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Abstract: An Edgeworth expansion for the distribution function of the product-limit

estimator of survival time under the left-truncation and right-censoring model is

derived. This expansion gives more accurate approximations than the usual normal

approximation from weak convergence. In addition, by constructing the bootstrap

sample from left-truncation and right-censored data, the Edgeworth expansion for

the bootstrap statistic is given, allowing a bootstrap base confidence interval with

better coverage probability.
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1. Introduction

Censored or truncated data occur frequently in many fields such as epidemi-
ology, astronomy and engineering life tests. For instance, consider a prevalent
cohort study in epidemiology, which recruits a group of individuals at a specific
time with a certain disease status and follows them over time. The variable of
interest is the survival time defined as an individual’s age at death. Censoring
occurs when an individual loses to follow-up, whereas truncation happens when
an individual dies before the beginning of the follow-up study. See Hyde (1976),
Tasi, Jewell and Wang (1987) and Wang (1991).

Consider an infinite sequence of random vectors {(Xm, Tm, Cm), m = 1, 2,
. . .}, where the random variables X, T and C are nonnegative and independent
with continuous distribution functions, FX , FT and FC , respectively. Suppose
one can only observe the pair Z = min(X,C) and δ = I[X ≤ C], where I[A]
denotes the indicator of the event A. Under this restriction, the random variable
X is called right-censored by C. Furthermore, if (Z, T, δ) can be observed only
when Z ≥ T , then the triple (Z, T, δ) is called a left-truncated and right-censored
observation of X. For convenience, we denote the observable subsequence of
(Zm, Tm, δm), m = 1, 2, . . ., by (Ui, Vi, ηi), i = 1, 2, . . . , where Ui = Zi, Vi = Ti,
and ηi = δi if Zi ≥ Ti. The conditional distribution P[Z ≤ z, T ≤ t, δ = d|Z ≥ T ],
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for z, t ∈ [0,∞), d = 0 or 1 defines the left-truncation and right-censoring model
(hereafter the TC model). If T ≡ 0 with probability 1, the TC model specializes
to the right-censoring model; if C ≡ ∞ with probability 1, then the TC model
becomes the random truncation model.

The general problem is to make inference about the unknown distribution
function FX(t) based on a sample of n independent identically distributed random
vectors {(Uj , Vj , ηj), j = 1, . . . , n} from {(Zm, Tm, δm), m = 1, . . . ,mn}, where
n ≤ mn and mn is unknown.

A product-limit estimator F̂X as defined in (1) is a well-known estimator for
FX . The asymptotic properties of the PLE have been studied by Gijbels and
Wang (1993) and He and Yang (2000). The weak convergence rate is O(n−1/2)
which offers a confidence interval with coverage probability of O(n−1/2). How-
ever, under some regularity conditions, the bootstrap approximation is better
than the normal approximation for a broad class of studentized statistics. Chen
and Lo (1996) showed the bootstrap approximation for the studentized Kaplan-
Meier estimator performs better than the normal approximation. Also, see Hall
(1992) and Helmers (1991). The objective is to establish an Edgeworth expan-
sion of a studentized PLE and find the bootstrap approximation of a studentized
PLE under the TC model to improve the normal approximation.

In Section 3 we establish the Edgeworth expansion of the studentized PLE,
which provides an accuracy of o(n−1/2). However, since the PLE takes the prod-
uct form, this is not done directly. By converting the target statistic into a
U -statistic, we derive the Edgeworth expansion for the U -statistic first, then for
the studentized PLE. In Section 4, we consider bootstrap samples obtained by
simple random sampling with replacement from data. This allows us to obtain
the expansions for the bootstrap of the studentized PLE. Using this expansion,
we construct the coverage probability for the bootstrap approximation. Finally,
simulations are conducted to provide numerical supports for the theoretical find-
ings.

2. Assumptions and Notations

Under left-truncation and right-censoring, the range of x for which FX(x)
can be estimated needs to be carefully specified. Let aX and bX denote the
lower and upper boundaries of the support of FX : aX = inf{z : FX(z) > 0} and
bX = sup{z : FX(z) < 1}. Similar notation will be used for other distributions.
It is well known that the non-parametric estimable range of FX is (aT , bZ), where
aT < bZ and bZ = min(bX , bC). To ensure the finiteness of moments, we assume
aT < min(aX , aC) such that FT (max(aX , aC)) > 0. Moreover, we set aT = 0 to
simplify the notation.
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Let the survival function of FX be F̄X = 1 − FX . F̄C and F̄T are defined
similarly. Denote marginal subdistributions by

H0
U(u) = P[U ≤ u, η = 0] = α−1

∫ u

0
F̄X(z)FT (z)dFC (z),

H1
U(u) = P[U ≤ u, η = 1] = α−1

∫ u

0
F̄C(z)FT (z)dFX (z),

HV (v) = P[V ≤ v] = α−1
∫ v

0
F̄C(s)F̄X(s)dFT (s),

where α = P[T ≤ Z]. An important quantity for estimation is the coverage
probability R(x) = P[V ≤ x ≤ U ] = α−1FT (x)F̄C(x)F̄X (x). Let the corre-
sponding empirical subdistributions of H0

U , H1
U and HV be given by Ĥ0

U(s) =
n−1∑n

i=1 I[Ui ≤ s, ηi = 0], Ĥ1
U (s) = n−1∑n

i=1 I[Ui ≤ s, ηi = 1], ĤV (s) =
n−1∑n

i=1 I[Vi ≤ s]. Thus, the corresponding estimator for R(s) is Rn(s) =
n−1∑n

i=1 I[Vi ≤ s ≤ Ui] = ĤV (s) − Ĥ0
U(s−) − Ĥ1

U(s−) where, for any function
h(x), h(x−) denotes the left-continuous version of h(x). Then the well-known
product-limit estimator (PLE) of FX is given by

F̂X(t) = 1 −
∏
s≤t

{
1 − ∆Ĥ1

U(s)
Rn(s)

}
, t ∈ (0, bZ), (1)

where ∆Ĥ1
U (s) is the difference Ĥ1

U (s) − Ĥ1
U(s−). Here we use the convention

that 0/0 = 0.
Let the cumulative hazard function of FX be denoted as

ΛX(t) =
∫ t

0

dFX(s)
1 − FX(s−)

= − ln F̄X(t). (2)

Replacing FX by the PLE F̂X in (2), we obtain an estimator − ln ̂̄FX(t) for the
cumulative hazard function. Since ̂̄FX is complicated, we use the cumulative
hazard estimator as an auxiliary estimator for deriving an Edgeworth expansion
for the PLE. As discussed in Hwang (2000), F̂X(t) = 0 with positive probability.
To avoid this difficulty, we partition the sample space Ω as follows: Ω0 = {ω ∈
Ω : sup0≤s≤t max(|ĤV − HV |, |Ĥ0

U − H0
U |, |Ĥ1

U − H1
U |) < γ} and Ω1 = Ω − Ω0,

where for a fixed t, τ ∈ (0, t] is chosen such that Θ = P[V ≤ τ, U ≥ t] > 0 and γ
is a real number with 0 < γ < Θ/3 and 6γ(Θ − 3γ)−2 < 1. Since the coverage
probability R(x) is not necessarily monotone, it is necessary to introduce Θ to
compute the probability bound. Clearly, Θ ≤ R(s), for any τ ≤ s ≤ t. Then,
for ω ∈ Ω0, we have | − ln ̂̄FX(t) + ln F̄X(t)| < ∞. Also, from the Dvoretzky,
Kiefer and Wolfowitz (1956) inequality (DKW inequality hereafter), we have
P[Ω1] = o(n−k). Thus, we focus discussion on the subspace Ω0.
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3. The Edgeworth Expansion for the Studentized PLE

Let the asymptotic variance of
√
n(− ln ̂̄FX(t)+ln F̄X(t)) be written as σ2

0 =∫ t
0 R

−2dH1
U (see Gijbel and Wang (1993)) and the empirical variance estimator of

σ2
0 be σ̂2

0 =
t∫
0
R−2

n dĤ1
U . Let Φ(x) and φ(x) be the standard normal distribution

function and the standard normal density function, respectively. The following
theorem derives the Edgeworth expansion for the cumulative hazard estimator:

Theorem 3.1. We have

sup
x

∣∣∣P[n1/2

σ̂0

(
− ln ̂̄FX(t) + ln F̄X(t)

)
≤ x

]
− Ψ̃n(x)

∣∣∣ = o(n−1/2) (3)

uniformly in x, where Ψ̃n(x) = Φ(x) + n−1/2φ(x)[κ̃1x
2 + κ̃2 + σ2

0(2n
1/2)−1], and

κ̃1 =
1

3σ3
0

∫ t

0
R−3(u)dH1

U (u), (4)

κ̃2 =
1

6σ3
0

∫ t

0
R−3(u)dH1

U (u)

+
1

2σ3
0α

∫ t

0
R−2(u)F̄C(u)

∫ u

0
R−2(s)FT (s)dH1

U (s)dFX(u). (5)

Now we are ready to present the main theorem in this section. Let the
asymptotic variance of

√
n( ̂̄FX(t) − F̄X(t)) be σ2 = F̄ 2

X(t)σ2
0 and the empirical

variance estimator of σ2 be σ̂2 = ̂̄F 2

X σ̂
2
0 .

Theorem 3.2. We have

sup
x

∣∣∣P[n1/2

σ̂

( ̂̄FX(t) − F̄X(t)
)
≤ x

]
− Ψn(x)

∣∣∣ = o(n−1/2)

uniformly in x, where

Ψn(x) = Φ(x) + n−1/2φ(x)
(
κ1x

2 + κ2

)
, (6)

κ1 = −σ
−3
0

3

∫ t

0
R−3dH1

U +
σ0

2
, (7)

κ2 = −σ
−3
0

6

∫ t

0
R−3dH1

U − σ0

2

−σ
−3
0

2α

∫ t

0
R−2(u)F̄C (u)

∫ u

0
R−2(s)FT (s)dH1

U (s)dFX(u). (8)
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4. The Bootstrap Statistic

From the normal approximation, a confidence interval of FX(t) can be con-
structed with a coverage probability accurate to O(n−1/2). By means of the
bootstrap, we show that the coverage probability is accurate to order o(n−1/2).

A bootstrap sample is obtained by simple random sampling with replacement
from {(Ui, Vi, ηi), i = 1, . . . , n}. Let {(U∗

i , V
∗
i , η

∗
i ), i = 1, . . . , n} denote the boot-

strap sample. The symbol ∗ represents statistics associated with the bootstrap
sample. For instance, P∗ is the probability measure on the bootstrap sample,

Ĥ1∗
U (u) =

1
n

n∑
i=1

I[U∗
i ≤ u, η∗i = 1],

g∗(U∗
i , V

∗
i , η

∗
i ) = R−1

n (U∗
i )η∗i I[0 ≤ U∗

i ≤ t]

+
∫ t

0
R−2

n (s)(I[s ≤ V ∗
i ] − I[s < U∗

i ])dĤ1
U (s).

Now the process
{
Ĥ1∗

U (s), s ∈ [0,∞)
}

is the empirical process with the parent

distribution {Ĥ1
U (s), s ∈ [0,∞)}.

Let Ψ∗
n(x) = Φ(x) + n−1/2φ(x)(κ∗1x2 + κ∗2), where κ∗1 and κ∗2 are the corre-

sponding bootstrap estimates of κ1 and κ2 as defined in (7) and (8). Note that
κ∗1 and κ∗2 depend only on the sample (Ui, Vi, ηi), i = 1, . . . , n, and not on the
bootstrap samples. The following theorem gives the bootstrap accuracy for the
studentized PLE. The proof is similar to that of Theorem 3 in Helmers (1991)
and is there fore omitted .

Theorem 4.1. For ω ∈ Ω0 we have

sup
x

∣∣∣P∗[n1/2

σ̂∗
( ̂̄F ∗

X(t) − ̂̄FX(t)
)
≤ x

]
− Ψ∗

n(x)
∣∣∣ = o(n−1/2),

sup
x

∣∣∣P∗[n1/2

σ̂∗
( ̂̄F ∗

X(t) − ̂̄FX(t)
)
≤ x

]
− Q̂n(x)

∣∣∣ = o(n−1/2),

where Q̂n(x) = P[
√
nσ̂−1( ̂̄FX(t) − F̄X(t)) ≤ x].

From the Edgeworth expansion for the bootstrap statistic, we can now con-
struct confidence intervals with better coverage probabilities. Let zα = Φ−1(α).
The normal approximation yields the following one-sided confidence interval for
F̄X(t): (−∞, ̂̄FX − zασ̂n

−1/2). It is easy to see that by (6), we have

P
[
F̄X(t) ≤ ̂̄FX(t) − zασ̂n

−1/2
]

= 1 − α+ n−1/2φ(zα)(κ1z
2
α + κ2) + o(n−1/2).

Therefore, the error in the coverage probability for the normal based confidence
interval is of order O(n−1/2). Let qα denote the α-quantile of Q̂n. According to
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the inversion formula for the Edgeworth expansion (Hall (1992, p.88)), we have
zα = qα + n−1/2(−κ1z

2
α − κ2). Thus, the error in approximating the quantile zα

by qα is of order O(n−1/2).
Let q∗α be the α-quantile of the distribution of

√
n(σ̂∗)−1( ̂̄F ∗

X(t) − ̂̄FX(t)).
Then, the following theorem shows that the coverage probability for the bootstrap
-based confidence interval is accurate to o(n−1/2). Also, the error in estimating
the quantile q∗α by qα is of order o(n−1/2).

Theorem 4.2. For fixed 0 < α < 1, we have q∗α = qα + o(n−1/2) a.s. and

P
[
F̄X(t) ≤ ̂̄FX(t) − q∗ασ̂n

−1/2
]

= 1 − α+ o(n−1/2). (9)

The proof, based on a standard delta method, can be taken from Theorem
7 in Chen and Lo (1996).

Example 4.1. To examine the result of Theorem 4.2, consider the distribution
functions FX(s) = 1− exp(−(s− a)), FC(s) = 1− exp(−βC(s− a)) and FT (s) =
1 − exp(βT s), where a constant a is chosen so that FT (a) > 0. Here we set
a = 0.01. The truncation probability is 0.351. The coverage probabilities of one-
sided confidence intervals constructed on normal approximations and bootstrap
approximations are shown in Table 1 for three fixed time points, t = 0.7, t = 0.6
and t = 0.5. All three bootstrap approximations perform better than the normal
approximatioin at all nominal levels. At time t = 0.7 and nominal level 0.975,
the improvement for the bootstrap approximation is 100%. However at time
0.5, the improvement does not look as dramatic. The normal and bootstrap
approximations are rougher at t = 0.5 due to fewer observations in calculating
the PLE.

Table 1. Coverage probability of confidence interval∗

Time t = 0.7 Time t = 0.6 Time t = 0.5
n∗∗ = 28 n = 25 n = 29

Nominal Normal Bootstrap Normal Bootstrap Normal Bootstrap
0.975 0.932 0.975 0.920 0.974 0.912 0.973
0.95 0.888 0.949 0.872 0.935 0.863 0.921
0.90 0.816 0.885 0.797 0.850 0.788 0.828
0.85 0.753 0.799 0.735 0.768 0.728 0.742

*Sample size=50. The bootstrap approximations are based on 1000 repetitions.
**n represents the truncated sample size.

Remark 4.1. During the revision, the author was made aware of a recent un-
published manuscript by Drs. Wang and Jing (2000) which addresses the same
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problems as presented in this article. Both papers use similar methodologies;
however, the results on Edgeworth expansions for the studentized PLE are dif-
ferent. It is the author’s observation that while implicating Theorem 1.2 in
Bickel, Götze and van Zwet (1986), the coefficient κ3 in Lemma 5.5 in Wang and
Jing is derived incorrectly.

5. Extensions

The independence assumption on (X,T,C) can be further relaxed by assum-
ing that X is independent of the pair (T,C), with possible dependence between
the random variables T and C.
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Appendix A. Proofs

To derive the U -statistic representation for − ln ̂̄FX(t) + ln F̄X(t), we need
the following notation. For 1 ≤ j, k ≤ n, let

B1(Uj , Uk, Vk) = R−2(Uj)I[0 ≤ Uj ≤ t](I[Uj ≤ Vk] − I[Uj < Uk]),

B2(Uj , Vj , Uk, Vk) =
∫ t

0
R−3(s)

∏
i=j,k

(I[s ≤ Vi] − I[s < Ui])dH1
U (s).

In particular, when j = k, it is easy to see that

B̃1(Uj) = B1(Uj , Vj , Uj , Vj) = −1
2
R−2(Uj)I[0 ≤ Uj ≤ t],

B̃2(Uj , Vj) = B2(Uj , Vj , Uj , Vj) = −
∫ t

0
R−3(s)(I[s ≤ Vj] − I[s < Uj])dH1

U (s).

To simplify the notation, set Ui = (Ui, Vi, ηi) and let

g(Uj) = R−1(Uj)I[0 ≤ Uj ≤ t] +
∫ t

0
R−2(s)(I[s ≤ Vj ] − I[s < Uj ])dH1

U (s),

ψ(Uj ,Uk) = B1(Uj , Uk, Vk)ηj +B2(Uj , Vj , Uk, Vk)

−E[B1(Uj , Uk, Vk)ηj +B2(Uj , Vj , Uk, Vk)|Uj , Vj , ηj ],

h(Uj ,Uk) = g(Uj) + g(Uk) + ψ(Uj ,Uk) + ψ(Uk,Uj).
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For ω ∈ Ω0, Lemma 4.1 in Hwang (2000) yields

− ln ̂̄FX(t) + ln F̄X(t) = Un + Rem +
σ2

0

2n
, (10)

where R̃n(s) = (ĤV − Ĥ0
U − Ĥ1

U)(s), Un = n−2∑
i<j h(Ui,Uj) and

Rem=
∫ t

0
R−3[R̃n−R]2d[Ĥ1

U−H1
U ]+

∞∑
k=3

{
(−1)k

∫ t

0
R−(k+1)[R̃n−R]kdĤ1

U

}
(11)

+
∞∑

k=3

{
(−1)k−1k−1

k∑
i=2

n−i+1

(
k

i

)∫ t

0
R−k(R̃n −R)k−idĤ1

U

}
(12)

+n−2
n∑

i=1

{
2g(Ui) + B̃1(Ui)ηi + B̃2(Ui, Vi) − σ2

0

2

}
. (13)

We can show that

P[
√
nσ−1

0 |Rem| > (log n)−1n−1/2] = o(n−1/2) (14)

using Lemma 3.2 in Hwang (2000) and the DKW inequality. Details are in
Lemma 5.1.2 in Hwang (1999).

Since Un is a U -statistic of order n−2 with a symmetric kernel h, Un can
be expressed as Un = n−2{(n − 1)

∑n
i=1 g(Ui) +

∑
i<j [ψ(Ui,Uj) + ψ(Uj ,Ui)]},

which has the form of (1.5) in Bickel, Götze and van Zwet (1986). From their
Theorem 1.2, we obtain the following lemma. The proof is similar to that of
Lemma 1 in Chang (1991). Note that, because of the dependence between U and
V , the coefficient K3 is different from that in Chang’s Lemma 1.

Lemma A.1 We have supx

∣∣∣P[
√
nσ−1

0 Un ≤ x] −Gn(x)
∣∣∣ = o(n−1/2), Gn(x) =

Φ(x) −K3(6n1/2)−1φ(x)(x2 − 1) and

K3 = σ−3
0

∫ t

0
R−3(u)dH1

U (u)

+
3
σ3

0α

∫ t

0
R−2(s)F̄C(s)

∫ s

0
R−2(u)FT (u)dH1

U (u)dFX (s). (15)

Proof of Theorem 3.1. To use Lemma A.1, write σ̂2
0 − σ2

0 =
∫ t
0 R

−2
n dĤ1

U −∫ t
0 R

−2dH1
U = n−1∑n

i=1 f(Ui)+ξ1, where f(Ui) = −2B̃1(Ui)ηi−B̃2(Ui,Uj)+σ2
0

and ξ1 = −2
∫ t
0 R

−3(Rn −R)d(Ĥ1
U −H1

U) +
∫ t
0 R

−2
n R−3(Rn −R)2(R+ 2Rn)dĤ1

U .

Thus, we have

σ0

σ̂0
= 1 − 1

2nσ2
0

n∑
i=1

f(Ui) + ξ2, (16)
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where ξ2 = −ξ1(2σ2
0)−1 + (σ̂0 − σ0)2(σ̂0 + 2σ0)(2σ̂0σ

2
0)

−1. By (10) and (16), we
have

n1/2

σ̂0

(
− ln ̂̄FX(t) + ln F̄X(t)

)
= ζ + ξ3 − σ0

2n1/2
, (17)

where

ζ =
n1/2

2σ0

( 2
n2

∑
i<j

h(Ui,Uj)
)(

1 − 1
2nσ2

0

n∑
i=1

f(Ui)
)
,

ξ3 =
n1/2ξ2
2σ0

( 2
n2

∑
i<j

h(Ui,Uj)
)

+
n1/2

σ̂0

Rem +
1

2n3/2σ0

n∑
i=1

f(Ui) − σ0ξ2
2n1/2

.

The quantity ζ can be rewritten as

ζ =
n− 1
n

n1/2

2σ0

(
n

2

)−1∑
i<j

{
h̃(Ui,Uj) − 1

nσ2
0

E[g(Ui)f(Ui)]
}

+ Rem1, (18)

where h̃(Ui,Uj) = h(Ui,Uj) − (2σ2
0)

−1[g(Ui)f(Uj) + g(Uj)f(Ui)] and

Rem1 = − 1
2n5/2σ3

0

∑
i<j

{ϕ(Ui,Uj)(f(Ui)+f(Uj))−g(Ui)f(Uj)+g(Uj)f(Ui)}

− n− 1
2n5/2σ3

0

n∑
i=1

{g(Ui)f(Ui) − E[g(Ui)f(Ui)]}

− 1
2n5/2σ3

0

n∑
i=1

{
f(Ui)

∑
k<m

k �=i�=m

ϕ(Uk,Um)
}
.

Clearly,
∑

i<j h̃(Ui,Uj) is a U -statistic of degree 2 with an expected value of
zero. Also, we have E[h̃(Uj ,Uk)|Uj ] = g(Uj) and E[g(Uj)] = E[f(Uj)] = 0
from Lemma 3.1 in Chang and Hwang (2000). Thus, by Lemma A.1 and Lemma
2 in Chang (1991), we have

P
[ n1/2

σ0n
2

∑
i<j

(̃
h(Ui,Uj) − E[g(Ui)f(Ui)]

nσ2
0

)
≤ x

]
= Φ(x) + n−1/2φ(x)(κ̃1x

2 + κ̃2)+o(n−1/2),

where κ̃1 and κ̃2 are as defined in (4) and (5).
To finish the proof, we must show that the error term Rem1 and ξ3 are of

order o(n−1/2). Calculations for the moments of Rem1 can be found in Callaert
and Veraverbeke (1981). Then, applying Chebyshev’s inequality, one can show
that

P[|Rem1| > (n log n)−1/2] = o(n−1/2). (19)
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Moreover, we have
P[|ξ3| > (n log n)−1/2] = o(n−1/2). (20)

The proof applies Hoeffding’s inequality, Bernstein’s inequality (Serfling (1980,
p.85)) and (14). Details are described in Lemma A.5.2. in Hwang (1999). The
proof is therefore complete.

Proof of Theorem 3.2. From a Taylor expansion and (10), we obtain

n1/2

σ̂

( ̂̄FX(t) − F̄X(t)
)

= −n
1/2

σ̂0

(
− ln ̂̄FX(t) + ln F̄X(t)

)(
1 +

1
2n

n∑
i=1

g(Ui)
)

−n
1/2

σ̂0

(
− ln ̂̄FX(t) + ln F̄X(t)

)
× Rem2, (21)

where |ε′ − 1| ≤ exp(− ln ̂̄FX(t) + ln F̄X(t)) and

Rem2 =
1

2n2

(∑
i<j

ϕ(Ui,Uj)−
n∑

i=1

g(Ui)
)
+Rem+

ε
′

6

(
−ln ̂̄FX(t)+ln F̄X(t)

)2
+
σ2

0

2n
.

Applying (14), Lemma 3.2 in Hwang (2000) and Lemma 3.1 in Chang and
Hwang (2000), the quantity Rem2 can be shown to have a second moment of
order O(n−2). Therefore, combining Theorem 3.1 and the fact that P[|Rem2| >
(n log n)−1/2] = o(n−1/2), the second term of the left side of (21) is clearly negligi-
ble. From (17), the first term in (21) can be rewritten as−ζ(1+(2n)−1∑n

i=1 g(Ui))
+ σ0(2

√
n)−1 + Rem3, where Rem3 = −ξ3(1+(2n)−1∑n

i=1 g(Ui)) + σ0(4n3/2)−1∑n
i=1 g(Ui). By (20) and Bernstein’s inequality, we have P[|Rem3|>(n log n)−1/2]

= o(n−1/2). To complete the proof, it suffices to show that −ζ(1 + (2n)−1∑n
i=1 g(Ui)) + σ0(2

√
n)−1 has the same Edgeworth expansion as Ψn(x), as de-

fined in (6). From the proof of (18) and (19), ζ can be reexpressed as (n3/2σ0)
−1∑

i<j{h̃(Ui,Uj) − (nσ2
0)

−1E[g(Ui)f(Ui)]} + o(n−1/2), where the first term can
be represented as a U -statistic by using the technique employed in (18). We
complete the proof by applying Lemma A.1 and Lemma 2 in Chang (1991).
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