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Abstract: We introduce a new approach for modeling the influence of a disease

process on gene or protein expression patterns. Our emphasis is on the simulta-

neous, multivariate characterization of expression alterations across large numbers

of genes, rather than on the construction of normal/affected differential expression

profiles one gene at a time. The key idea is to reconstruct the expression profile

for a latent sample of normal control cells corresponding to each disease sample,

and then use the displacements between the disease samples and their reconstructed

controls to uncover a low-dimensional range of alternative disease progression path-

ways. The method is easy to implement, and is expected to be widely-applicable

to genomic and proteomic studies using a broad range of large-scale assay tech-

nologies. We demonstrate the method by applying it to gene expression studies of

colon cancer and breast cancer.
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1. Introduction

Most diseases exhibit a range of clinical manifestations. Underlying this
clinical heterogeneity is expected to be a correspondingly heterogeneous range of
behaviors at the level of gene and protein expression. Arriving at an understand-
ing of the extent and boundaries of this variability has become a major research
goal as new technologies for carrying out large-scale gene and protein expression
assays, such as cDNA microarrays and 2D gel electrophoresis, have come into
widespread use. In this paper, we address the problem of statistically charac-
terizing the diversity of gene expression alterations that are associated with the
progression of a disease. Our approach borrows from dimension reduction meth-
ods for high dimensional data analysis, and differs from most other approaches
to this problem in that it aims to identify the multivariate structure of expression
alterations simultaneously across the entire range of measured genes. Specifically,
if {Tj} and {Nj} are independent sets of disease and normal samples, we aim to
look beyond the average difference T̄ − N̄ , so as to uncover the range of discrep-
ancies Tj − T̃j that can occur between a disease sample Tj , and a hypothetical
paired sample T̃j of normal control cells.
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To fix ideas, we focus on modeling tumor progression in cancer. Suppose
that Y (t) ∈ Rn contains the expression measurements for n genes in a sample
of tumor cells at time t, where t = 0 corresponds to tumor initiation. Let ∇tY

denote the vector of first derivatives of Y (t) with respect to time. If we require
that for all t, ∇tY ∈ 〈ν1, . . . , νp〉 where νj ∈ Rn, then Y (t) − Y (0) will lie in
〈ν1, . . . , νp〉 for all t. In principle, we can take p = n, and the model imposes no
constraints on the change in gene expression over time. In practice, a desire to
achieve parsimony motivates us to consider much smaller values for p, leading to
the following model for disease progression:

Y (t) = Y (0) +
p∑

k=1

λk(t)νk + ε(t), (1)

where ε(t) is an error component with mean zero given λ1(t), . . . , λp(t).
In the context of (1), we can view the νk as representing alternative pathways

of disease progression. Since νk(i) represents the rate at which gene i is modified
while following pathway νk, we refer to the νk as the slope vectors, and the
subspace 〈ν1, . . . , νd〉 as the slope subspace. We take the viewpoint that the
νk are shared across all samples that belong to a broadly-defined disease class,
while the λk(t) represent the molecular progressions of individual tumors, and
hence will be specific to each sample. Note that λk(t) = 0 corresponds to gene
expression in the normal precursor cell, while larger values of λk(t) represent
increasing levels of genetic transformation and deranged expression behavior.

To better understand the biological basis for disease progression, we briefly
describe the process of tumor development in cancer (Lengauer, Kinzler and
Vogelstein (1998), Vogelstein and Kinzler (1993)). It is generally believed that
most tumors derive from a single normal ancestor cell that has experienced a
genetic transformation known as tumor initiation. While a single mutation can-
not give rise to a malignant tumor, it can set the stage for further mutations.
For example, the mutation may inhibit the DNA proofreading and repair mech-
anisms that maintain the status of each somatic cell as a clone of all other cells
in the organism. In the next stage, a genetically heterogeneous population of
tumor cells forms, and natural selection begins to exert a selective pressure on
the population. This pressure favors cancer-like cells having traits such as rapid
division, invasive capabilities and immune resistance, while acting against more
mildly transformed cells that terminally differentiate into the functional role of
the untransformed progenitor. Therefore a primary aspect of tumor development
is the gradual loss of differentiation, which can be measured through discrepan-
cies in gene expression between tumor cells and normal control cells of the type
that is thought to have given rise to the tumor. This normal expression behavior
constitutes the natural baseline for assessing expression discrepancies that result



MODELING THE INFLUENCE OF DISEASE PROCESSES 265

from cancer. Since the baseline expression behavior will vary from individual to
individual, we should treat it as a tumor-specific control.

If paired disease and normal samples are available (for example if a tissue
sample has been taken from a healthy region of the affected organ, or from the
contralateral organ), then the estimation of model (1) is not difficult. Suppose
Yj0 and Yj1 are paired normal and disease samples, and let X denote the matrix
whose columns are the differences Yj1 − Yj0, where j ranges over the observed
sample pairs. Next apply the singular value decomposition (SVD) to X, giving
X = USV ′, where U and V are orthogonal, and S is diagonal with decreasing
diagonal entries. The columns of U corresponding to large diagonal elements of
S estimate the νk, and the sample-specific coefficients λkj(t) are estimated by the
values SkkVjk. We note that most commonly, each disease sample is observed
only a single time, so the effect of time is completely confounded with subject-
specific characteristics of the sample. Therefore we are only able to estimate the
λ values at the tumor level, giving estimates (λ̂1j , . . . , λ̂pj) that represent the
progression of disease sample j at the time that the RNA or protein for disease
sample j was obtained.

In general paired samples will not be available, rather expression measure-
ments {Nj} and {Tj} corresponding to independent samples of normal and tumor
cells will be obtained. We posit that corresponding to each tumor sample Tj is a
latent normal expression profile T̃j , representing a sample-specific normal precur-
sor, or control, to tumor sample j (this would correspond to the expression levels
Y (0) in the continuous measurement setting). The T̃j will vary from subject to
subject due to individual-specific health factors. We model the expected values
of the tumor samples as lying in an affine subspace of Rn given by µN + 〈BN 〉,
where BN is an n×d matrix, and 〈BN 〉 represents the column-space of BN . Since
our only information about the normal expression behavior comes from the set
of independent normal samples {Nj}, we estimate µN as the average normal
expression measurement N̄ , and BN as the matrix whose columns are the d dom-
inant left singular vectors of the matrix NC = [N1 − N̄ ,N2 − N̄ , · · ·]. The matrix
BN obtained in this way is identical to the matrix that would be obtained by
performing a principal components analysis (PCA) on the covariance matrix of
the normal samples, but is much easier to compute since the covariance matrix is
substantially larger than NC . This leads to the following model for T̃j, where βj

N

is the unobservable coefficient vector that determines the sample-specific charac-
teristics of normal sample j:

T̃j = µN + BNβj
N + τj , (2)

where E(τj|βj
N ) = 0.

The observed gene expression for disease sample j is modeled as the sum
of the unobserved normal precursor T̃j and the influence of disease progression,



266 KERBY SHEDDEN

which we represent as a linear combination of a low dimensional set of alternative
disease progression pathways. This leads to the following model:

Tj = T̃j +
p∑

k=1

λkjνk + εj , (3)

where E(εj |λ1j , . . . , λpj) = 0.
We can view the model given by (3) as capturing a tradeoff between two

different sources of disease heterogeneity. At one extreme, we have diseases that
arise from normal cells exhibiting a very diverse range of expression behavior,
but that are highly specific in the way that the expression behavior is altered by
the disease process. This would require a large value of d (a high-dimensional
BN ) and a small value for p (a small range of alternative development pathways).
At the other extreme we have diseases that arise from a normal cell type whose
gene expression is very tightly controlled, but that are variable in the types of
expression modifications that can occur, leading to small values of d and larger
values for p.

Estimation of model (3) can be carried out using least squares. In order for
the coefficients to be identified, we require that B′

Nνk = 0 for k = 1, . . . , p. The
loss function

L({βj
N}, {λkj}, {νk}) =

∑

j

‖Tj − µN − BNβj
N −

p∑

k=1

λkjνk‖2 (4)

has a unique global minimum that is obtained by the following two-stage proce-
dure. First, regress Tj − µN on BN to give βj

N . Next perform a singular value
decomposition on the matrix R whose columns are the residuals Rj = Tj−BNβj

N ,
giving R = USV ′. The slope vectors νk are estimated as the first p columns of
U , and the coefficients are estimated as λkj = SkkVjk. We note that we usually
standardize each gene to have unit variance before fitting the model, so that all
genes have equal influence on the fit. We also note that the differences Tj − T̃j,
and hence the ν and λ estimates, are invariant under location transforms such
as mean-centering or median-centering of the genes.

Model (3) is not uniquely parameterized, so we cannot identify specific slope
vectors ν1, . . . , νp without imposing further constraints. Moreover, if n is smaller
than p, a p-dimensional subspace of slope vectors cannot exist, so the νk will
necessarily be linearly dependent. In practice, we can only identify a slope sub-
space that is a subspace of 〈Tj − T̃j ; j = 1, . . . ,m2〉, which cannot have dimension
greater than min(n,m2). If the Tj and Nj are mutually linearly independent,
then we can choose 1 ≤ p ≤ min(n,m2) and the minimization of (4) will define
〈ν1, . . . , νp〉 uniquely. The slope vectors themselves are taken for convenience to
be those arising from the SVD. We note that, at the present time, the number
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of genes that are measured usually exceeds the number of samples that can be
obtained by an order of magnitude or more, so the minimizer of (4) is almost
certain to be unique.

To summarize, we list the steps of our proposed procedure explicitly.
1. Compute the normal mean N̄ and perform a PCA on the normal samples,

producing a basis BN for the variation in normal samples.
2. Regress Tj − N̄ on BN for each disease sample j, producing a reconstruction

T̃j=N̄+BNβj
N of gene expression in the normal precursor to disease sample j.

3. Compute the singular value decomposition of the residual matrix USV ′ =
[R1, R2, . . .], where Rj = Tj − T̃j . Estimate the dimension p of the slope
subspace using the values in S. Then estimate the slope vector νk as the kth

column of U , and the loading coefficients as λkj = SkkVjk.

2. Example: Colon Cancer

Our first example will use the colon carcinoma data reported by Notterman,
Alon, Sierk and Levine (2001). In this study, paired normal and tumor tissue
samples were obtained from 18 patients, and expression levels for 7464 genes
were measured using oligonucleotide microarrays. Since there is a known pairing
between tumor and normal samples, this data set will be useful for validating
that our method performs in a manner consistent with its underlying motivation.
Specifically, we will demonstrate that the slope vectors νk and the sample-specific
coefficients λkj determined by our proposed method are roughly similar to the
values obtained by directly fitting model (3) upon substituting the observed
paired normal sample for T̃j.

Figure 1 shows the estimated slopes for all 7464 genes, with the slope esti-
mates for ν1 shown in the left panel, those for ν2 shown in the right panel. In both
cases, the estimate derived from the known pairing provides the y-coordinate,
while the estimate derived by reconstructing the control member of the pair us-
ing our proposed procedure provides the x-coordinate. Throughout this section,
when using our reconstruction procedure we use d = 3 dimensions for determin-
ing the range of possible values for the normal reconstruction. The slope vector
ν1 is very similar in the two methods. We find that ν1 is generally very similar to
the displacement vector between the tumor centroid and the normal centroid, so
this finding should not be unexpected, as the displacement vector is independent
of the way the samples are paired. The slope vector ν2 presents a much stronger
test of our method. The correlation coefficient between the slopes in ν2 obtained
with the known pairing and the corresponding slopes obtained using the recon-
structed pairing is 0.63 which, while not perfect, gives reasonable agreement for
most genes.



268 KERBY SHEDDEN

0.030.02-0.01 0 0.040.01-0.03-0.04 -0.02

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.030.02-0.01 0 0.040.01-0.03-0.04 -0.02
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

K
now

n
P
airing

Reconstructed Pairing

Figure 1. Component-wise scatterplots of the estimated slopes νk(i), i =
1, . . . , 7464, plotting the estimate based on the known pairing for the colon
tumor data (y-axis) against the estimate produced using our proposed re-
construction procedure (x-axis). The left panel shows the values for ν1, and
the right panel shows the values for ν2.

The left panel of Figure 2 shows the λ1j estimates produced using the known
pairing plotted against the λ1j estimates produced using our procedure to recon-
struct the pairing. These points are shown using + symbols. On the same axes,
the analogous plot for the λ2j estimates is shown using × symbols. Again, while
the agreement is not perfect, the basic relationships are preserved. The correla-
tion between the two sets of λ1j estimates is 0.61, while the analogous correlation
for the λ2j estimates is 0.72.

In the right panel of Figure 2, we show the scatterplot of (λ1j , λ2j), which
would be a primary object of interest in practice. The tumor samples are seen
to fall into two well-separated groups that are determined by the sign of λ2j.
The group of samples in the upper half-plane of the scatterplot will tend to have
overexpression of genes with positive slopes in ν2 and underexpression of genes
with negative slopes in ν2. The opposite tendency will hold for the samples in
the lower half-plane of the scatterplot. For example, the greatest positive slope
in ν2 is gene R41349, while the most negative slope is for the APC gene. Thus
samples in the upper half-plane will tend to underexpress APC and overexpress
R41349, while the samples in the lower half-plane will tend to overexpress APC
and underexpress R41349. We emphasize, however, that the slopes in compo-
nent ν2 are based on all 7464 genes, with several hundred genes having slopes
that are substantially different from zero. Thus the values of λ2j may not be
tightly associated with any single gene, rather they reflect a consistent pattern
of expression across a large group of genes.
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Figure 2. Left panel: The λ estimates derived using the known pairings
plotted against the corresponding λ estimates derived using our proposed
reconstruction procedure. The + symbols correspond to the λ1j estimates,
while the × symbols correspond to the λ2j estimates. Right panel: Scatter-
plot of the (λ1j , λ2j) estimates produced by our procedure.

3. Example: Breast Cancer

Our second example will use the data from the breast tumor study reported
in Perou et al. (2000). In this study, cDNA microarrays were used to assay
the expression of 9216 genes in 3 normal breast tissue samples N1, N2, N3 and
59 breast tumor samples T1, . . . , T59. According to the authors, this study was
intentionally planned to show the diversity of gene transcription in human breast
tumors. As might be expected, there is a substantial amount of coordinated
expression behavior that is not captured in the primary tumor/normal mean
displacement vector. Our method uncovers some of this coordinated behavior,
enabling us to link gene expression in the breast tumors to a clinical variable
that would otherwise be difficult to characterize.

We began by applying the method directly as described in Section 1. Around
3% of the spots were missing, so we filled in these values with the average of all
observed values for the same gene. Since there are only three observed normal
samples, we used the maximal value of d = 2 for determining the range of possible
values for the normal reconstruction. The left panel of Figure 3 shows a scatter-
plot of the pairs (λ1j , λ2j). As was the case with the tumor samples, the λ1j are
all positive. This indicates that the displacement vectors between tumor sample
expression and the expression in the corresponding estimated control sample all
lie in a half-plane. The primary orientation of these displacements, as measured
by ν1, is very similar to the displacement vector between the average tumor cell
expression and the average normal cell expression, as shown in the right panel
of Figure 3. Thus the large slopes in ν1 will tend to correspond to genes with
highly significant t-tests. However in addition to gene-level information about
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differential expression, our procedure also provides measurements of the sample-
specific level of differential expression through the coefficients λ1j . A sample
with a large value of λ1j will tend to have large expression differences relative to
its estimated control sample for the genes that are most differentially-expressed
overall. Moreover these differences will tend to be in the same direction as those
exhibited by the majority of pairs. A sample with a small value of λ1j , on the
other hand, will not tend to have large differences in these genes.
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Figure 3. Left panel: Scatterplot of the estimated (λ1j , λ2j) pairs for the
breast tumors. Right panel: The slope estimates ν1(i) plotted against the
displacement vector between the centroid of the tumor samples for gene i
and the centroid of the normal samples for gene i.

The primary interest in our method will lie in the slope vectors ν2, ν3, . . ., and
their corresponding weights λ2j , λ3j , . . .. These are the components that pick up
variation in the pairwise tumor/normal displacement vectors that are orthogonal
to the average displacement vector, and hence will be mostly missed by t-tests.
As an example of how the information in these directions can be extremely im-
portant, we consider a clinical aspect of the breast tumor dataset. This study
included 40 paired samples obtained from 20 patients, with one sample in each
pair taken before chemotherapy treatment, and the other sample taken after the
treatment (in no case did the cancer disappear completely, so the tissue samples
are classified as tumor both before and after the treatment). In order to deter-
mine how the treatment influences gene expression, we located each before/after
pair in the left plot of Figure 3, and considered the displacement between the af-
ter and before points. For 17 of the 20 pairs, λ2j is greater in the after-treatment
sample compared to the before-treatment sample. Thus, the treatment has the
effect of displacing samples in the positive direction of ν2. The influence of the
treatment on the λ1j values, however, is not easy to detect (λ1j increases in 8
samples and decreases in 12 samples). In words, there does not seem to be a
consistent influence of the chemotherapy on the genes that are most differen-
tially expressed overall. However the genes with large slopes in ν2 do exhibit a
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consistent response to the therapy. We note that it may seem more appropriate
to constrain the reconstructed precursor for the two members of a before/after
pair to a common value. We did this, and there was no qualitative change in the
results (both the 17/20 and the 8/20 findings continued to hold).

At this point we use the breast tumor data to illustrate some aspects of the
stability and sampling behavior of our proposed methodology. As stated above,
some of the parameters in model (3) are not identified. The subspace spanned
by the νk is uniquely identified, but the νk themselves, and hence the sample-
specific coefficients λkj, are not identified. Therefore it is not easy to discuss
the sampling properties of individual parameter estimates. In order to assess
whether a single sample may be dominating the slope subspace estimates for the
breast cancer data, we fixed p = 2 and fit model (3) 59 times, holding out a single
sample during each fit. This gives a set of estimates {(ν�

1, ν
�
2), � = 1, . . . , 59} for

the 2-dimensional slope subspace. For each �, we computed the canonical angles
between 〈ν�

1, ν
�
2〉 and 〈ν1, ν2〉, where ν1 and ν2 were computed using all 59 tumor

samples. We used the largest canonical angle to measure the discrepancy between
the two subspace estimates (the largest canonical angle between subspaces S1 and
S2 will be the supremum of all angles cos−1(v1 · v2) between a unit vector v1 in
S1 and a unit vector v2 in S2). The greatest angle among the 59 leave-one-out
sets was 0.06π, where a right angle of 0.5π would be the worst possible value.
The median of the 59 values was 0.02π. One implication of this finding is that
every linear path in the left side of Figure 3 will be nearly equal to a linear path
in the corresponding plot computed when holding out a sample.

A more traditional way to assess sampling variability is to apply a boot-
strapping procedure, so that we resample with replacement from the 59 biological
samples and re-fit the model. We found that for 95% of the bootstrap samples,
the first canonical angle of the p = 2 dimensional slope subspace relative to the
fit with the the original 59 samples was less than 0.05π, and the second canonical
angle was less than 0.31π. From this point of view, one dimension of the slope
subspace seems to be quite variable, so it might be valuable to have more samples
before drawing any strong conclusions.

3. Conclusion
Our primary goal has been to introduce a new way of approaching differential

expression that focuses on the multivariate structure of the displacement vectors
between disease samples and paired control samples. A key emphasis is that
approaches based on identifying differential expression gene-by-gene, for exam-
ple through the use of t-tests, correspond to a multivariate perspective focusing
solely on the displacement vector between the centroid of the disease samples and
the centroid of the normal samples. On the other hand, our approach searches for
consistent patterns of discrepancy between normal and disease samples that are
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orthogonal to the centroid displacement vector. These directions may be inter-
preted as determining variant disease development pathways that are consistently
followed by a subset of the samples.

The approach relies on two steps. First, paired normal samples are recon-
structed by regressing a tumor sample against the observed normal samples.
Second, the most important directions for the displacement vectors are identi-
fied by carrying out a least-squares fit of a reduced-rank matrix to the matrix
of residuals. Both of these steps may fail in certain situations. For example, the
available normal samples may not be sufficient to characterize the true range of
normal expression behavior. It may also be the case that when a disease sample
has experienced a very large shift in expression, the fitted reconstruction will
underestimate the magnitude of the true displacement. One potential solution
to the second problem would be to identify certain housekeeping genes that are
not expected to be associated with the disease process, and use only these genes
to estimate the βj

N . The model also implicitly assumes that most variation in
the displacement vectors can be captured in a few dimensions, corresponding to
the situation in which continuous expression trajectories Y (t) vary primarily in
a low-dimensional subspace. If the displacement vectors appear to have a distri-
bution that is not of reduced dimension, on the other hand, then the method is
unable to detect any consistent patterns in the displacement vectors beyond the
centroid difference.
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