3.1. If E(I(t)|φ) = 1 for every t, GK(·) converges weakly to a mean
zero tight Gaussian process G(·) in �∞([0, 1] × S).

Proof. Observe that

E1/2(E(I(t1)|M) − E(I(t2)|M))2 = E1/2E2(I(t1) − I(t2)|M)

≤ E1/2E((I(t1) − I(t2))2|M) = E1/2(I(t1) − I(t2))2.

Then the covering number, defined by the L2 norm, for the class of functions
(T1, . . ., Tn0,X1, . . . ,Xn0+1, φ) → ajWj(φ)E(I(t)|M), indexed by t ∈ [0, 1] and
a ∈ S, is no bigger than that for (2.3). The definition of covering number in
this context can be found in V and W . Therefore, using the same arguments in
the proof of Theorem 2.1, we conclude that GK(·) in (3.1) converges weakly as
desired.

For Theorem 3.1 to be useful it is desirable to know the distribution of G,
and the following corollary suggests a bootstrap method to approximate it. We
note that the validity of the bootstrap method in this context is guaranteed by
Theorem 3.6.3 in V and W .

Let b : {1, 2, . . .} → {1, 2, . . .} be a map and let

G
(b)
K (t, a1, . . . , aJ ) ≡ 1

K

K∑
k=1

J∑
j=1

ajWj(φb(k))E(Ik(t) − 1|Mk). (3.2)



304 I-SHOU CHANG, MIAO-YING CHEN, CHIN-FU HSIAO, AND CHAO A. HSIUNG

A corollary to Theorem 3.1 is the following.

Corollary 3.2. If Ik(·) and φb(k) are independent for every k = 1, 2, . . ., then

G
(b)
K (·) converges weakly to the mean zero tight Gaussian process G(·) in �∞([0, 1]×

S).

Let Yk(t, a1, . . . , aJ ) =
∑J

j=1 ajWj(φb(k))E(Ik(t) − 1|Mk). Let S̄ ⊂ [0, 1] × S

be a finite subset. Consider Yk as a function defined on S̄. By Corollary 3.2,
we can estimate the distribution of G under null hypothesis by resampling from
{Yk| k = 1, . . . ,K} and forming (3.2) with, for example, b(k) = k + 1 for k =
1, 2, . . . ,K − 1 and b(K) = 1.

The following is a corresponding extension for the estimation problem. Let
ma(t) (T1, . . . , Tn0 ,X1, . . . ,Xn0 , φ) =

∑J
j=1(ajWj(φ))2E((I(t) − 1)2|M), and set

PKma(t) ≡ 1
K

K∑
k=1

J∑
j=1

(ajWj(φk))2E((Ik(t) − 1)2|Mk).

Let τ̂K be a maximizer of PKma(t). Let D = {(τ, a)|a ∈ S, 0 < τ < 1, Ema(t) ≤
Ema(τ) for every t∈ [0, 1] and t→Ema(t) has non-zero second derivative at τ}.
Theorem 3.3. Assume D is non-empty and let (τ, a) ∈ D be given. Then
τ̂K → τ in outer probability, and

√
K(τ̂K − τ) is asymptotically normal with

mean 0 and variance

−(
∂2

∂t2
Ema(t)|t=τ )−1(

∂2

∂t1∂t2
Ema(t1)ma(t2)|(t1,t2)=(τ,τ)). (3.3)

Proof. Using the argument in the proof of Theorem 3.1, we know the covering
number for the class of functions (ajWj(φ))2E((I(t) − 1)2|M), indexed by t ∈
[0, 1], is no bigger than that for (ajWj(φ))2(I(t)−1)2, which is a V C-class. With
this observation, we can follow the proof of Theorem 2.2 to obtain the desired
result.

We note that

∂2

∂t2
Ema(t) =

J∑
j=1

a2
j

∂2

∂t2
lim

K→∞
1
K

K∑
k=1

W 2
j (φk)E((Ik(t) − 1)2|Mk), (3.4)

∂2

∂t1∂t2
Ema(t1)ma(t2) =

J∑
j,l=1

a2
ja

2
l

∂2

∂t1∂t2
[ lim
K→∞

1
K

K∑
k=1

W 2
j (φk)W 2

l (φk)

×E((Ik(t1) − 1)2|Mk)E((Ik(t2) − 1)2|Mk)], (3.5)

which provide a method to approximate (3.3).
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Remarks on Weight Functions
We now indicate a scenario in which the results in Section 3 may be used.

Suppose we are interested in mapping genes based on the phenotypic values of
certain sib-pairs and their genotype data taken at a set of markers. We may
decompose the space of the phenotypic values into, for example, four disjoint
regions Φ1, Φ2, Φ3, and Φ4, where Φ1 is a region for concordant sib-pairs with
high phenotypic values, Φ2 is a region for concordant low values, Φ3 is a region
for extreme discordant sib-pairs, and Φ4 is the complement of Φ1

⋃
Φ2

⋃
Φ3. At

this moment, we try not to make these terms rigorous and we do not consider
the problem of how to decide the decomposition. Let Wj(φ) = 1Φj (φ) for j =
1, 2, 3, 4. With this decomposition, we may reject the hypothesis of no linkage if
supGK(t, a1, a2, a3, a4) is too large, where the supremum is taken over t ∈ [0, 1],
(a1, a2, a3, a4) ∈ S and a1 ≥ 0, a2 ≥ 0, a3 < 0. For this test, Theorem 3.1 and
Corollary 3.2 can be used to provide an approximate p-value.

We can also use Theorem 3.3 to obtain an estimate of τ , the disease locus.
In addition to the point estimate, we can choose an a ∈ S with a1 ≥ 0, a2 ≥ 0,
and a3 < 0 so that the variance (3.3) is small. Here we note that both (3.4)
and (3.5) are needed. The relative values of a1, a2, and −a3 can be used to plan
future gentic studies. For example, if −a3 > a1 and −a3 > a2, we would tend to
select more extreme discordant sib-pairs for further genotyping and then carry
out finer mapping of the disease gene.

We know from Risch and Zhang (1995) and Allison, Heo, Schork, Wong and
Elston (1998) that, without knowledge of the mode of inheritance, it is hard to
improve efficiency in terms of cost savings through reducing required number of
sib-pairs to be genotyped for the same statistical power. We think the approach
outlined above may offer some opportunities to improve the efficiency in this
sense.

4. Conditional IBD Distribution

This section studies the problem of calculating E(I(t)|M) under the assump-
tion that the distribution of the IBD process is available. In fact, we discuss
methods to calculate P (I(t) = i|M = µ), the conditional probability of sharing i

alleles identical by descent at the point t given the genotype data. Here i = 0, 1, 2.
These conditional probabilities can be used to obtain E(I(t)|M) and the vari-
ance of the conditional distribution P (I(t) ≤ i|M = µ). These can be used in
turn to calculate the information-content mapping, introduced by Kruglyak and
Lander (1995), to measure the extent to which all inheritance information has
been extracted at the locus t. The information-content mapping helps to de-
cide if additional genotype data at other nearby markers are needed for linkage
analysis.
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We now elaborate on the distribution of an IBD process. We recall that the
spatial stochastic point process on [0, 1] describing the locations of the crossover
events in a single strand product of meiosis, is called a crossover process. (cf.
Speed(1996)). Since the distribution of an IBD process can be derived from
that of a crossover process under the assumption of random mating, and the
distribution of a crossover process can be estimated by using pedigree genotype
data, it seems reasonable to assume that the distribution of an IBD process,
instead of the process itself, is known. We note that, assuming a generalized
count-location model, Chang et al. (2001) provides a non-parametric estimate
of the distribution of a crossover process on the basis of genotype data obtained
from a dense set of markers in seven three-generation CEPH references families.
See Broman, Murray, Sheffield, White and Weber (1998) and Broman and Weber
(2000) for more information about this data set.

Considering that E(I(t)|M = µ) = {2P (M = µ|I(t) = 2)/P (M = µ)}
P (I(t) = 2) + {P (M = µ|I(t) = 1)/P (M = µ)}P (I(t) = 1), P (M = µ|I(t) = i)
= E(E(1[M=µ]|I(·))|I(t) = i), and the availability of the distribution of the IBD
process, it suffices to know one of

P (M = µ|I(t1) = i1, . . . , I(tJ ) = iJ , I(t) = i), (4.1)

P (M = µ, I(t1) = i1, . . . , I(tJ) = iJ , I(t) = i), (4.2)

to obtain E(I(t) = i|M = µ). We recall that M = µ is the genotypes of the
sib-pair taken at the loci t1, . . . , tJ .

We now introduce two approaches to (4.1) or (4.2). The first assumes
that the allele frequencies of the markers at t1, . . . , tJ are known and the hap-
lotypes at these markers are the result of a random combination of alleles.
This is realistic unless some of the loci are extremely close to each other. Let
v1(s) = (v11(s), v12(s)) and v2(s) = (v21(s), v22(s)) be the inheritance vectors,
respectively, for the first and second sibs. Here v11(·) and v21(·) refer to the
paternally derived meiosis, v12(·) and v22(·) refer to the maternally derived meio-
sis and, for every i = 1, 2 and j = 1, 2, vij(s) equals 0 if the allele at s

comes from one of the grandmothers and equals 1 otherwise. We note that
I(s) =

∑2
i=1 1[v1i(s)=v2i(s)].

Now (4.2) can be decomposed according to the parental haplotypes and
the inheritance vectors. Using the fact that the haplotypes of the parents are
independent of the inheritance vectors, each of the summands is a product of the
haplotype frequencies and probabilities involving distributions of the crossover
process. This gives the value for (4.2). We note that many summands in the
above calculation are zero, because vij(·) changes its value only occasionally.
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The second approach assumes

P (M(t1) = µ1, . . . ,M(tJ ) = µJ |I(t1) = i1, . . . , I(tJ) = iJ)

=
J∏

j=1

P (M(tj) = µj|I(tj) = ij), (4.3)

and only makes use of E(I(t) = i|M = µ) for t ∈ {t1, . . . , tJ}. In this case,
P (M(tj) = µj |I(tj) = ij) can be estimated from the data in view of the likelihood
derived from

P (M(t1) = µ1, I(t1) = i1)

= P (M(t1) = µ1|I(t1)= i1)P (I(t1) = i1) (4.4)

and hence we do not need to know the allele frequencies in order to calculate
(4.1) or (4.2).

Remark The feasibility of the above computation depends largely on J , the
number of markers where the genotype data are used in calculating E(I(t)|M).
When J is large, we can use E(I(t)|M̃ (t)) instead, where M̃(t) is the set of
genotype data taken at the markers that are in a neighborhood of the locus t.
Our initial experience using a desktop PC indicates that it is computationally
feasible if there are four or six markers involved in M̃ (t).

5. Discussion

We have proposed two statistical methods for genetic linkage analysis of
qualitative and quantitative traits in sib-pairs based on genotype data obtained
from a set of polymorphic markers. With the introduction of weight functions
and the more appropriate conditional expectation of IBD processes, we hope our
statistical methods will be useful for the detection of genetic factors for complex
diseases. In order to illustrate the numerical performance of these methods, we
are conducting some simulation studies and examining some real data sets. These
will be reported on elsewhere. Preliminary studies indicate that our methods are
computationally feasible. In addition to computational issues, we pay particular
attention to the choice of weight functions so as to indicate sib-pairs having
more informative phenotypes in various situations. We also use the information-
content mapping to decide if the set of markers is dense enough or if additional
genotype data at other markers are needed.

There are two important components in deriving these procedures. One
involves the conditional distribution of the IBD process given the genotype data,
and the other involves weight functions of the phenotypes. Examining these
closely, we think the present theory can be extended to other pedigrees and
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functionals of the IBD process. In fact, our methods are genome-wide versions
of the classical means test, which is only one of several tests useful for linkage
analysis of sib-pair genotype data. Readers are referred to Whittemore and Tu
(1998) and references therein for these methods. We will report extensions to
the present theory in simulation studies. It would be interesting if our approach
sheds light on the question of informativeness in other pedigree designs (cf. Teng
and Siegmund (1997), and Feingold and Siegmund (1997)). Such results would
be useful in planning genetic studies.
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