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Abstract: With the development of MCMC methods, Bayesian methods play a more

and more important role in model selection and statistical prediction. However, the

sensitivity of the methods to prior distributions has caused much difficulty to users.

In the context of multiple linear regression, we propose an automatic prior setting,

in which there is no parameter to be specified by users. Under the prior setting,

we show that sampling from the posterior distribution is approximately equivalent

to sampling from a Boltzmann distribution defined on Cp values. The numerical

results show that the Bayesian model averaging procedure resulted from the au-

tomatic prior settin provides a significant improvement in predictive performance

over other two procedures proposed in the literature. The procedure is extended to

the problem of Bayesian curve fitting with regression splines. Evolutionary Monte

Carlo is used to sample from the posterior distributions.
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1. Introduction

Consider a linear regression with a fixed number of potential predictors x1,
. . ., xk,

Y = Xβ + ε, (1)

where Y is an n-vector of response, X = [1,x1, . . . ,xk] is an n × (k + 1) design
matrix, ε ∼ Nn(0, σ2I), β and σ2 are unknown. Model selection and infer-
ence for linear regression have been extensively discussed in statistics. They are
mainly investigated in two approaches, the criterion-based approach and the fully
Bayesian approach.

The criterion-based approach works by selecting the “best” model under
som criterion and then to make inferences as if the selected model were true.
The most famous criteria may include adjusted R2, Cp (Mallows (1973)), AIC
(Akaike (1973)), BIC (Schwarz (1978)), PRESS (Allen (1974)), default Bayes
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factor (O’Hagan (1995), Berger and Pericchi (1996)), and some predictive criteria
(Geisser and Eddy (1979), San Martini and Spezzaferri (1984), Laud and Ibrahim
(1995)). The determination for the “best” model usually requires a comparison of
all possible 2k models, and this is prohibitive when k is large. Raftery, Madigan
and Hoeting (1997) stated that selection of a single model ignores the uncertainty
of the model itself and, as a consequence, the uncertainty of quantities of interest
can be underestimated. More discussions on the issue can be found in Draper
(1995), Raftery (1996), Hoeting, Madigan, Raftery and Volinsky (1999), and the
references therein.

The fully Bayesian approach is to make inferences from a posterior distri-
bution defined on the model space. An overview for this approach is given in
George (1999). For example, if a quantity ∆ is of interest, the Bayesian estimate
can be obtained by averaging the quantities under each model weighted by the
corresponding posterior probabilities. That is,

E(∆|D) =
K∑

i=0

∆iP (Mi|D), (2)

where D denotes the data, Mi denotes a model for D, K denotes the number of
all models under consideration, ∆i is an estimate of ∆ based on Mi,

P (Mi|D) =
P (D|Mi)P (Mi)∑K

j=1 P (D|Mj)P (Mj)
, (3)

where P (Mi) is the prior probability of Mi, P (D|Mj) is the likelihood function
of D given Mj, and

P (D|Mj) =
∫

P (D|ϑj,Mj)P (ϑj |Mj)dϑj , (4)

where ϑj is a parameter vector associated with Mj. One advantage of this ap-
proach is that it accounts for the model uncertainty beyond the single model
selection. Also, it enables optimal prediction if the predictive performance is
measured in the logarithmic scoring rule (Madigan and Raftery (1994)). How-
ever, it suffers from several difficulties in practical applications.

The first difficulty is that this approach requires a daunting specification
for prior probabilities over a large class of models under consideration and prior
specification for the specific parameters associated with each model. Further-
more, this approach is known to be rather sensitive to the prior specifications
(Kass and Raftery (1995), George (1999)).

The second difficulty is that the sums over all possible models in equation (2)
will be impractical when K is large. One approach to get around this difficulty
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is Occam’s window method (Madigan and Raftery (1994)), which approximates
the summation by averaging over a reduced set of models. The other approach
is Markov chain Monte Carlo, which works by simulating a Markov chain from
the posterior distribution P (M |D). Let M0, . . . ,Mt, . . . denote a series of mod-
els sampled from the Markov chain. Under suitable regularity conditions, the
average

∆̂ =
1
m

m∑
t=1

∆t (5)

converges with probability 1 to E(∆|D) as m → ∞ (Kass and Raftery (1995)).
Related papers include Mitchell and Beauchamp (1988), George and McCul-
loch (1993, 1997), Gelfand, Dey and Chang (1992), Gelfand (1995), Madigan
and Raftery (1994), Madigan and York (1995), Carlin and Chib (1995), Phillips
and Smith (1995), Geweke (1996), Raftery, Madigan and Hoeting (1997), Clyde
(1999), Hoeting, Madigan, Raftery and Volinsky (1999), and Fernadez, Ley and
Stell (1999).

Finally, we would like to mention that computing the likelihood function for a
given model is a more complex problem when its analytical form is not available.
In that case, reversible jump MCMC (Green (1995)) may serve as a good tool
for the Markov chain to move jointly over the model space and the parameter
space. An alternative approach is proposed by George and McCulloch (1993),
who get around the problem of dimension jumping by assuming a continuous
distribution concentrated around zero for these coefficients and use the Gibbs
sampler to sample from the parameter and model space.

In this paper, we propose a Bayesian model averaging procedure for multiple
linear regression under an appropriate prior setting. The procedure is automatic
and, in most cases, it can be applied without any user-specified parameter. Un-
der the setting, we show that sampling from the posterior distribution over the
model space is approximately equivalent to sampling from a Boltzmann distri-
bution specified by Cp values. The procedure is compared with those proposed
in the literature through numerical examples. The results show that it provides
a significant improvement over them in predictive performance. Evolutionary
Monte Carlo (Liang and Wong (2000)) is used to sample from the posterior dis-
tribution.

The remaining part of this article is organized as follows. In Section 2, we
describe the automatic prior setting, under which the connections between the
Bayesian approach and the Cp-criterion are studied. In Section 3, we describe
the computational implementation for the new Bayesian approach. In Section 4,
we present some numerical examples. In Section 5, we apply the new Bayesian
approach to the problem of curve fitting with least squares splines.
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2. Automatic Bayesian Model Averaging

2.1. Automatic Bayesian approach

Each model that we consider is of the form

Y = Xpβp + ε, (6)

where Y is an n-vector of response, p ≤ k < n, Xp = [1,x∗
1, . . . ,x

∗
p] is an

n × (p + 1) design matrix, {x∗
1, . . . ,x

∗
p} is a subset selected from all potential

predictors {x1, . . . ,xk}, βp = (βp0, βp1, . . . , βpp)′, ε ∼ Nn(0, σ2I), and βp and σ2

are considered to be unknown. When p = k, the model is called a full model.
Throughout this article, we assume that the intercept term is included in the
subset models, and any subset model Xp is of full column rank.

We first re-parameterize the model as follows.

Y = Zpγp + ε, (7)

where a QR decomposition is performed on Xp, Xp = ZpRp, Zp is an n×(p+1)
matrix with orthonormal columns, Rp is upper triangular, and γp = Rpβp.

Let ξ = (ξ1, . . . , ξk) represent a model, where each element is a binary
variable indicating the inclusion of the corresponding predictor. Let ξ(p) de-
note a model with p predictors. The set of free parameters of model ξ(p) is
θ = (ξ1, . . . , ξk, γp0, γp1, . . . , γpp, σ

2) = (ξ(p),γp, σ
2).

The likelihood function of the model is

Lp(Y |X, ξ(p),γp, σ
2) =

1
(
√

2πσ)n
exp { − ‖Y −Zpγp‖2

2σ2
}. (8)

The prior distributions for θ are specified as follows. We assume that all
potential predictors are linearly independent, and each has a prior probability µ

to be included in the regression. Thus the prior probability of model ξ(p) is

p(ξ(p)) = µp(1 − µ)k−p, (9)

where µ is a hyperparameter to be determined later. We further assume that γp

and σ2 are a priori independent, and that they are subject to the following prior
distributions:

P (γp|ξ(p)) =
1

(
√

2πτp)p+1
exp { −1

2τ2
p

p∑
i=0

γ2
pi}, (10)

P (σ2|ξ(p)) =

{
1

2 log(τ2
p )

1
σ2 if 1

τ2
p

< σ2 < τ2
p ,

0 otherwise,
(11)
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where τp is a hyperparameter to be determined later.
Multiplying (8), (9), (10) and (11), we have the following posterior distribu-

tion (up to a multiplicative constant),

P (ξ(p),γp, σ
2|Y )

∝ P (Y |X,γp, σ
2, ξ(p))P (γp|ξ(p))P (σ2|ξ(p))P (ξ(p))

= µp(1 − µ)k−p(2π)−(n+p+1)/2(σ2)−(n/2+1)[2 log(τ2
p )]−1(τ2

p )−(p+1)/2

exp { − RSSp

2σ2
} exp { − 1

2σ2

p∑
i=0

(γpi − γ̂pi)2 − 1
2τ2

p

p∑
i=0

γ2
pi}, (12)

where RSSp = ‖Y −Xpβ̂p‖2 = ‖Y − Zpγ̂p‖2 is the regression sum of squares,
‖Y −Zpγp‖2 = RSSp +

∑p
i=0(γpi − γ̂pi)2.

Integrating out γp from (12), we have

P (ξ(p), σ2|Y )
∝ µp(1−µ)k−p(2π)−n/2(σ2)−(n/2+1)[2 log(τ2

p )]−1(τ2
p )−(p+1)/2(σ−2 + τ−2

p )−(p+1)/2

exp { − 1
2σ2

RSSp − 1
2σ2

τ−2
p

σ−2 + τ−2
p

p∑
i=0

γ̂2
pi}. (13)

Taking the advantage of the flexibility of the prior setting, we assume that τ2
p ’s

are restricted so that

log(τ2
p )(τ2

p )(p+1)/2 = log(τ2
0 )(τ2

0 )1/2. (14)

Thus, we have

P (ξ(p)|Y )
P (ξ(0)|Y )

= (
µ

1−µ
)p

∫ τ2
p

1/τ2
p

1
(σ2)n/2+1

1
(σ−2 + τ−2

p )(p+1)/2

exp
{
− RSSp

2σ2
− 1

2σ2

τ−2
p

σ−2+τ−2
p

p∑
i=0

γ̂2
pi

}
dσ2, (15)

where ξ(0) denotes the null model, the uniqueness of which allows us to regard
P (ξ(0)|Y ) as a constant in the derivation.

Let τ2
0 −→ ∞, the above ratio converges to

lim
τ2
0→∞

P (ξ(p)|Y )
P (ξ(0)|Y )

= (
µ

1 − µ
)pΓ(

n − p − 1
2

)(RSSp/2)−(n−p−1)/2. (16)

Taking a logarithm, we have the log-posterior (up to an additive constant),

log P (ξ(p)|Y ) = p log (
µ

1 − µ
) +

n − p − 1
2

log 2 − n − p − 1
2

log(RSSp)

+ log Γ(
n − p − 1

2
). (17)
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In (17), the only parameter to be determined is µ.
By choosing µ appropriately, in the below theorem we show that the model

selection procedure of maximizing the posterier (17) is approximately equivalent
to minimizing Mallows’ Cp (Mallows (1973)). For the subset model (6). We
recall that Mallows’ Cp is defined as Cp = RSSp

σ̂2
k

+ 2p′ − n, where RSSp is the

residual sum of squares from the p-variable subset model being considered, σ̂2
k

is estimated from the full model by RSSk/(n − k − 1), p′ = p + 1 is the total
number of predictors of the model including the intercept.

Theorem 2.1. Under the prior setting (9), (10) and (11), when µ = µr, sampling
from the posterior distribution (17) is approximately equivalent to sampling from
the Boltzmann distribution

f(ξ(p)) ∝ exp{−Cp(ξ(p))/2}, (18)

where Cp(ξ(p)) denotes the Cp value of model ξ(p). Here µr is called a reference
value of µ and is defined as µr = 1/[1+ σ̂k exp(1+1/(2(n− 1)))], where σ̂k is an
estimator of σ from the full model with σ̂k =

√
RSSk/(n − k − 1).

Proof. By Stirling’s approximation, when n � p, we have

log Γ(
n − p − 1

2
) ≈ −n − p − 1

2
+

n − p − 2
2

log (
n − p − 1

2
) +

1
2

log(2π). (19)

Substituting (19) into (20), we have

log P (ξ(p)|Y ) ≈ p log (
µ

1 − µ
) +

1
2

log(2π) − n − p − 1
2

− 1
2

log (
n − p − 1

2
)

−n − p − 1
2

log(σ̂2
p), (20)

where σ̂2
p = RSSp/(n − p − 1), and

log P (ξ(p)|Y ) − log P (ξ(k)|Y ) ≈ constant + p log (
µ

1 − µ
) +

p

2
− 1

2
log (1 − p

n − 1
)

+
p

2
log(σ̂2

k) −
n − p − 1

2
log(σ̂2

p/σ̂
2
k), (21)

where ξ(k) denotes the full model, and σ̂2
k = RSSk/(n−k−1). The uniqueness of

the full model allows us to regard log P (ξ(k)|Y ) as a constant in the derivation.
Writing log(σ̂2

p/σ̂
2
k) = log[1+(σ̂2

p − σ̂2
k)/σ̂

2
k], when (σ̂2

p − σ̂2
k)/σ̂k

2 ≈ 0, we have
the following approximation to (21):

log P (ξ(p)|Y )−log P (ξ(k)|Y ) ≈ constant+p log (
µ

1−µ
)+

p

2
+

p

2(n−1)
+

p

2
log(σ̂2

k)

−n−p−1
2

(σ̂2
p/σ̂

2
k−1) ≈ constant−Cp

2
+(I), (22)
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where (I) = p[1 + 0.5/(n − 1) + log(µ/(1 − µ)) + log(σ̂k)]. In the derivation of
(22), we assumed n � p and made use of the approximation log(1−p/(n−1)) ≈
−p/(n − 1). Let µ = µr, we have (I) = 0. The proof is completed.

If we set µ = µr, which is computed from the data, the resulting posterior
will have no parameter to be specified by users. So the prior setting (9), (10) and
(11) is called an automatic prior setting, and the corresponding Bayesian model
averaging procedure is called automatic Bayesian model averaging (ABMA). We
realize that a simulation from the posterior distribution P (ξ(p)|Y ) is only related
with the relative magnitudes of the posterior probabilities of models, instead
of the absolute magnitudes of them. Hence, to keep the simulation invariant to
scale changes on the response variable, we only need to keep P (ξ(p)|Y )/P (ξ(k)|Y )
invariant to the scale changes for each model ξ(p). It is easy to see from equation
(21) that the particular choice of µr counters the possible scale changes on the
variance σ̂2

k, and thus keeps the simulation invariant to scale changes on the
response variable. Clearly the simulation is also invariant to scale changes on
the predictors. In fact, any choice of µ of the form 1/(1 + λσ̂k) will keep the
simulation invariant to scale changes on the response variable and predictors,
where λ is a penalty coefficient independent of p and σ̂k.

In addition to Bayesian model averaging, this theorem has a lot of impli-
cations for model selection. The minimum Cp model can be searched for by a
MCMC simulation from the posterior distribution and the followed selection for
the highest frequency model. The ergodicity of the Markov chain ensures that
the minimum Cp model will be found almost surely as the running time tends to
infinity (Tierney (1994)). The MCMC simulation also provides a pool of candi-
date models, from which we can select the models with Cp ≈ p + 1, as suggested
by Mallows (1973), or the models with Cp ≤ p + 1, as suggested by Hocking
(1976) and Mallows (1995).

2.2. Predictive performance

Since forecasting is a primary purpose of statistical data analysis (David
(1984)), the predictive performance is a main assessment for a statistical approach
or procedure. In this article, the predictive performance of ABMA is assessed
using the three criteria.

The first criterion is the logarithmic score (LOGS) (Good (1952), Hoeting,
Madigan, Raftery and Volinsky (1999)). It is defined as

− 1
|DT |

∑
d∈DT

log {
∑

M∈Ω

P (d|M,D)P (M |D)},

where DT denotes the test data set, and |DT | denotes the number of observations
in DT . The smaller the logarithmic score, the better the predictive performance.
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Hoeting, Madigan, Raftery and Volinsky (1999) argued that the logarithmic score
is a combined measure of the predictive bias (a systematic tendency to predict
on the low or high side) and the lack of calibration (a systematic tendency to
over- or understate predictive accuracy).

The second criterion is the mean squared prediction error (MSPE), which is
also the most frequently used criterion in various circumstances. It is defined as

1
|DT |

∑
d∈DT

∑
M∈Ω

[d̂(M,D) − d]2P (M |D),

where d̂(M,D) denotes the prediction value for the future observation d given
the training data D and model M .

The third criterion is the mean absolute prediction error (MAPE). It is
defined as

1
|DT |

∑
d∈DT

∑
M∈Ω

|d̂(M,D) − d|P (M |D).

3. Computational Implementation

In this article, we use the evolutionary Monte Carlo (EMC) algorithm (Liang
and Wong (2000)) to sample from the posterior distribution derived in Section
2. A new mutation operator is developed based on the specific structure of the
problem as follows.

Suppose that we want to sample from a distribution f(ξ) ∝ exp(−H(ξ)),
where H(·) denotes an energy function of ξ and it corresponds to -log-posterior
in a simulation from a posterior distribution. In EMC, a sequence of distri-
butions f1(ξ), . . ., fN(ξ) are first constructed: fi(ξ) ∝ exp{−H(ξ)/ti}, i =
1, . . . , N, where ti is called a temperature of fi(·). The temperature sequence
t = (t1, . . . , tN ) forms a ladder with t1 > · · · > tN ≡ 1. Issues related to the
choice of the temperature ladder can be found in Liang and Wong (2000) and the
references therein. Let ξi denote a sample from fi(·), it is called an individual or
a chromosome in genetic algorithms (Holland (1975), Goldberg (1989)). The N

individuals ξ1, . . . , ξN form a population denoted by z = {ξ1, . . . , ξN}, N is called
the population size. We assume that the individuals of the same population are
mutually independent, and the Boltzmann distribution of the population is

f(z) ∝ exp{−
N∑

i=1

H(ξi)/ti}. (23)

The population is updated by mutation, crossover and exchange operators (de-
scribed below).
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3.1. Mutation

In mutation a chromosome, say ξm, is chosen at random from the current
population z. Then ξm is mutated to a new chromosome ξm′

by some type
of moves (described below). A new population z′ = {ξ1, . . . , ξm′

, . . . , ξN}, is
accepted with probability min(1, rm) according to the Metropolis-Hastings rule
(Metropolis et al. (1953), Hastings (1970)), where

rm =
f(z′)
f(z)

T (z|z′)
T (z′|z)

= exp{−(H(ξm′
) − H(ξm))/tm}T (z|z′)

T (z′|z) , (24)

and T (·|·) denotes the transition probability between two populations. Otherwise,
z is unchanged.

In this article, the mutation operator incorporates the moves of reversible
jump MCMC (Green (1995)): the “birth”, “death” and “simultaneous” moves.
Let S denote the set of predictors of the current model, Sc the complemen-
tary set of S, and p = ‖S‖ the number of predictors in S. In the “birth”
step, a predictor is uniformly chosen from Sc and is proposed to be added to
the model; in the “death” step, a predictor is uniformly chosen from S and is
proposed to be deleted from the model; “simultaneous” move means that the
“birth” and “death” steps are performed simultaneously (in this step a predic-
tor, say xc, is uniformly chosen from S and another, say x∗

c , is uniformly cho-
sen from Sc, it is proposed to replace xc by x∗

c). Let P (p,birth), P (p,death)
and P (p, simultaneous) denote the proposal probabilities of the three types of
moves for a model with p predictors, respectively. In our examples, we set
P (p,birth) = P (p,death) = P (p, simultaneous) = 1/3 for 1 < p < k, and
P (k,death) = P (0,birth) = 1. The ratios of the transition probabilities are
as follows. For the “birth” step, we have

T (z|z′)
T (z′|z) =

P (p + 1,death)
P (p,birth)

k − p

p + 1
.

For the “death” step, we have

T (z|z′)
T (z′|z) =

P (p − 1,birth)
P (p,death)

p

k − p + 1
.

For the “simultaneous” step, we have T (z|z′)/T (z′|z) = 1, since T (z|z′) =
T (z′|z) = 1/[p(k − p)].

3.2. Crossover

In crossover, different offspring are produced by a recombination of parental
chromosomes selected from the current population according to a so called
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roulette wheel selection procedure. In this procedure, one chromosome is selected
with probability proportional to its Boltzmann probability

p(ξi) ∝ exp{−H(ξi)/ts}, (25)

where ts is called the selection temperature. Here we set ts ≡ tN , although this
is not necessary. A second chromosome is uniformly selected from the remainder
of the population so that

P (ξi, ξj |z) =
1

(N − 1)C(X)
[exp{−H(ξi)/ts} + exp{−H(ξj)/ts}], (26)

where C(X) =
∑N

i=1 exp{−H(ξi)/ts}.
Now ξi and ξj are parental chromosomes, new offspring ξi′ and ξj′ are gen-

erated as follows. First, an integer c is drawn uniformly on {1, 2, . . . , k}, then
ξi′ and ξj′ are constructed by swapping the genes to the right of the crossover
point between the two parental chromosomes. The following diagram illustrates
the 1-point crossover operator,

(ξi
1, . . . , ξ

i
k) (ξi

1, . . . , ξ
i
c, ξ

j
c+1, . . . , ξ

j
k)

=⇒
(ξj

1, . . . , ξ
j
k) (ξj

1, . . . , ξ
j
c , ξ

i
c+1, . . . , ξ

i
k),

where c is called a crossover point. If there are k crossover points, the operator
is called the k-point crossover. Only the 1-point crossover operator is used here.

A new population is constructed by replacing the parental chromosomes with
the new “offspring”, and it is accepted with probability min(1,rc) according to
the Metropolis-Hastings rule, with

rc =
f(z′)
f(z)

T (z|z′)
T (z′|z) =exp{−(H(ξi′)−H(ξi))/ti−(H(ξj′)−H(ξj))/tj}T (z|z′)

T (z′|z) , (27)

where T (z′|z) = P (ξi, ξj |z) P (ξi′ , ξj′ | ξi, ξj), P (ξi, ξj|z) denotes the selection
probability of (ξi, ξj) from the population z, P (ξi′ , ξj′ | ξi, ξj) denotes the gen-
erating probability of (ξi′ , ξj′) from the parental chromosomes (ξi, ξj). Since the
k-point crossover operator is symmetric in the sense P (ξi′ , ξj′|ξi, ξj) = P (ξi,
ξj|ξi′ , ξj′), the ratio of the transition probabilities in (27) is reduced to the ratio
of selection probabilities.

3.3. Exchange

Given the current population z and the attached temperature ladder t, we
try to make an exchange between ξi and ξj without changing the t’s, i.e., initially
we have (z, t) = (ξ1, t1, . . . , ξ

i, ti, . . ., ξj, tj , . . . , ξ
N , tN ) and we want to change
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it to (z′, t) = (ξ1, t1, . . . , ξ
j , ti, . . ., ξi, tj, . . ., ξN , tN ). The new population is

accepted with probability min(1,re) according to the Metropolis rule, where

re =
f(z′)
f(z)

T (z|z′)
T (z′|z)

= exp {(H(ξi) − H(ξj))(
1
ti

− 1
tj

)}T (z|z′)
T (z′|z)

. (28)

Typically, the exchange is only performed on two states with neighboring tem-
peratures, i.e., |i− j| = 1. If p(ξi) is the probability that ξi is chosen to exchange
with the other state, and wi,j is the probability that ξj is chosen to exchange
with ξi, we have T (z′|z) = p(ξi)wi,j + p(ξj)wj,i. Thus T (z′|z) = T (z|z′), and
these factors cancel in (28).

3.4. Algorithm

With the operators described above, one iteration of EMC consists of the
following two steps.
• Apply the mutation or the crossover operator to the population with proba-

bility q and 1 − q respectively, q is the mutation rate.
• Try to exchange ξi with ξj for N−1 pairs (i, j) with i being sampled uniformly

on {1, . . . , N} and j = i± 1 with probability wi,j , where wi,i+1 = wi−1,i = 0.5
and w1,2 = wN,N−1 = 1.
EMC differs from other MCMC algorithms in two respects. First, the al-

gorithm incorporates the learning ability of genetic algorithms (Holland (1975),
Goldberg (1989)) by evolving with crossover operators. The crossover operator
tends to preserve the good genes of the population and they work as a guideline
for further iterations. Second, the algorithm incorporates the exploring ability
of simulated annealing (Kirkpatrick, Gelatt and Vecchi (1983)) by simulating a
sequence of distributions along a temperature ladder. Simulation at a high tem-
perature provides more chances for the system to escape from local minima. In
addition, a large dimension jumping in the model space is allowed in the crossover
operator.

The structure of EMC is also very flexible. If q = 1, i.e., only the muta-
tion operator is performed, EMC reduces to parallel tempering (Geyer (1991),
Hukushima and Nemoto (1996)). If q = 1 and N = 1, EMC reduces to the usual
single-chain MCMC algorithm. The efficient operators developed in MCMC,
e.g., the Gibbs sampler (Geman and Geman (1984)) and reversible jumps (Green
(1995)), can be incorporated as a mutation operator by EMC.

4. Numerical Examples

4.1. Crime data

It is thought that criminal activities are outcomes of rational economic de-
cision processes, and the probability of punishment acts as a deterrent for them.
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Ehrlich (1973) developed this argument theoretically and tested it empirically
using aggregate data from 47 U.S. states in 1960. Later, errors in the data set
were corrected by Vandaele (1978). The corrected data set has been used by
Raftery, Madigan and Hoeting (1997) and Fernández, Ley and Steel (2001) as an
illustrative example for their Bayesian model averaging procedures. For conve-
nience, hereafter, the latter two procedures will be referred to as RMH and FLS,
respectively. We also use the corrected data set as an illustrative example and
compare with the RMH and FLS procedures.

Consider a linear regression model as in (6), where the response variable, y,
group observations on the crime rate, and the 15 potential predictors are given
in Table 1. As in RMH and FLS, we transform all variables to logarithms except
for one dummy variable, the indicator variable for southern states.

ABMA was applied to the data with µ = µr. EMC was used to sample from
the posterior distribution with the following parameter setting: the population
size N = 20, the temperature ladder t = {t1, . . . , tN} is equally spaced between
5 and 1, and the mutation rate q = 0.5. Figure 1(a) is a barplot which shows
the true Boltzmann distribution of Cp as defined in (18). Figure 1(b) is the
histogram of Cp of the models sampled in one run. The sample size is 50,000.
The similarity of these two plots shows empirically the approximate equivalence
between sampling from the Boltzmann distribution of Cp and sampling from the
posterior distribution with µ = µr. The result of Theorem 2.1 is confirmed.

(a) Distribution of Cp (b) Histogram of samples
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Figure 1. A comparison of the true Boltzmann distribution defined on Cp

(a) and estimated by ABMA (b) for the crime data.

Let P (βi �= 0|D) denote the posterior probability that predictor xi is in-
cluded in the true model. Table 1 compares the estimates of P (βi �= 0|D)’s
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obtained by ABMA, RMH and FLS. For comparison, the 1 − p-values obtained
by an ordinary least squares (OLS) regression on a full model are also given in
the table.

In RMH, the authors imposed an uniform prior distribution on the model
space, P (Mi) ∝ 2−k, i = 1, . . . , 2k. For parameters βp and σ2 associated with
a model with p predictors, they assumed that βp ∼ Np+1(ψ, σ2V ), νλ/σ2 ∼ χ2

ν ,
where ν, λ, ψ and V are hyperparameters to be specified a priori. Typi-
cally, they set ψ = (β̂0, 0, 0, . . . , 0), where β̂0 is the OLS estimate of β0; V =
diag[s2

Y , φ2s−2
1 , . . . , φ2s−2

p ], where s2
Y is the sample variance of Y , s2

i is the sam-
ple variance of xi for i = 1, . . . , p, and s2

i = n(x′
ixi)−1; ν = 2.58, λ = 0.28 and

φ = 2.85. The posterior distribution is sampled using the Markov chain Monte
Carlo model composition (MC3) method (Madigan and York (1995)). The pro-
gram is available at http://lib.stat.cmu.edu/S/bma.

In FLS, the authors imposed an uniform prior distribution on the model
space as in RMH, P (Mi) ∝ 2−k, i = 1, . . . , 2k. For βp and σ2, they assume that
P (σ) ∝ σ−1, P (β0) ∝ 1, P (β1, . . . βp) ∼ N(0, σ2(g0X

′X)−1), where X is the
design matrix but excluding the intercept column, and g0 is a hyperparameter.
Typically, for the crime data, they set g0 = 1/k2, which is also the value sug-
gested by the Risk Inflation Criterion (RIC) of Foster and George (1994). The
posterior distribution is sampled by using MC3. The program is available at
http://www.research.att.com/∼volinsky/bma.html.

Table 1. The estimated P (βi �= 0|D)’s for the crime data: OLS: 1− p-values
obtained by an ordinary least squares regression on a full model; ABMA: the
estimates obtained by ABMA, where we set µ = µr; RMH: the estimates
obtained by RMH; FLS: the estimates obtained by FLS.

No. Predictor OLS ABMA RMH FLS
1 Percentage of males age 14-24 0.996 0.935 0.79 0.758
2 Indicator variable for southern state 0.358 0.378 0.17 0.141
3 Mean years of schooling 0.999 0.992 0.98 0.955
4 Police expenditure in 1960 0.700 0.701 0.72 0.658
5 Police expenditure in 1959 0.041 0.497 0.50 0.381
6 Labor force participation rate 0.611 0.329 0.06 0.075
7 Number of males per 1,000 females 0.794 0.345 0.07 0.085
8 State population 0.870 0.511 0.23 0.222
9 Number of nonwhites per 1,000 people 0.976 0.835 0.62 0.507

10 Unemployment rate of urban males age 14-24 0.309 0.388 0.11 0.106
11 Unemployment rate of urban males age 35-39 0.940 0.766 0.45 0.451
12 Wealth 0.894 0.542 0.30 0.175
13 Income inequality 1.000 0.999 1.00 0.998
14 Probability of imprisonment 0.996 0.961 0.83 0.789
15 Average time served in state prisons 0.867 0.551 0.22 0.180
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Table 1 shows that ABMA performs quite differently from RMH and FLS in
estimating P (βi �= 0|D)’s for some predictors, although not for others. ABMA
performs more like OLS than RMH and FLS. Actually, the ABMA estimates
can be regarded as a compromise between the OLS estimates and RMH or FLS
estimates. Note that the latter two estimates are very similar since they have
used similar prior distributions for the regression coefficients, both related to the
g-prior of Zellner (1986). If we regard OLS as the Bayesian estimates with the
noninformative prior, we can conclude that the priors used in RMH and FLS are
more informative than the automatic prior setting used by ABMA. One question
then is which of these settings is better? This question is partially answered in the
following sections by comparing the predictive performances of these procedures
on a variety of examples.

Table 2 shows the ten highest posterior models of ABMA. For comparison,
their Cp values are also given in the table. The best ten models have covered
the minimum Cp, AIC, BIC and PRESS models and the maximum adjR2 model.
However, they have little connection with the best ten models of RMH and FLS.
Only the second model in Table 2 appeared in the best ten models of RMH and
FLS. Note that RMH and FLS perform similarly in this example, eight models
are shared among their ten best.

Table 2. The ten highest posterior models resulting from the automatic
prior setting with µ = µr for the crime data. The probability is expressed
as a percentage. The underlined value presents the minimum value of the
corresponding criterion statistic. a: the minimum BIC model, it is also the
only model (among the ten models) which appears in the best ten models
of RMH and FLS. In RMH and FLS, it is ranked 5 and 9, respectively. b:
the minimum AIC and the maximum adjR2 model. c: the minimum PRESS
model.

No. Prob.(%) Cp Included predictors
1 1.066 8.504 1 3 4 9 11 12 13 14 15

2a 1.026 8.547 1 3 4 9 11 13 14 15
3 0.734 9.268 1 3 4 9 10 11 12 13 14 15
4 0.731 9.236 1 3 4 9 10 11 13 14 15
5 0.695 9.334 1 3 4 8 9 11 12 13 14

6b 0.688 9.458 1 3 4 7 8 9 11 12 13 14 15
7 0.671 9.403 1 3 5 9 11 12 13 14 15
8 0.623 9.581 1 3 4 8 9 11 12 13 14 15

9c 0.605 9.605 1 3 4 8 9 11 13 14
10 0.587 9.697 1 3 4 7 8 9 11 12 13 14

To assess the predictive performance of ABMA, we split the data into two
parts. The first 35 observations (about 75% of the total observations) are used
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for model building, the training data, the remaining 12 observations (about 25%
of the total observations) are used for model testing, the test data.

First we run EMC on the training data with the same EMC setting as in
the last section. Note here the µr value has changed, it is re-computed from the
first 35 observations. We run EMC ten times independently. Each run generated
10000 samples after the first 5000 burn-in steps. The LOGS, MSPE and MAPE
were computed on the test data. The results are summarized in Table 3. For
comparison, RMH and FLS were also run with the parameter settings used by
the authors. In FLS, each run produced 106 samples after the first 2.5 × 104

burn-in steps. In RMH, each run produced 3 × 104 samples. Since RMH is
coded in S-PLUS and the running speed is very slow, it was only run one time.
The results are reliable enough for comparison. For completeness, corresponding
results of the minimum Cp criterion are also given in the table. The table shows
that ABMA is superior to the other procedures in LOGS and MSPE. In MAPE,
the predictive performances of all four procedures are nearly the same, it is less
sensitive than the other two criteria. Note that although ABMA is intimately
related to the Cp criterion, its predictive performance outperforms the minimum
Cp model as expected, since it has accounted for the uncertainty of the model.

Table 3. The comparison of the predictive performance of ABMA, RMH,
FLS, and the minimum Cp criterion for the crime data. The number in the
parenthesis denotes the standard deviation of the preceding number.

Method LOGS MSPE MAPE
ABMA 0.258(1 × 10−3) 0.094(2× 10−4) 0.241(2× 10−4)
FLS 0.524(5 × 10−5) 0.111(2× 10−6) 0.240(3× 10−6)
RMH 0.487 0.111 0.242
Mallows Cp 0.553 0.099 0.242

4.2. A simulated example

The following example is modified from one in George and McCulloch (1993).
Generate z1, . . ., z5 i.i.d. ∼ N50(0, 1) and ε ∼ N50(0, 2.52), set x1 = 0.5z1 + z4,
x2 = 0.15z2 + z5, xi = zi for i = 3, 4, 5, and Y = x4 + 1.2x5 + ε. Let
Y = [1,x1,x2,x3,x4,x5]β + ε, where β = (0, 0, 0, 0, 1, 1.2). Twenty data sets
were generated independently, the average value of the correlation coefficients
was 0.89 between x1 and x4 and 0.99 between x2 and x5. This example illus-
trates the performance of ABMA in the presence of strong collinearity or model
uncertainty. For the problems with little model uncertainty, RMH has shown that
the predictive performance is not significantly improved by model averaging.

In this example, the first ten data sets were used for training, and the second
ten data sets were used for testing. To get a more extensive test, the models
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sampled/selected for one training set were tested on all ten test sets. Thus,
totally 100 values were computed for each predictive assessment statistic. These
values can be regarded approximately as i.i.d. observations.

For each training set EMC was run for 6000 iterations with the same setting
as in the last example. The first 1000 iterations were discarded for the burn-in
process. Since the variations of the estimated predictive assessment statistics
are very small in different runs for this example, EMC was only run one time
for each training set. The results are summarized in Table 4 and Figure 2. For
comparison, RMH was also run one time for each training set, where each run
consists of 3000 iterations. The results show that the predictive performance of
ABMA is significantly better than that of RMH and the minimum Cp criterion.

Table 4. A comparison of the predictive performance of ABMA, the minimum
Cp criterion and RMH for the simulated data, where “Mean” denotes the
average difference of the two methods, “SD” denotes the standard deviation
of the “Mean” value.

ABMA-Cp ABMA-RMH
Criterion

Mean(×100) SD(×100) Mean(×100) SD(×100)
LOGS −0.92 0.28 −0.98 0.17
MSPE −16.63 4.19 −12.97 2.62
MAPE −2.40 0.73 −1.71 0.49
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Figure 2. A comparison of the predictive performance of ABMA, the mini-
mum Cp criterion and RMH for the simulated data. The histograms (a)-(c)
shows the difference between ABMA and the minimum Cp criterion: (a)
LOGS; (b) MSPE; (c) MAPE. The histograms (d)-(f) shows the difference
between ABMA and RMH: (d) LOGS; (e) MSPE; (f) MAPE.
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4.3. Sensitivity analysis

To assess the influence of the value of µ on the model selection and predic-
tive performance, we consider the following example. Generate z1, . . . ,z15 ∼
N200(0, 1), and ε ∼ N200(0, 2.52). Set x1 = 0.1z1 + z6, x2 = 0.2z2 + z7,
x3 = 0.3z3 +z8, x4 = 0.4z4 +z9, x5 = 0.5z5 +z10, xi = zi for i = 6, . . . , 15, and
y = 0.5(x6 +x7 +x8 +x9 +x10) + ε. The first 100 observations are used as the
training data and the second 100 observations are used as the test data. An OLS
regression of y on all predictors x1, . . . ,x15 produces a multiple R2 of 0.22 and
least squares estimates as in Table 5. No predictor is significant at the 0.1 level.
The low R2 value shows that the linear relationship between y and predictors is
very weak. Thus, the value of µ will have more influence on the model selection
and the resulting predictive performance.

Table 5. The ordinary least squares estimates for the test example. The last
row shows the p-values of the corresponding predictors.

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 β14 β15

β 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0

β̂ -0.19 -2.20 0.86 -0.83 -0.68 0.96 2.34 -0.06 1.22 0.34 -0.30 -0.01 0.03 -0.23 -0.30 -0.36

p 0.52 0.44 0.54 0.36 0.92 0.13 0.42 0.97 0.20 0.65 0.67 0.98 0.93 0.53 0.31 0.23
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Figure 3. The assessment of the influence of µ on model selection for the
test example. The circle corresponds to the reference value µr. The x-axis is
plotted in the logarithm scale. (a) The Bayesian estimate of the number of
predictors in the regression. (b) The Bayesian estimate of the mean squared
error (MSE).

ABMA is applied to the training data with 15 different values of µ: 0.01,
0.014, 0.018, 0.025, 0.034, 0.046, 0.061, 0.083, 0.112, 0.1185, 0.151, 0.204, 0.275
0.372 and 0.5 where, aside from µr = 0.1185, values are roughly equally spaced
in [0.01,0.5] in logarithm. For each value of µ, EMC was run for 10000 iterations
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after the first 5000 burn-in steps with the same parameter setting as in the crime
data example. Figure 3 assesses the influence of µ on model selection by showing
the curves of the estimated number of predictors and the estimated mean squared
error (MSE) versus log(µ). The curves are obtained by averaging over 10000
samples for each value of µ. The estimated number of predictors increases as µ
increases. However, the curve of the estimated MSE is U -shaped, and it attains
its minimum around µr. Figure 4 assesses the influence of µ on the predictive
performance by showing the curves of LOGS, MSPE, and MAPE versus log(µ).
The curves are obtained by averaging over 10000 samples for each value of µ.
The three curves are all U -shaped, and they attain their minima around µr. The
curves of LOGS and MSPE are similar, and are more sensitive to the values of
µ than that of MAPE. Note that even for this special example, there is still a
small neighborhood (in the logarithm scale) around µr, where ABMA has a quite
stable performance. As shown in Figures 3 and 4, a value of µ slightly less than
µr often results in a good predictive performance. These results give further
assurance that the reference value µr is a reasonable choice of µ for Bayesian
model averaging.

(a) (b) (c)

log(prior p)log(prior p)log(prior p)
−1−1−1 −2−2−2 −3−3−3 −4−4−4

O
OO2

.3
2
5

2
.3

3
0

2
.3

3
5

2
.3

4
0

2
.3

4
5

2
.3

5
0

L
o
g
a
ri
th

m
ic

sc
o
re

1
.9

2
1

.9
4

1
.9

6
1

.9
8

2
.0

0
M

A
P
E

M
S
P
E

5
.9

5
6

.0
0

6
.0

5
6

.1
0

6
.1

5
6

.2
0

6
.2

5

Figure 4. The assessment of the influence of µ on predictive performance
for the test example. The circle corresponds to the reference value µr. The
x-axis is plotted in the logarithm scale. (a) LOGS. (b) MSPE. (C) MAPE.

5. Bayesian Curve Fitting with Least Squares Splines

Suppose we are given a nonparametric regression model where observations
(xi, yi), i = 1, . . . , n, satisfy the equations

yi = f(xi) + εi, (29)
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where εi ∼ N(0, σ2), a ≤ x1 ≤ · · · ≤ xn ≤ b, and f ∈ Cm
2 [a, b]. The least squares

spline technique is to approximate the unknown function f(·) with a regression
function of the form

S(x) =
m∑

j=1

αjx
j−1 +

p∑
j=1

βj(x − tj)m−1
+ , (30)

for x ∈ [a, b], where z+ = max(0, z), p is the number of knots, the ti’s (i =
1, . . . , p) denote knot locations, and the α’s and β’s are regression coefficients.

The curve fitting problem has been considered by many authors. Related
works include those on smoothing splines, kernel smoothers (Kohn and Ansley
(1987), Kohn, Ansley and Tharm (1991), Hastie and Tibshirani (1990), Eubank
(1999) and references therein), stepwise knot replacement (Friedman and Silver-
man (1989), Friedman (1991), Kooperberg and Stone (1992), Hansen, Kooper-
berg and Sardy (1998), Hansen and Kooperberg (2000)) and variable bandwidth
kernel methods (Müller and Stadtmüller (1987), Fan and Gijbels (1995)). Re-
cently, Denison, Mallick and Smith (1998) proposed a Bayesian approach im-
plemented with a hybrid sampler. In this article, we provide a fully Bayesian
approach for the problem.

We use a modified least squares spline,

S∗(x) =
m∑

l=1

βl,0(x − t0)l−1 +
p∑

j=1

m∑
l=m0

βl,j(x − tj)l−1
+ , (31)

where t0 = x1. The modification reduces the continuity constraints of (30), and
the resulting spline (31) is more flexible. Replacing the function f(x) in (29) by
S∗(x), we have the following regression equation,

yi =
m∑

l=1

βl,0(xi − t0)l−1 +
p∑

j=1

m∑
l=m0

βl,j(xi − tj)l−1
+ + εi, (32)

where εi ∼ N(0, σ2) for i = 1, . . . , n. We assume that the possible knot locations
are the n regular points on [a, b].

In a matrix form, (32) can be written as,

Y = Xpβ + ε, (33)

where Y is an n-vector of observation, ε ∼ N(0, σ2I),Xp = [1, (x−t0)1+, . . . , (x−
t0)m−1

+ , (x − t1)m0−1
+ , . . . , (x − tp)m−1

+ ] and β = (β1,0, . . . , βm,0, βm0,1, . . . , βm,p).
Here β includes m + (m − m0 + 1)p individual parameters. Note that in this
problem, the number of potential predictors can be larger than the number of
observations and the full model is not well defined, Theorem 2.1 is not applicable.
But we found that the “automatic” prior setting still provides a simple treatment
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for the problem. With the “automatic” prior setting, we have the following log-
posterior (up to an additive constant),

log P (ξ(p)|Y ) = p log (
µ

1 − µ
) +

n − wp − m

2
log 2

−n − wp − m

2
log(Y ′Y − Y ′Xp(X ′

pXp)−1X ′
pY )

+ log Γ(
n−wp−m

2
), (34)

where w = (m − m0 + 1) denotes the number of terms after adding one more
knot to the regression. Note in (9), k equals to n, the number of possible knots.
The Bayesian estimator of f(x) is

f̂(x) =
K∑

i=0

f̂i(x)P (Mi|Y ), (35)

where K denotes the number of all models under consideration, f̂i(x) = Xi(X ′
i

Xi)−1X ′
iY , and X i is the design matrix corresponding to model Mi. Given the

samples M1, . . . ,Mt, . . . sampled from the posterior distribution (34), under the
ergodicity of the sampler, f(x) can then be estimated according to (5).
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Figure 5. (a)The Simulated data and the true regression curve. (b) The MAP
estimate of the knot points and the regression curve in one run of ABMA
with µ = 0.01.

This approach was tested on the following example. The regression function
is given by f(x) = 2 sin(4πx) − 6|x − 0.4|0.3 − 0.5sign(0.7 − x), x ∈ [0, 1]. The
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data are equally spaced between 0 and 1 with sample size n = 1000, the SD
of the Gaussian noise is σ = 0.2. Figure 5(a) plots the simulated data and the
true regression curve. This function has a narrow spike at 0.4 and a jump at
0.7, and the approximation to it is a challenge. This example has been analyzed
by several authors using regression spline estimation, see Wang (1995) and Koo
(1997).

EMC was applied to simulate from the posterior distribution. We set m0 = 2
and m = 3, and the resulting f̂(x) is a continuous piecewise quadratic polynomial.
EMC was run for 1000 iterations, the first 500 iterations were discarded for the
burn-in process. Figure 5(b) shows the maximum a posteriori (MAP) estimate
of the knot points and the regression curve obtained in one run of EMC with
µ = 0.01. Figure 6(a) and (b) show two Bayesian estimates of the regression
curve. They are obtained in two runs with µ = 0.01 and µ = 0.015 respectively.
The respective CPU times were 7.5m and 10.2m on an Alpha-500 workstation.
Figure 6(a) and (b) show that the underlying regression function has been well
approximated by ABMA, including the spike and the jump.
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0.00.0

(a) (b)

(c) (d)
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0.20.2

0.20.2

0.40.4

0.40.4

0.60.6

0.60.6

0.80.8

0.80.8

−
2

−
2

−
2

−
2

−
3

−
3

−
3

−
3

−
4

−
4

−
4

−
4

yy

yy

xx

xx

−
5

−
5

−
5

−
5

−
6

−
6

−
6

−
6

Figure 6. A comparison of ABMA and the hybrid sampler for the curve
fitting example. The solid line is the estimated curve and dotted line is the
true curve. (a) ABMA with µ = 0.01. (b) ABMA with µ = 0.015. (c) The
hybrid sampler with λ = 3. (d) The hybrid sampler with λ = 5.

In this problem, the procedure is no longer automatic, since the value of µ

needs to be specified by users. Here µ is treated as a hyperparameter and a value
is directly assigned to it. The value can be improved by trial and error. Looking
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at Figure 5(a) and ignoring the true regression curve, we may feel that roughly
10 to 15 knots are needed to fit this data since ten local minima or maxima
(including two boundary points) appear in the plot. Hence, 0.01 (10/1000) or
0.015 (15/1000) may serve as a good initial value of µ. This method usually gives
a satisfactory result, as shown in Figures 5 and 6. The value of µ reflects our
prior knowledge on the smoothness of the underlying function. If we believe it is
very smooth, µ should be set to a small value, otherwise, it should be larger.

For comparison, we also applied the hybrid sampler (Denison, Mallick and
Smith (1998)) to this example. The authors’ program is downloadable from
http://www.ma.ic.ac.uk/∼dgtd. In the hybrid sampler, one assumes that p

has a prior truncated Poisson distribution with hyperparameter λ, σ2 has a prior
inverse Gamma and σ2 ∼ IG(0.001, 0.001). One iteration of the hybrid sampler
consists of the following two steps.
• Update the knot points, t1, . . . , tp;
• Update σ2.

The first step is accomplished by reversible jump MCMC (Green (1995)), the
second step is accomplished by the Gibbs sampler (Geman and Geman (1984)).
Given the knots t1, . . . , tp, the coefficients β are estimated by standard least
squares theory. We set m0 = 2 and m = 3 as in EMC. The hybrid sampler was
run for 3000 and 2000 iterations with λ = 3 and λ = 5 respectively. The compu-
tational times were 13.5m and 12.2m, respectively (on the same workstation as
the runs of ABMA). In both runs, the first half of the iterations were discarded
for the burn-in process, and the remaining iterations were recorded for inferences.
Figure 6(c) and (d) shows the fitted curves from the two runs. Clearly the jump
of the underlying function is less well approximated. We also ran the program
with λ = 1, 2 and 10 and the same computational time. The results were similar.

This example shows that ABMA is superior to the hybrid sampler for the
regression spline example, whatever in the computational time or the accuracy
of fit. One reason is that, under the “automatic” prior setting, the nuisance
parameters are integrated out from the full posterior and the resulting marginal
posterior distribution is easier to sample from.
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