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Abstract: RNAs are versatile molecules that are involved in many important cellular

activities including protein synthesis, antisense hybridization, RNA-RNA interac-

tions, and RNA-protein interactions. Computational prediction of RNA higher-

order structure is important because crystal structures have been determined only

for a few RNA molecules. Statistical algorithms have been recently developed and

shown to have advantages for RNA folding prediction. A statistical algorithm is pre-

sented for the energy model of base pair stacking, and a very important algorithm

for more realistic energy rules is described. These algorithms demonstrate how sta-

tistical thinking can be successfully adopted for RNA secondary structure prediction

to overcome inherent limitations in mathematical algorithms. For the determina-

tion of gene function, antisense techniques promise to offer a high-throughput plat-

form. We illustrate how an approach based on statistical algorithms can be used

for the rational design of antisense oligonuleotides (oligos). In the post-genomic

era, DNA expression arrays and single-nucleotide polymorphisms (SNPs) promise

to enable the prediction of gene functions and the identification of candidate genes

for disease phenotypes. Functional predictions will eventually require experimen-

tal validation. An antisense approach is well suited for these high throughput

applications to keep pace with rapid accumulation of genomic information, DNA

expression array data, and SNP databases. The full realization of the promise of

antisense technology can be greatly aided by an adequate integration of computa-

tional approaches and experimental techniques.
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nomics, RNA folding.

1. Introduction

RNA plays a variety of important functional roles that include catalysis,
RNA splicing, regulation of transcription, and translation. These roles are car-
ried out at specific RNA structural sites, often through molecular interactions or
conformational change. Hence, the function of an RNA molecule is determined
by its secondary and tertiary structures. To date, crystal structure has been
determined only for four RNA molecules: yeast phenylalanine transfer RNA,
hammerhead ribozyme, the P4-P6 domain of the Tetrahymena group I intron,
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and the hepatitis delta virus ribozyme (for a review, see Ferré-D’Amaré and
Doudna (1999)). RNA tertiary interactions involve secondary structure elements
and are substantially weaker than secondary interactions. Thus, to a large extent,
the free energies in secondary structure represent the thermodynamics of RNA
folding. The tendency for RNA folding to be primarily driven by secondary struc-
ture features is a tremendous advantage for structural and functional studies on
RNAs. Furthermore, computational RNA tertiary structure prediction without
experimental information is an intractable problem, and the thermodynamics of
tertiary interactions have not been well characterized. For these reasons, compu-
tational algorithms have focused on RNA secondary structure prediction in the
last several decades.

In this article, we first give an overview of the major algorithms for RNA
secondary structure prediction with one RNA sequence. For the energy model
of base pair stacking, we present a statistical sampling algorithm for RNA fold-
ing prediction. We also describe an algorithm for more realistic energy rules.
These algorithms overcome inherent limitations in mathematical algorithms. We
illustrate the application of a statistical approach to the rational design of anti-
sense oligonucleotides. We discuss the feasibility and basis for high-throughput
antisense applications to functional genomics and drug target validation.

2. Existing Algorithms for RNA Secondary Structure Prediction

A recent authoritative review on calculating nucleic acid secondary structure
using one or multiple homologous sequences is given by Zuker (2000). In this
section, we focus on major methods for RNA secondary structure prediction
using one RNA sequence. The secondary structure of an RNA is defined by a
list of base pairs. Favorable free energies (negative-valued) are assigned to base
pair stacks, and destabilizing free energies (positive-valued) are given to loops of
various types and size. The individual free energies are assumed to be additive
in the calculation of total free energy of a specified secondary structure. The
complete set of the latest free energies by the well-accepted “Turner rules” is
given in Xia et al. (1998) and Mathews, Sabina, Zuker and Turner (1999). Base
pair stacking represents an important step toward realistic characterization of
RNA folding thermodynamics. For example, a stack between two G•C pairs
with the G base of the exterior base pair on the 5’ end has a free energy of −3.3
kcal/mole. The free energy of a helix with m base pairs is the sum of (m − 1)
stacking energies.

Earlier work on RNA secondary structure prediction focused on mathemat-
ical algorithms. The goal of these algorithms for RNA folding prediction is free
energy minimization, i.e., finding the secondary structure (or structures) with
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the lowest total free energy. A more in-depth description of the problem can be
found in Zuker (1989a, b). The most important are the algorithms for the popu-
lar RNA folding software mfold developed by Zuker (Zuker and Stiegler (1981),
Zuker (1989a, b)). These algorithms predict optimal structure through free en-
ergy minimization based on thermodynamic parameters developed by Turner and
coworkers (Mathews et al. (1999), Xia et al. (1998)). For Xlo 5S rRNA, the op-
timal structure and all types of secondary structural elements are illustrated in
Figure 1. There are several sources for uncertainty in the predictions. There
is uncertainty in free energy parameters for destabilizing loops because exper-
imental data are difficult to obtain, and there is also uncertainty in stacking
energy parameters (Freier et al. (1986)). The discrete free energy models and
the assumed free energy additivity are simplifications. Also, the folding prob-
lem is ill-conditioned, i.e., very slight deviations in the energy parameters or the
sequence can lead to substantial differences in the optimal folding. The subop-
timal foldings from mfold are intended to mitigate the ill-conditioned nature of
the folding problem. However, because of the inherent mathematical nature of
the algorithm design, these suboptimal foldings do not yield a statistically valid
sample of the probable structures. Other limitations of this treatment have also
been documented (Wuchty, Fontana, Hofacker and Schuster (1999)).

Probabilistic approaches provide a means to address uncertainty. McCaskill
(1990) pioneered this approach for RNA secondary structure prediction. He pre-
sented a partition function method to compute the exact base pair probabilities.
The probabilities are displayed in a box plot qualitatively similar to the energy
dot plot for suboptimal foldings (Jacobson, Zuker and Hirashima (1987), Jacob-
son and Zuker (1993)). Despite its elegance, this algorithm does not generate
any secondary structure.

Based on a starting energy model for base pair stacking, a Bayesian treat-
ment of the problem showed its promise to address the limitations of these algo-
rithms (Ding and Lawrence (1999)). More specifically, the Bayesian algorithm
was able to address the need for a representation of the full ensemble of probable
structures, and it enabled statistical inferences on all variables in the problem,
including free energy parameters, and number of destablizing loops. One also
saw that the specification of the free energy parameters could be relaxed through
prior assignment as a way to mitigate the ill-conditioned nature of the RNA
folding problem. This approach has generated great interest for its potential to
solve problems that had been considered intractable (Zuker (2000, p.310)).



276 YE DING

Figure 1. The minimum free energy structure for Xlo 5S rRNA and all
types of secondary structural elements: helix (formed by stacked base pairs),
bulge loop (B loop), interior loop (I loop), hairpin loop (H loop), and multi-
branched loop (M loop).

3. New Statistical Algorithms for Sampling RNA Secondary
Structures

To demonstrate how statistical approaches can be useful for RNA folding
prediction, we present in detail an algorithm for the stacking energy model. This
differs from our earlier algorithm (Ding and Lawrence (1999)) in that structure
sampling is the focus here and Bayesian modeling is not involved. We also de-
scribe a very important algorithm for more sophisticated and realistic energy
rules and discuss its significant features.
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3.1. Computing partition functions

For an RNA molecule of n ribonucleotides, denote the sequence from the ith
ribonucleotide from the 5’ end to the jth ribonucleotide by Rij = riri+1 · · · rj,
1 ≤ i, j ≤ n, where ri = A, C, G, or U. Let Iij be a secondary structure on
Rij that meets the usual constraints of unknotted structure and at least three
intervening bases between any base pair. For structures under the constraints,
let IPij be a structure on Rij with the ends constrained to form a base pair. The
partition functions restricted to Rij are defined as:

u(i, j) =
∑

Iij

exp[−E(Rij , Iij)/RT ], (1)

up(i, j) =
∑

IPij

exp[−E(Rij , IPij)/RT ], (2)

where E(Rij , Iij) is the free energy for structure Iij , R is the gas constant, T is
the absolute temperature, and kcal/mol/RT=1.6625. In deriving recursions with
stacking energies, we consider the following mutually exclusive and exhaustive
cases for any fragment Rij = ri · · · rj : (a) rj is single stranded; (b) rj and ri

form a base pair ri − rj ; (c) rj and rk form a base pair rk − rj, i < k < j. Then
the recursions for the partition functions are as follows:

u(i, j) = u(i, j − 1) + up(i, j) +
∑

i<k<j

u(i, k − 1)up(k, j), (3)

up(i, j) = exp(−E([i · j/(i + 1)] · [(j − 1)/RT ])up(i + 1, j − 1)) (4)

where E([i · j/(i + 1)] · [(j − 1)/RT ]) is the stacking energy between the adjacent
base pairs ri − rj and ri+1 − rj−1. We start the computation with boundary
values for short fragments and proceed to longer ones using the recursion. For
1 ≤ i ≤ j ≤ i + 3 ≤ n, u(i, j) = 1, up(i, j) = 0; for j = i + 4 ≤ n, u(i, i + 4) =
1, up(i, i + 4) = 1; and u(i + 1, i) = 0, 1 ≤ i ≤ n.

3.2. Sampling RNA secondary structures

The recursions for partition functions correspond to probabilities for sam-
pling. For a fragment Rij, the last nucleotide rj can be single stranded, or can
base pair with ri, or can base pair with rk (i < k < j). The corresponding
probabilities for these cases are Pjj = u(i, j − 1)/u(i, j), Pij = up(i, j)/u(i, j),
Pkj = u(i, k − 1)up(k, j)/u(i, j), i < k < j. Each numerator corresponds to a
term in the recursion (3) for u(i, j), the denominator of all the probabilities that
sum up to 1. If the ends of the fragment are known to form a base pair then the
probabilities for stacking or non-stacking corresponding to the recursion (4) for
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up(i, j) are

PSij =
exp(−E([i · j/(i + 1)] · [(j − 1)/RT ])up(i + 1, j − 1)

up(i, j)
, (5)

PNSij =
u(i + 1, j − 1) − up(i + 1, j − 1)

up(i, j)
. (6)

When non-stacking is given, i.e., ri+1 and rj−1 do not form a base pair,
the probability of a single stranded rj−1 and the probability of a base pair rk −
rj−1 (i + 1 < k < j − 1) are

QNS(j−1)(j−1) =
u(i + 1, j − 2)

u(i + 1, j − 1) − up(i + 1, j − 1)
, (7)

QNSk(j−1) =
u(i + 1, k − 1)up(k, j − 1)

u(i + 1, j − 1) − up(i + 1, j − 1)
, i + 1 < k < j − 1. (8)

A secondary structure is drawn recursively as follows: starting with R1n,
draw single-stranded rn or a base pair according to probabilities Pnn, P1n, and
Pkn, 1 < k < n; for a new fragment Rij , if base pair ri − rj was not sampled
previously, then sample with Pjj, Pij , Pkj , i < k < j; if ri − rj was sampled, then
we sample by PSij, PNSij for stacking or non-stacking; stacking implies a sampled
base pair ri+1 − rj−1, the interior base pair of the stack; when non-stacking is
sampled, we then sample a single-stranded rj−1 or a base pair rk − rj−1 with
probabilities QNS(j−1)(j−1), QNSk(j−1). During this process, single-stranded nu-
cleotides and exterior stacking base pairs are removed from further involvement in
sampling, and the sampling terminates when all remaining fragments are shorter
than five bases, the minimum length needed for forming a base pair.

For more complicated free energy rules, we have developed an extended algo-
rithm. The forward step of this algorithm is a recursive algorithm for partition
functions. This recursive algorithm extends the work of McCaskill (1990) by
including single base stacking energies and other up-to-date free energy param-
eters. The backward step takes the form of a sampling algorithm: the sampling
probabilities are computed using the partition functions from the forward step.
The extended algorithm accommodates the up-to-date free energy rules and pa-
rameters developed by Turner’s group (Mathews et al. (1999), Xia et al. (1998))
with the exception of coaxial stacking.

The Boltzmann distribution in statistical mechanics gives the probability of
a secondary structure I at equilibrium as (1/U) exp[−E(I)/RT ], where E(I) is
the free energy of the structure, R is the gas constant, T is the absolute temper-
ature, and U is the partition function for all admissible secondary structures of
the RNA sequence. Direct discrete sampling is not feasible because the number
of all possible structures grows exponentially with the length of the sequence.



ANTISENSE OLIGONUCLEOTIDES 279

The extended algorithm samples secondary structures exactly and rigorously
according to the Boltzmann distribution, i.e., it can generate a statistical sample
of any desired size from the Boltzmann ensemble of secondary structures. Exact
sampling with Boltzmann probabilities is a significant feature rarely attainable in
computational biology. While the Boltzmann distribution statistically character-
izes high-dimensional folding states of a molecule, the ability to sample exactly
and rigorously from this distribution depends on the tractability of the prob-
lem. All the major algorithms reviewed here require at most cubic execution
time. Furthermore, the significance of this capability depends on the credibility
of thermodynamic parameters. Most of the Turner parameters are estimated
from chemical melting experiments and are well accepted by the RNA commu-
nity. For protein folding prediction, Monte Carlo approximations are necessary
and have been limited to relatively short polypeptides.

The sampling process is similar to the traceback algorithm employed in dy-
namic programming algorithms (Zuker and Stiegler (1981), Zuker (1989a, b)),
but it differs in that the base pairing is randomly sampled with conditional
probabilities computed with partition functions rather than chosen to yield a
minimum free energy structure. In other words, the traditional mathematical al-
gorithms pick a folding path according to the minimum energy principle, and the
suboptimal folding scheme by Zuker (1989a) selects multiple paths without re-
gard to a probabilistic framework, while the sampling process presents a random
folding path according to a probabilistic scheme based on statistical mechanics
principles. Because the probability of a structure decreases exponentially with
increasing free energy, the structure with highest frequency in the sample is most
likely the minimum free energy structure. When long interior loops (e.g., size >

30 nt) are disallowed, the forward step of the algorithm is cubic. The sampling
step of the algorithm is stochastically quadratic in the worst case; thus it can
quickly generate a large number of secondary structures.

4. Statistical Prediction of Potent Antisense Targets and Rational
Statistical Design of Antisense Oligos

4.1. Antisense technology

More than two decades ago, it was recognized that an oligodeoxynu-
cleotide can bind to a messenger RNA (sense strand) through complementary
base pairing to block its translation (Zamecnik and Stephenson (1978)). An-
tisense oligomers are short synthetic oligonucleotides of (usually) 10-25 bases
in length. Oligodeoxynucleotides (DNA oligos) are usually used because they
are more stable than RNAs in a cellular environment. In cells, RNAs are de-
graded by cellular enzymes (RNases) after completing their functions. Chemical
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modifications are used to further improve the stability of DNA oligos. DNA oli-
gos are very inexpensive to make. Furthermore, the intramolecular interaction
for a DNA oligo is usually weaker than that for the RNA oligo of same base
composition, a characteristic that is favorable for intermolecular interaction for
DNA-RNA hybridization. Over the years since this pioneering finding, it has
been proved that antisense oligonucleotides are able to modulate gene expression
in both prokaryotes and eukaryotes (Vanhée-Brossollet and Vaquero (1998)). In
1998, Vitravene (Isis Pharmaceuticals, Carlsbad, CA, USA) became the first an-
tisense drug approved by the Food and Drug Administration (FDA). Vitravene
is used to treat cytomegalovirus (CMV) retinitis in AIDS patients.

The high specificity of antisense oligos is a result of complementary base
pairing. A single base mismatch can result in a change in binding affinity by
as much as 500-fold (Crooke (1999)). For this reason, the specificity can be
demonstrated by making a few mismatches in the oligomer (mismatched control)
or randomly shuffling the bases (scrambled control) to repeat the experiment
and observe the change in expression level. This level of specificity is difficult, if
not impossible in some cases, to achieve by compounds for inhibition of protein
function. Furthermore, by taking advantage of subtle differences in the genetic
sequences of closely related genes, antisense oligos could discriminate and inhibit
the function of an individual gene in the family. From cellular RNA population to
genomic level, the reported estimates for the minimal length of an oligo to ensure
its statistical uniqueness range from 11 to 17 bases (Crooke (1999)). Oligos of
18 to 20 bases are often used in applications. However, the near-completion of
human genome sequencing and subsequent annotation provide the opportunity
for more accurate estimates. It is important to note that non-antisense effects
can sometimes occur in a cellular environment. For example, oligomers with
four contiguous guanosine residues can have non-specific effects, because the G-
quartet can form tetrads, which can stack to form tetraplexes with seemingly very
high affinity for heparin-binding protein (Stein (1999)). Thus, it is advisable not
to use oligos with G-quartets or any other motif known to cause non-antisense
effects.

Figure 2 demonstrates the mechanism of antisense inhibition of gene trans-
lation. After hybridization between the antisense oligomer and the targeted
mRNA, the mRNA is degraded by RNase H, an enzyme that recognizes DNA-
RNA duplex and cleaves the RNA strand. When the target is the 5’ untranslated
region (5’ UTR) or the AUG initiation codon, the ribosome is blocked by the
DNA-RNA hybrid. In either case, there is no protein product. Despite re-
cent progress reported by Mir and Southern (1999), many subtle aspects of the
molecular mechanisms of antisnese hybridization have not been well elucidated.
Nevertheless, antisense hybridization can be simply viewed as a two-step process.
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Figure 2. Inhibition of gene expression by an antisense oligomer.

It starts at an unstructured nucleation site and then unwinds the adjacent helix
by a process called “zippering” (Figures 3.1, 3.2). The process stops when it
meets an energy barrier such as the end of the helix or a sharp turn in the
folded RNA (Milner, Mir and Southern (1997)). For rabbit β-globin mRNA (589
nt), two oligomers BG1 and BG2 reported in Milner, Mir and Southern (1997)
were found to be effective by in vitro translation study. These two oligomers
are complementary to bases C46-U62 and bases A51-C67 of the mRNA. Figure
3.2 shows that a hairpin loop in the predicted optimal structure is the common
nucleation site. In general, an accessible single-stranded region is necessary for
antisense activity (Lima, Monia, Ecker and Freier (1992)). A single-stranded
region can be any of the types of loops illustrated in Figure 1, or it can be a
free-dangling end or an unpaired segment connecting two folding domains.
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Antisense inhibition can be measured either by an RNA assay or a protein
assay. For the RNA assay, the Northern blot is the main experimental tech-
nique for detecting the change in mRNA level after antisense treatment. The
degradation of the mRNA by RNase H cleavage will cause a decrease in the

Structured mRNA

3′ 5′

5′ 3′

5′ 3′

3′

5′

Antisense oligo

Nucleation at an open site

Elongation by “zippering”

Figure 3.1. A simple two-step process for hybridization formation: nucle-
ation at an unstructured site and elongation by “zippering” for unwinding
the adjacent helix.
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Figure 3.2. Two effective antisense oligomers BG1 and BG2 for rabbit β-
globin. The common nucleation site is a hairpin loop with eight unpaired
bases.

mRNA level (Figure 2). The amount of protein synthesized by the mNRA is
often determined by Western blot. The major obstacle for successful antisense
inhibition is the identification of effective target sites on the target mRNA. Ex-
perimental approaches for target site selection are generally laborious, time con-
suming, and expensive. The conventional “gene walk” or “shot gun” approach
empirically tests a large number of oligomers targeted at various regions of the
mRNA. This method requires a great deal of luck to work. Because mRNA struc-
ture is not considered, the success rate is only 2-5% (Sohail and Southern (2000)).
Milner, Mir and Southern (1997) proposed a combinatorial oligonucleotide array
approach. We discuss this technique in Subsection 5.3. Ho et al. (1996, 1998)
proposed using semi-random antisense libraries for RNase H mapping accessible
sites. This method requires sequencing of new RNA ends resulting from RNase H
cleavage to identify the cleavage sites. Furthermore, this approach does not take
advantage of the primary sequence or the secondary structure of the mRNA.
In view of the limitations and difficulties with experimental approaches, com-
putational approaches can be valuable for efficient experimental design and for
expediting antisense screening.

It has been reported that a small hairpin loop of four unpaired bases can ini-
tiate antisense activity (Asano, Niimi, Yokoyama and Mizobuchi (1998)). Loops
of smaller size are not considered adequate, because stable base pair stacking is
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difficult to establish in the nucleation step when only ≤ 3 bases are available for
base pairing. For BG1 and BG2 in Figure 3, there are eight unpaired bases in the
hairpin loop targeted by both oligomers. This explains why the two oligomers
are equally effective. Thus, it is important to assess the chance that a segment
of four consecutive bases is entirely single-stranded. Neither mfold nor the Mc-
Caskill algorithm can address this need. Not surprisingly, there has been limited
success in antisense design using the optimal structure from mfold (Sohail and
Southern (2000)). However, this problem is easily addressed by our sampling
approach, as detailed in the next subsection.

4.2. Probability profiles for predicting single-stranded bases and
segments and effective antisense targets

Ding and Lawrence (2001) proposed the construction of a probability profile
for the prediction of single-stranded regions in RNA secondary structure and for
the identification of effective antisense sites. From recursively derived partition
functions for an RNA sequence of n bases, McCaskill (1990) presented recur-
sions for marginal base pairing probability: Pij =Prob(base i and base j form a
pair), and then the probability that base i is unbound (i.e., single-stranded) is
qi = 1 − Σ(i+1)≤j≤nPij − Σ1≤j≤iPji. As emphasized by McCaskill, the base pair
binding probabilities are not locally determined by the RNA sequence; rather,
they reflect a sum over all equilibrium-weighted structures in which the chosen
base pair occurs. Therefore, probabilities {qi} statistically describe the antisense
hybridization potential for every nucleotide in the sequence. Alternatively, the
sampling method presents a means to estimate qi with the sampling frequency
for the unbound base i. This avoids the cubic algorithm required to compute the
probabilities analytically. A probability profile is then displayed by plotting {qi}
against the nucleotide position.

However, probabilities {qi}do not provide a suitable means to assess the po-
tential of a sequence to be single-stranded and available for hybridization. More
specifically, for a fragment from base i to base j, Qij , the probability of the frag-
ment being single-stranded, is not simply the product of individual probabilities
{qm}, i ≤ m ≤ j, because independence is invalidated by the nearest-neighbor
interactions. However, a probabilistic measure of the hybridization potential of
a sequence can be obtained from a sample of secondary structures. Because the
sample is representative of the Boltzmann ensemble of secondary structures, the
fraction of the sample in which all the nucleotides in the sequence are single-
stranded provides an unbiased estimate of the probability of the sequence be-
ing single-stranded. For all successive overlapping sequences of width W , the
sampling estimate for the probability that a sequence is single-stranded can be
plotted against the first nucleotide of the sequence for a probability profile of



ANTISENSE OLIGONUCLEOTIDES 285

single-stranded sequences with width W . Based on the rule of thumb of at least
four unpaired bases (Asano, Niimi, Yokoyama and Mizobuchi (1998), Zhao and
Lemke (1998)) for the nucleation step of antisense hybridization, we set W = 4
for antisense application (Figures 4.1, 4.2).
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Figure 4.1. The complete probability profile for single-stranded segments of
four consecutive nucleotides (segment width=4) estimated by 1,000 sampled
secondary structures for E. coli lacZ mRNA.
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Figure 4.2. The portion of the profile from nt 2200 to nt 2400. The first
high peak from the left is targeted by oligomer 4 in Table 2. Two relatively
wide and high peaks on the right are targeted by oligomer 5 and oligomer 6
in Table 2.
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For the predictions of single-stranded regions in phylogenetic structures of
representative RNA sequences, we found that the probability profile offers sub-
stantial improvement over the minimum free energy structure from mfold (Ding
and Lawrence (2001)). In an application to rabbit β-globin mRNA, there is a
statistically significant correlation (correlation coefficient = 0.597, and P value
= 0.0147) between hybridization potential predicted by the probability profile
and the degree of translation inhibition reported for antisense oligonucleotides
from in vitro experiments. There is a lack of such correlation (correlation coef-
ficient=0.155, and P value=0.567) for the minimum free energy structure com-
puted by mfold. These findings exemplify the advantages of the statistical sam-
pling approach to RNA folding prediction. They also suggest that the probability
profile approach is valuable for the identification of effective antisense target sites
and the rational design of antisense oligos. We illustrate these utilities in the fol-
lowing subsection.

4.3. Antisense design for lacZ mRNA

Mycobacterium tuberculosis (Mtb), one of the world’s most important path-
ogens, is responsible for millions of new cases of tuberculosis every year. Genetic
manipulation is difficult, because mycobacteria grow slowly and have undevel-
oped methods of genetic exchange. For these reasons, molecular characterization
for mycobacteria has lagged behind that for other bacteria species. Antisense
technique, as an alternative to genetic manipulation, has showed promise for
functional studies of Mtb genes in recent years (Rapaport, Levina, Metelev, Za-
mecnik (1996), Harth et al. (1999)). A fluorescence-based detection of lacZ re-
porter gene expression was recently developed by Wadsworth Center researchers
(Rowland et al. (1999)). E. coli lacZ, which codes for the enzyme β-galactosidase,
is one of the most commonly used reporter genes in mycobacteria. When lacZ
is fused to a gene control region, the expression of the gene can be monitored
through the detection of β-galactosidase.

Before pursuing studies on Mtb genes of interest, we first perform experi-
mental testing of antisense oligomers for the inhibition of lacZ expression. For
the 3113-nt mRNA of E. coli lacZ, the first 38 nt form the untranslated region
(5’-UTR), and the rest is the coding region. The entire mRNA is folded by our al-
gorithm, and Figure 4.1 presents the probability profile for the complete mRNA.
The profile reveals 20 or so “well-determined” high antisense potential sites per
kilobase. For a focused examination, Figure 4.2 shows an example, the portion
of the profile for nt 2200 through nt 2400. For this example, the selection of an-
tisense oligomers consists of two steps. First, the entire profile is scanned for the
complete list of primary antisense sites listed in Table 1. Although many of these
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sites could be good antisense targets, the number of the sites is larger than desired
for this study. These sites are further screened in the next step. To maximize the
chance for antisense hybridization, we select sites with relatively wide and high
probabilities, or sites with narrower, high peaks in close proximity (Ding and
Lawrence (2001)). For antisense oligomers, those with three or more Gs in a row
are not used, to reduce non-specific affect (Burgess et al. (1995)). Furthermore,
oligomers with substantial self-complementary regions are avoided, because sta-
ble intra-molecular structure within the antisense oligomer may hinder hybridiza-
tion with the target mRNA. Based on the computer scanning in the first step and
on these empirical rules, 10 antisense oligomers targeting various region of the
mRNA are designed (Table 2). There are no more than three base pairs in the op-
timal structure by DNA mfold server (http://bioinfo.math.rpi.edu/∼mfold/dna)
for any of the recommended oligomers. These short helices are relatively weak for
the length of the oligomers. Alternatively, we could also compute the mean num-
ber of base pairs using our sampling algorithm and set a threshold for oligomer
selection.

Table 1. Primary antisense sites and complementary sequences (CS) on E.
coli lacZ mRNA.

Site Starting Position Ending position CS (length) Peak probability
no. base base
1 A 48 A 51 UAAU (4) 0.837
2 C 106 U 112 GGGUUGA (7) 0.849
3 C 201 A 205 GACUU (5) 0.950
4 C 218 U 221 GAAA (4) 0.814
5 A 239 C 244 UCUUCG (6) 0.997
6 A 288 C 293 UGACAG (6) 0.938
7 A 306 U 309 UUGA (4) 0.857
8 C 335 C 338 GUAG (4) 0.827
9 G 549 A 556 CUUAAACU (8) 0.884
10 A 566 C 573 UAAAAAUG (8) 0.992
11 A 654 A 657 UACU (4) 0.868
12 C 662 U 667 GUAAAA (6) 0.843
13 U 698 A 701 AUGU (4) 0.921
14 U 802 G 805 AUGC (4) 0.902
15 A 928 C 933 UUUUGG (6) 0.878
16 A 953 C 958 UUAGGG (6) 0.969
17 A 961 U 964 UAGA (4) 0.817
18 U 980 U 985 ACUUGA (6) 0.965
19 A 1018 C 1021 UUCG (4) 0.991
20 U 1051 A 1055 AACUU (5) 0.838
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Table 1 (Con’t) Primary antisense sites and complementary sequences (CS)
on E. coli lacZ mRNA.

Site Starting Position Ending position CS (length) Peak
no. base base probability
41 A 2262 A 2265 UGGU (4) 0.862
42 U 2279 U 2282 AAAA (4) 0.974
43 U 2297 U 2300 AUUA (4) 0.838
44 A 2311 C 2319 UUAAAUUGG (9) 0.988
45 U 2333 U 2337 AGAAA (5) 0.862
46 A 2356 A 2366 UAUUUUUUGUU (11) 0.994
47 U 2450 U 2457 AUUGCGGA (8) 0.996
48 G 2470 A 2473 CCUU (4) 0.960
49 A 2547 A 2550 UAAU (4) 0.840
50 G 2564 G 2567 CACC (4) 0.825
51 A 2580 A 2583 UUUU (4) 0.969
52 U 2587 U 2591 AUAAA (5) 0.960
53 A 2601 A 2608 UUUUGGAU (8) 0.997
54 A 2629 U 2632 UUUA (4) 1.000
55 G 2747 A 2750 CGUU (4) 0.888
56 A 2752 A 2755 UUUU (4) 0.941
57 A 2842 A 2845 UUUU (4) 0.911
58 C 2970 G 2973 GUGC (4) 0.913
59 A 3047 C 3052 UCAUAG (6) 0.991
60 A 3108 A 3113 UUUAUU (6) 0.857

In a primary site of k nucleotides (k=CS length), every one of the (k − 3)
segments of four nucleotides has a predicted probability of 0.8 or higher. The
peak probability is the maximum of the probabilities for all the segments of
four nucleotides in the site. In the probability profile, these sites correspond
to peaks with a probability of 0.8 or higher.

Four of the designed oligomers have been tested by in vitro experiments
for lacZ translation. The readout from a fluorescence reader gives the mea-
surement of translation (Rowland et al. (1999)) which is used to compute the
percentage of inhibition. The inhibition rate is defined as (expression level with-
out oligos expression level with oligos)/(expression level without oligos)x100%.
Oligomers 1 and 2 resulted in moderate inhibitions of 37.5% and 29.3%, respec-
tively. Oligomers 3 and 4 produced high inhibitions of 75.5% and 74.7%, respec-
tively. In comparison with the 2-5% success rate for finding effective oligomers
by the gene-walk approach, the preliminary experimental results are quite en-
couraging.
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Table 2. Antisense oligomers designed with the probability profile for E.coli
lacZ mRNA.

Oligomer ID Start base and Antisense oligomer (length)

( primary site no.) end base on mRNA 5’ −→ 3’

1 A35-A51 TAATCATGGTCATAGCT (17-mer)

2 (9 &10) G549-C573 GTAAAAATGCGCTCAGGTCAAATTC (25-mer)

3 (23) A1185-C1198 GCGTTAAAGTTGTT (14-mer)

4 (39) A2212-A2226 TCACACTGAGGTTTT (15-mer)

5 (44) A2311-A2323 TGGCGGTTAAATT (13-mer)

6 (46) A2356-G2372 CAGCAGTTGTTTTTTAT (17-mer)

7 (47) U2450-G2463 CGACCCAGGCGTTA (14-mer)

8 (53) A2601-G2612 CCGGTAGGTTTT (12-mer)

9 (59) A3047-G3057 CCGCCGATACT (11-mer)

10 (60) U3099-A3113 TTATTTTTGACACCA (15-mer)

For a primary antisense site (Table 1), the underlined segment is the com-
plement of the CS in the site. The regions targeted by the oligomers all have
relatively wide probability peaks. Oligomer 2 targets two disjoint peaks
corresponding two underlined segments. Oligomer 1 targets start codon
39AUG41, oligomer 10 targets the 3’ end of mRNA coding region.

5. High Throughput Antisense Applications to Functional Genomics
and Drug Target Validation

5.1. Antisense technique for functional genomics

Functional genomics, the determination of the function of DNA sequences on
a genomic scale, is a fast-growing field in biotechnology. For the current estimate
of 30,000 − 40,000 genes in the human genome (International Human Genome
Sequencing Consortium (2001), Venter et al. (2001)), definitive functions have
been assigned to less than a thousand of these genes (Thompson (1999)). The
number of transcripts and distinct proteins is estimated to be 90,000 or more
(Galas (2001)), because a single gene can give rise to multiple transcripts, and
thus multiple proteins, by means of alternative splicing or alternative translation
initiation and termination sites. While each technique for the determination of
gene function has its own strengths and weaknesses, antisense oligonucleotides
receive the most favorable score on all attributes, in a comprehensive comparison
of all techniques (Bennett and Cowsert (1999)). These attributes include broad
applicability, usage of primary sequence, time, cost and resource requirement,
chance of success, relevance to human disease, and the possibility the technique
will result in a drug product. Inactivation of the gene is the classical approach
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to gene-function assignment in higher organisms. At the DNA level, a gene
can be inactivated by mutagenesis, gene knockout, or dominant negative; at
the mRNA level, a gene can be down regulated by antisense oligos, synthetic
ribozymes, or the newer RNA interference (RNAi) technique (Bass (2000), Bosher
and Labouesse (2000)); antibodies can interfere at the protein level. Although for
simpler animals such as C. elegans, mutagenesis and RNA interference have been
successful (Fire et al. (1998)), mutagenesis has not been shown to be feasible in
mammals. Although the field of RNAi is still in its infancy, there is optimism
about its potential for application to mammals based on the finding that RNAi
may operate in vertebrates at the earliest stages of development (Wiany and
Zenicka-Goetz (2000)). Gene knockout is difficult for many organisms, e.g., M.
tuberculosis. For Drosophila, after more than two decades of frustration, the first
successful gene knockout was reported recently (Rong and Golic (2000)). Routine
gene knockout in mammals has been performed only in mice. In addition to the
lengthy duration (usually a year or longer), mammalian gene knockout often
leads to embryonic lethal phenotype, providing very little information about the
gene function. For mice, antisense strategy has been demonstrated to inhibit
gene expression in utero, permitting the stage-specific analysis of gene function
and identification of secondary phenotypes (Driver et al. (1999)). This technique
is expected to be applicable to other mammalian species (Thompson (1999)). At
relatively low cost, antisense not only offers high specificity of gene-expression
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Figure 5. Annual number of antisense papers in PubMed since 1985, ob-
tained with key words “antisense” and the year of publication in PubMed
search.
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inhibition and rapid detection of antisense effects, but it also enables determina-
tion of gene function in adult animals by bypassing potentially lethal embryonic
stage. In recent years, antisense has gained increasing attention from research
labs in both academia and industry. This is evidenced by the explosion of anti-
sense papers in PubMed (Figure 5). In the post-genomic era, antisense stands out
as an important technique that has the potential to meet the need of large-scale
functional genomics.

5.2. Antisense technique for drug target validation

The antisense technique is also a very important tool for drug target val-
idation. This is well illustrated by the most favorable scores on all attributes
in a comparison of drug target validation techniques (Bennett and Cowsert
(1999)). Thousands of new potential therapeutic targets have emerged from hu-
man genome sequencing. The selection and validation of molecular targets are of
paramount importance for drug development in the new millennium (Ohlstein,
Ruffolo and Elliott (2000)). Although phenotypes of many diseases are well
known, the identification of the genes responsible for these phenotypes is a ma-
jor challenge in the drug development process.

An antisense oligonucleotide, by specifically blocking the synthesis of a pro-
spective protein drug target, provides a fast, inexpensive, and often definitive
assessment of the biological effect achieved by a drug targeted against that pro-
tein. Antisense technology offers a rational alternative to the typical strategy of
designing small molecules for the inhibition of a particular gene, which requires
substantially more information than does antisense design. Furthermore, the in-
teractions between many small molecules and multiple members of a gene family
can confound the assessment of a gene as a drug target (Taylor, Wiederholt and
Sverdrup (1999)).

5.3. High-throughput antisense applications

DNA microarrays are one of the latest breakthroughs in experimental molec-
ular biology, allowing the measurement of gene-expression patterns of tens of
thousands of genes in parallel (Brown and Botstein (1999), Lockhart and Winzeler
(1996)). The emergence of expression arrays signals the dawn of the era of func-
tional genomics. DNA expression arrays can provide important clues to gene
function. The gene expression matrix allows comparison of expression profiles
between genes and different samples. Similar expression behavior (e.g., similar
change in expression level under similar conditions) suggests that the genes are
likely to be co-regulated or possibly functionally related. Clustering gene expres-
sion data can group together genes of known similar function (Eisen, Spellman,
Brown and Botstein (1998)). Genes with unknown function can be assigned ten-
tative functions or a role in a biological process, based on the known function of
genes in the same cluster. Single-nucleotide polymorphisms (SNPs) promise to
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propel forward pharmacogenomics, the emerging field concerned with the dissec-
tion of the genetic basis of disease and therapeutic response. SNPs enable studies
of association between a SNP and risk of a disease or drug response (McCarthy
and Hilfiker (2000), Brookes (1999)). The associations are valuable for the iden-
tification of candidate genes for disease phenotype. The eventual determination
of the functions of genes inferred from expression arrays and SNP databases will
require experimental analysis in a systematic and high-throughput fashion to
keep pace with the fast-growing genome, expression array, and SNP databases.
Antisense technology is well suited for this endeavor.

For these high-throughput applications, the screening process for selecting
effective antisense target sites must be efficient. Experimental approaches for
finding effective antisense oligonucleotides are expensive and time-consuming,
and are usually limited to a region of the mRNA. The combinatorial DNA-RNA
oligonucleotide array technique is a promising experimental method (Milner, Mir
and Southern (1997), Southern, Mir and Shchepinov (1999)). However, it has
two drawbacks. First, the number of possible oligomers up to a preset length
is huge for an mRNA. Secondly, large mRNAs can be hampered by their bulky
size from approaching the oligomers densely distributed on the array surface
(Southern, Mir and Shchepinov (1999)). Thus, use of selective oligomers designed
by comprehensive computational screening provides a means for reducing an
unnecessarily large number of oligomers. We anticipate that the combination
of a reliable computational approach and experimental techniques such as the
DNA-RNA arrays should prove to be the best strategy for realizing the great
promise of antisense techniques (Figure 6).

Figure 6. A potential high-throughput antisense framework for functional ge-
nomic and drug target validation. Systematic statistical analysis of DNA ex-
pression arrays and SNP databases can provide the basis for high-throughput
functional analysis. Integration of computational antisense design and ex-
perimental techniques such as oligonucleotide arrays presents a rational, effi-
cient, and high-throughput platform for antisense oligonucleotide screening.



ANTISENSE OLIGONUCLEOTIDES 293

6. Conclusions

The Bayesian inference approach has the potential to answer RNA folding
questions that are unresolvable by mathematical algorithms. For example, the
current free energy parameters for multibranched loops are heuristic estimates
without any experimental support. By treating these parameters as random
variables, and by using RNA sequences with phylogenetic structures deduced
from comparative studies, Bayesian inferences and estimates for these parameters
can be made under suitable modeling assumptions. Bayesian modeling may also
permits a sensitivity analysis that would indicate which parameters are important
for folding and which can be ignored or crudely estimated (Zuker (2000)).

The two-step process of nucleation and elongation is a simplifying represen-
tation of molecularly and energetically complex hybridization phenomena. For
example, a single-base addition can drastically change the degree of inhibition.
These factors partly explain the frustration over the elusiveness of a statistical
model that could predict antisense efficacy with accuracy. Successful statistical
modeling in genomic applications must adequately address the underlying bi-
ology. Potential areas for further statistical contributions to antisense research
include the identification of factors that are correlated with antisense inhibition,
and the building of statistical models for improved prediction of antisense efficacy.
The former needs to focus on secondary and tertiary features of mRNA. Some
correlation studies on primary structure motifs have been reported (Matveeva et
al. (2000), Tu, Cao, Zhou and Israel (1998)). Potential RNA-protein interaction
can also dictate the accessibility of an antisense target; however, addressing this
issue is far beyond existing computational means. Improvement in statistical
modeling needs to await a better understanding of the subtlety of the molecular
mechanisms for hybridization.

Identification of effective antisense targets is important for the design of an-
tisense oligonucleotides for antisense drug development, functional genomics, and
drug target validation. In the post-genomic era, traditional tools for functional
genomics and drug target validation can no longer keep pace with new sequence
information rapidly accumulated from various genome projects. The antisense
technique has emerged as an important tool for these applications both in vitro
and in vivo. Fast-growing databases for DNA expression arrays and SNPs invite
functional inference and predictions of candidate genes. These analyses present
the basis for high-throughput antisense applications. The promise of antisense
technology can only be fully realized with a proper integration of computation
methods and experimental techniques.
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