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Abstract: Multilevel models incorporating random effects at the various levels are
enjoying increased popularity. An implicit problem with such models is identifiabil-
ity. From a Bayesian perspective, formal identifiability is not an issue. Rather, when
implementing iterative simulation-based model fitting, a poorly behaved Gibbs sam-
pler frequently arises. The objective of this paper is to shed light on two compu-
tational issues in this regard. The first concerns autocorrelation in the sequence
of iterates of the Markov chain. For estimable functions we clarify when, after
convergence, autocorrelation will drop off to zero rapidly, enabling high effective
sample size. The second concerns immediate convergence, i.e., when, at an ar-
bitrary iteration, the simulated value of a variable is in fact an observation from
the posterior distribution of the variable. Again, for estimable functions, we clar-
ify when the chain will produce at each iteration a sample drawn essentially from
the true posterior of the function. We provide both analytical and computational
support for our conclusions, including exemplification for three multilevel models
having normal, Poisson, and binary responses, respectively.

Key words and phrases: Autocorrelation, estimable function, exact sampling, iden-
tifiability.

1. Introduction

Multilevel models incorporating random effects at the various levels are en-
joying increased popularity among practitioners, particularly as fast, inexpensive
computing makes their fitting more widely accessible. The book by Goldstein
(1995) has detailed the classical viewpoint including implementation.

Though the distinction is perhaps arbitrary, we view multilevel models as
the special case of hierarchical models having linear mean structure, perhaps
on a transformed scale, incorporating independent blocks of random parameters
(as in (2) and (3) below). From the Bayesian perspective, a Gibbs sampler
(Gelfand and Smith (1990)) for such models is conceptually straightforward to
implement since the required full conditional distributions are either standard
(arising from conjugacy) or log concave (e.g., an exponential family first stage
specification with canonical link). See, for example, the book of Gilks, Richardson
and Spiegelhalter (1995). The BUGS software (Spiegelhalter, Thomas, Best and
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Gilks (1995)) is a reliable package which is frequently used to implement the
simulation-based model fitting. Comparison between Bayesian and likelihood
methods for fitting multilevel models is taken up in the recent work of Browne
and Draper (1999).

An implicit problem which arises under multilevel random effects models is
identifiability. Upon an appropriate linear transformation, the likelihood only
involves a subset of the parameters. The remainder are not identified in the
classical sense. Fortunately, parametric functions of interest (e.g., individual
means and contrasts at each level) are usually estimable (Searle (1971)) and
the likelihood does identify such functions, enabling classical point and interval
estimation.

From the Bayesian perspective, hierarchical models are routinely overparame
-trized. However, under proper priors there is no identifiability problem (Lindley
(1971)); the posterior for every model unknown is proper. Dawid (1979) clar-
ifies the Bayesian notion of unidentifiability and recent work of Poirier (1998)
and Gelfand and Sahu (1999) provides further elaboration. An equivalence with
classical nonidentifiabilty then follows.

Perhaps most interestingly, what emerges from all of this discussion is an
informal notion of weak identifiability. For certain unknowns the posterior dif-
fers little from the prior; the data provide little Bayesian learning about these
unknowns. In general, sampling such posteriors will be difficult. In particular,
when implementing iterative simulation-based model fitting, a poorly behaved
Gibbs sampler results. When rather vague priors are used, trajectories of the
Markov chain for weakly identified parameters will tend to exhibit drift to very
extreme values, since there is nothing in the structure to center them. Con-
vergence assessment is difficult; unstable computation and inaccurate inference
ensue. On the other hand, very precise priors are generally unattractive, since
then Bayesian learning is necessarily limited. Taken to the extreme, a degenerate
prior would be specified which would be analogous to imposing restrictions or
constraints, as is customarily done in the classical setting.

The objective of this paper is to shed light upon two computational issues
in this regard. Possibly unexpected implications for using Gibbs sampling to fit
multilevel models result. That is, the behavior of the Gibbs sampler with regard
to certain parameters may improve as prior specifications are made increasingly
vague. The first issue concerns autocorrelation in the sequence of iterates of the
Markov chain. In particular, following a diagnosis of convergence, autocorrela-
tions which drop off to zero rapidly enable high effective sample size, and little
(if any) thinning of the output. We show, using both analytical and compu-
tational evidence, that if the variance components associated with the random
effects at the highest level are made increasingly larger, then post-convergence,
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the lag-one autocorrelation for any estimable parameter (or any function of an
estimable parameter) tends to 0. We also show that for nonestimable parame-
ters, the lag-one autocorrelations in this case will often tend to 1. Hence, our
finding is not merely attributable to a flatter prior yielding a flatter posterior
and thus a more freely moving Gibbs sampler. If all the variance components
in the model are made increasingly larger, the overall posterior tends to impro-
priety. Following Gelfand and Sahu (1999), in this case there is a unique proper
embedded posterior associated with the estimable parameters. Remarkably, the
post-convergence simulation behavior from this posterior is improving with re-
gard to autocorrelation.

The second issue concerns immediate convergence. In the Markov chain
Monte Carlo context, immediate convergence (called “exact sampling” by some
authors; see e.g., Roberts and Sahu (1997)) for a particular parameter means
that, regardless of iteration, the simulated value at that iteration is, in fact, an
observation from the posterior distribution of the parameter. Again we show,
using both analytical and computational evidence, that if all the variance com-
ponents in the model are made increasingly larger, for any estimable parameter
(or function of the parameter) we tend to exact sampling. In other words, while
the overall posterior tends to impropriety so that sampling its full conditional
distributions cannot lead to meaningful convergence for the full parameter vec-
tor, we tend to exact sampling of the unique proper embedded posterior. This
result provides clarification and extension of a result in Section 5 of Gelfand and
Sahu (1999).

The format of the paper is as follows. In Section 2 we present an elementary
example which is useful in illustrating our ideas. Section 3 presents the formal
technical work in the form of two theorems. Section 4 offers empirical clarifica-
tion in the Gaussian case with unknown variance components but familiar prior
specifications for these components. Section 5 provides empirical support for the
non-Gaussian case where analytic work is infeasible; illustration is given using a
two-level Poisson spatial model. Section 6 analyzes a three-level binary response
model for data concerning plant health and the presence of certain species of fungi
at fine root apexes. Finally, Section 7 offers a summary and some connections
with related literature.

2. An Elementary Example

A simple illustrative example may be helpful to appreciate the general results
of the next section. Suppose Y ~ N (0 + ¢,1) with 6 ~ N(0,07), ¢ ~ N(O,ai)
and let n = 6 + ¢. By routine calculation, f(6 | ¢,Y) = N(ep(Y — ¢),€9) and
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F(@]6,Y) = N(eg(Y —0),¢4), where g = 03/(0f + 1) and €5 = 03 /(0% + 1).
Also,

0 B o2Y/a oi(1+02)/a  —0c20%/a
T(al) =5 (e otia v ehysa)

2 2
0'9+0'¢
a

2 2
0'9+0'¢
a

and f(n|Y) =N Y,

Suppose we implement a Gibbs sampler updating 6 and then ¢, i.e.,

Wherea:ag—i-aé—kl.

FOUD oD 1 9O 60 y) = f(ptHD | gDy ) f(00D | oY) (1)

Then Cov (D), 90]Y) = —¢ Cov (¢, 61)]Y), s0 at convergence, corr(8¢+1),
60Y) = €pep. Similarly, at convergence, corr(ptD oM |Y) = €pey. Hence,
severe autocorrelation occurs when both 03 and 03) — 00. On the other hand,
straightforwardly, Cov (n+1) n®)]y) = —egeg/a at convergence. Hence, if either
03 or 035 grows large, a grows large and the posterior association between n(t“)
and 1 tends to 0. This illustrates the primary result in Subsection 3.1.

Next, from (1), f(0D, o0+ | 90 6B Y) is bivariate normal, so n(*+1) |
0D 6D Y ~ N(egV + (1 — eg)eg(Y — o), (1 — €4)%ep + €4). As 02 — o0
and 035 — 00, this distribution tends to N(Y,1). But note that, in this case,
f(n]Y)= N(,1). In the limit, at each iteration of the Gibbs sampler, we
sample exactly from the posterior of 7. This illustrates the primary result in
Subsection 3.2.

Lastly it is apparent that, if we reverse the order of updating, drawing ¢ first
then 6, the foregoing conclusions still hold.

3. Technical Results

Our general analytic results presume a Gaussian specification for the data.
In addition, all variance components are assumed known. Evidently, priors can
be placed on the variance components to, for instance, encourage one or more of
them to be large. A non-Gaussian first stage model precludes analytic investiga-
tion since the resultant full conditional distributions associated with the Gibbs
sampler are not standard. However in Subsection 3.3 we argue that, when the
likelihood is approximately normal, our analytic results still apply. As a result,
in Section 5 we present a numerical illustration using a Poisson first stage, while
in Section 6 we consider a three-stage random effects model with a binary first
stage.

We introduce some notation. Consider the linear model

Y =(Xo XoA1 -+ XoAp)B+e (2)
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where B = (8(,81,--.,8,), B; is a parameter vector of length r;, Y is n x 1,
Xp is n x ro with full column rank, A; is ro x r;, and € ~ N(0, I,,). For analytic
investigation we can set the error variance to 1 without loss of generality, since
we will be looking at the variance components associated with the 3; tending to
0o. In practice, we will require priors making other components large relative to
the error variance.
Letting X denote the design matrix in (2), E(Y) =n = X8 = Xo(8y +
b AiB;). Also, XTX is a partitioned matrix with block (i,j) of the form
ATXTXyA;, where we define Ag = I,,,. It is immediate that the design matrix
X arises in any ANOVA specification which is fully nested, hence any multilevel
model with no quantitative regressors. In fact, it includes general multilevel
models with quantitative covariates and general Laird-Ware (1982) models, as
we clarify below following Remark 2. It also includes any main effects model
which incorporates an interaction involving all of the main effects. The A; need
not be distinct as long as, when A; = A;, the prior covariance matrix for 3; is
distinct from that for B;. In this way we can accommodate, e.g., both spatial
and heterogeneity effects (see e.g., Clayton and Bernardinelli (1992) and Bernar-
dinelli, Clayton and Montomoli (1995); c.f. Section 5 below) at a given level of
the model. In any event, we shall see that X is always the portion of the design
matrix associated with the parameters at the highest level.
The prior specification is

b
1 1
J(B0%) o exp (—5 > ﬂ%;@) — exp (—587Vu8) 3)
i=0
where Vg2 is block-diagonal with ith block V2. In (3), the V_ 2 need not be full
rank. The prior for 8; need not be proper. In fact, we assume that V> = V;/ o?

so that 012 can be thought of as a variance component and V_ 2 — 0 as 0'1-2 — 00.

The priors are “zero-centered” for simplicity in the ensuing anlculations, as is
typically the case in practice.

3.1. An autocorrelation result for estimable parameters

Following Lindley and Smith (1972),
BIY ~ N (XTX + V) ' XY, (XX + Vo)), (4)
provided the inverse exists. For instance, if b =1,

XTX 4V <X0TX0+V03 X3 XoA )
o2 — ’

AF{X(?XQ A{X{{X()Al + VU%
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whence ’XTX + V2

= [x§ X0 + Vi

ATXG XoA1 + V2 — ATX{ Xo(X{ Xo
+ VUS)_ngXOAl‘. If 02 — oo (as we will want below), this simplifies to
‘XOTXO‘ ‘VU% so B ]Y is proper only if V; is nonsingular.

We require some further notation. Let QU? = ATXTXoA; + VU?’ 1=1,...,b
with Q2 = XOTXO + V. Also let Y = Y — Xo(By + 254 48;) =Y -

XB+ X AB;, i = bwith Yo =Y — Xo 32, Aifi = Y — XB + X8,
Then the full condltlonal distributions for the B’s are f(B3; | B;, j # i, Y) =
N ATXTY ), 024), i #0 , and £(By | B, §#0, Y)=N(Q; XT Y (g), Q).

Using standard matrlx identities, e.g., Rao (1973, p.29) we can write (X7 X +
Vg2)~tin (4) as

Wyt —Wo—lA )
—Ag2Wyt Qb+ Age Wyt AL, )
where Wo=02-X{ XoA ) A2, Ao=0,3 X{§ XoA(q), and Agr2 = Q3 Ay X{
Here Ay = (A1,A2,...,4p) and Qg2 = A( )Xo XoA ) + V(oy, with Vg block
diagonal having blocks V.2, i = 1,...,b. Note that, as 03 — oo, Ag — A(g)-
Now, if we are at convergence then f(8® | Y) = N((XTX+ V) 1 XTY,
(XTX—i-Vo-z)_l). We implement a Gibbs sampler, updating the 3’s in any order,

but updating 3, last. (By relabeling the 3,’s we can, without loss of generality,
assume the order is 3, Bs,...,3;.) Then

b
Cov < (t+1) +ZA B(t—i—l ((]t) +ZAzﬁ,(t)|Y>

=1 i=1
=Cov (B + 2085 ", BY +2080Y). (6)
where ,8%%) = (BT,...,BT). But then, using the above full conditional distribu-

tion for (3, (6) becomes

Cov( AB Y + 20B5TY, BY + 08 \Y)
= (D) — 40) Cov (B, BY + 208 1Y) (7)

Hence, as 02 — oo, (7) — 0. In fact, more detailed calculation shows that,

at whatever stage we update 3, the covariance calculation in (6) introduces a
(A(g) — Ao) term so that again, as 03 — o0, (6) approaches 0. In other words,

after convergence, Cov (BOH—1 ét)\Y) — 0, where By = By + X0, AiB;. We

note that, in the terminology of Gelfand, Sahu and Carlin (1995), 3, is the
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“hierarchically centered” parameter associated with 3,. Also, since as defined
below (2), n = Xo8,, we have the following result.

Theorem 1. For the model in (2) under the prior in (3), if we implement a
Gibbs sampler which updates the blocks B3; in any order, then provided (4) exists,
after convergence Cov (1), n® | Y) — 0 as 0 — oo.

A parameter is (linearly) estimable if it is of the form £7n (e.g., Searle
(1971)). Hence, once the Gibbs sampler has converged, if o2 is large, successive
iterates of m, hence of any linearly estimable parameter and, in fact, any smooth
function of 1 having a posterior variance, will be approximately uncorrelated.

Remark 1. Note the distinct role played by o2 above. If we define 4; =
QgglA?XgXoA(l) Where A(z) = (Iro, Al, ceey Ai—la Ai-i—].a Caey Ab), as Ui2 — O,
A — (AZ.TXOTXOAi)_lA;fFXOTXOA(i) # Ag). Hence, in (6), if, for instance, we
update @; last and factor out A(;) — A; analogously to (7), we do not obtain
covariance tending to 0 as 01-2 — 00. However, in the special case where, for some

i#0, A; = I then as 07 — oo, equation (6) does tend to 0.

Remark 2. Suppose, for example, we update 3 first. Then Cov (,Bét+1),,8(()t) 1Y)
= AgAg2Wy L. From (7), Cov (B, BV | Y) = Cov (BY™, 8\ | ¥) = Wy L.
To study the correlation between, say, ﬂé?rl) and ﬂ(()? we need to investigate
(Wy 1 )ee and (AgAg2W5 ') ge. This is more easily done using an alternative form

of (5), again obtained from standard identities,

~V AT 7

_ 1 _
(Q”Sl + AV Ay - A0V<”’1>
© ©

provided Vi_1 exists for : = 1,2,...,0.

Hence, as 03 — oo, Wo_l = Q;(g)l —l—AoV(E)leT — (Xg Xo)™! +A<0)V(E)1A%) =

(X Xo) M+ X, AiVU_glA;fF. Also, AgAg2Wg ' = AgV5 AT — Do)V AT =
> AiVU_glA;fF. We see that if, in addition, any o? — oo then corr(ﬁ(()t;l),ﬁé? |
Y) — 1. More detailed calculation shows that this result holds regardless of
updating order. We can also show that if 02 — oo and 02 — oo, Cov (ﬁi(fl),ﬁi(? |
Y)— 1

The model in (2) is more flexible than might first appear. For instance,
consider the general two stage multilevel linear model

Y; = Xin; + €,

8
n;, = i‘y+vi,i:1,...,k ()
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where Y; is n; x 1, X; is n; x mg with full column rank, n; is mp x 1 and
€ ~ N(0,0%1,,). Also Z; is mg x mq, v is m1 x 1, v; ~ N(0,02H,,) and finally
vy~ N(0,02H.,).

Next let YT = (Y{,...,Y{), let Xo, ¥n; x kmg, be block diagonal with
ith block X;, and let B = (vT,...,0T). Finally, let Ay be kmg x m1, such
that AT = (ZF,...,Z]) and let B; = ~. Then (8) can be written as Y =
XoBy+ XoA18; + €, a special case of (2). Here Voz = %V where V, kmg x kmy,
is block diagonal with blocks H, ! and ng = éﬂ; L. Hence Theorem 1 applies

when o2 is large relative to o2.
The extension to a general three stage model is apparent but we give brief
details to provide structural clarification. Now let

Yij = Xijnij + €5, My = Zijyi + vy, and ;= Wid +p; (9)

The extended form for (9) is Yij = XUZWWI(S + leZl]“z + X,-jvij + €i5. In (9),
Yij is Ngj; X 1, = 1,...,k‘, ] = 1,...,Ji, Xij is n;; X Mo, T]ij is mo X 1 and
€ij ~ N(0,021,,.). Now Z is mg x my, v, is my X 1 and v;; ~ N(0,02H,,).
Lastly, W; is mq X mag, p;, m1 X 1, ~ N(0,0‘ZH#) and 6 ~ N(0,02 Hy).

Again, concatenating the Y;;’s into a column vector Y, let Xy be block
diagonal with blocks X;; and concatenate the v;; into a column vector 3,. Next
let

Z1T1"'Z1TJ1 O --- 0 --- 0 --- 0
AIT: 0 0 Z2Tl':'Z2TJ2"" 0O --- 0
0 --- 0 0 - 0 --- Zgl Zng
Let 3; concatenate the p, into a column vector, let ¥ = (W{,... , W]), and

let B, = 0. Then as with (8), (9) can be written as Y = X8y + XoA18; +
XoA1¥13, + €. Again Theorem 1 applies when o2 is large relative to o2.

We remark that, for models such as (8) and (9), Gelfand, Sahu and Car-
lin (1995, 1996) argued that a hierarchically centered parametrization would
typically provide a posterior with weaker intercorrelation structure, hence a
better behaved Gibbs sampler. For instance, in (8), (ny,...,n,7) would be
preferred to (vi,...,vg,7), e, (Byg + A131,8;) to (By,B;). Similarly in (9),
(Mi1s- - sMiegsY1s---»Yi, 0) would be preferred to (vi1,...,Vks, Uy, -, K, 0),
Le, (Bo + A1B + ArW1By, By + Y18y, By) to (By,B1,82). As noted above,
Theorem 1 applies only to B, the vector of highest order hierarchically centered
parameters, and only after convergence.

To conclude this subsection we note that (2) will include certain models of
the form

Y, =Xa+Z3,+¢€,=1,... .k, (10)
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the so-called Laird-Ware (1982) models. We provide two illustrations.

In the first case, suppose X;, n; x p, is nested with Z;, n; x (p + ¢q), i.e.,
Z; = (X; U;). Then if Xy is block diagonal with blocks Z;, if B, collects the 3,
into a vector, if Ay is k(p+ q) x p of the form AT = (I, 0pxq I Opxq -+ Ip Opxq),
and if 8; = a, then (10) becomes Y = X8, + XoA13, + €.

Alternatively, suppose X; = 1,,x1 XZT where X; is px 1 and suppose the first
column of Z; consists of 1’s, i.e., Z; is n; x (1 + q) such that Z; = (1 Z) Then
again let Xg be block diagonal with blocks Z; and let 3 collect the 3; into a
vector. Now if Ay is k(1+¢q) x p of the form AT = (X, Opxg X2 Opxg - Xk Opxgq)
and if 8; = a, then again (10) becomes Y = X3, + XoA13; + €.

3.2. An immediate convergence result for estimable parameters

Returning to the general setting of equations (2) and (3), we extend an exact
sampling result which appears in Gelfand and Sahu (1999, Section 5). Recalling
(4), let Qg2 = XTX + Vg2 Also, let XX = L — U, where L is the lower
triangular part of X7 X including all diagonal elements and U is obtained by
subtraction. Then Qg2 = Lg2 — U where Lg2 = L 4+ Vg2. Updating in the
order (By,0B4,---,8p), Roberts and Sahu (1997) show that the Gibbs sampler
transition kernel is given by

B8O, Y ~ N (Bg2BY) +bge, Qph — By2QghBg), (1)

where Bgz = L iU and bg: = (I — Bg2)QgsXTY. They also show that the
rate of convergence of the Gibbs sampler is given by the maximum modulus
eigenvalue of Bgo.

If all o? — 00, the posterior distribution of 3 approaches an improper dis-
tribution. Since the full conditional distributions are proper, by direct calcu-
lation, the above transition density still remains valid in the limit if we replace
Q(_TIQ by a generalized inverse of X7 X. However, following Gelfand and Sahu,
n=XB=Xy Bo has a unique proper posterior distribution even as min; o? — 0.

For X as in (2) (where X; has full column rank), L~! is a generalized inverse
of Q =XTX, ie.,

QLT'Q=Q. (12)

We can routinely check the b = 1 case and use induction for the general argument.
Thus we have the following result.

Theorem 2. Suppose a Gibbs sampler with the target density f(B|Y) in (4) is
run with a customary sequential updating scheme. Then the Gibbs sampler on
the full parameter vector 3 becomes divergent as min; 012 — 00. In this limiting
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case, under (12), the iterates n(t) are sampled exactly from the unique density
fm|Y).

Note that, because X is not of full column rank, in the limit (4) becomes
improper so the first conclusion follows. Also note that the second conclusion
implies that, in the limiting case, the Gibbs sampler produces identically dis-
tributed draws from the posterior for 1. The improper prior specification for 3
results in a Gibbs sampler which yields exact samples for the proper posterior of
any linearly estimable function and, in fact, any function of 1.

We now prove the second conclusion. Straightforwardly, in the limit, the
unique proper posterior for n is

fm|Y)=N(xQ x"Y, x@ x") (13)

for an arbitrary generalized inverse ().
Next, note that L~! always exists due to the propriety of the full conditional
distributions. Let B = L~'U. It is apparent that B is idempotent if and only if

(12) holds. In fact, (12) holds also if and only if XB = 0. Since Bg2 — B as
2

min; 02 — 00, XBg2 — 0. From (11), for any o we have

) B0 Y ~ N <XBUzﬁ(t) + Xbg2, X(Qgh - BU2Q;12352)XT) . (14)
Letting min; 0? — oo in (14) with lim,2_, Q(_TIQ = L', we obtain (13) with
Q~ = L. That is, for each ¢, the distribution of () is the posterior for 7.

To summarize our two results, Theorem 1 states that at convergence, weak
association between n(‘t1) and n® arises as o2 grows large. Theorem 2 states
that if all the o? grow large, for each t, n® is approximately a sample from

fn[Y).

3.3. The non-Gaussian first stage case

Suppose the first stage specification for the data is not Gaussian but a usual
one-parameter exponential family so that a generalized linear multilevel response
model arises. If the joint posterior for 3 is approximately normal, we would
expect Theorems 1 and 2 to still roughly hold.

The logic is as follows. Suppose that the likelihood is approximately pro-
portional to exp{—(3 — B)T(XTM~X)~Y(8 — B8)/2} where 3 is the MLE and
M is a diagonal matrix with M;; equal to the square of the derivative of the
link function evaluated at the estimated mean of Y; multiplied by the variance
function evaluated at the mean of Y; (see, e.g., Agresti (1990, pp.448-449)). Then
with the prior in (3) we have that 3 | B is approximately distributed as

N (XTM™X 4 Vga) I XTMTIXB, (XTMTIX +Vg2)h),  (15)
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analogous to (4). Since Y is treated as fixed, if X, = M_%Xo, then XTM~1X
becomes a partitioned matrix analogous to X7 X, with )Z'g replacing Xy. Thus
the calculations regarding 1 defined in Subsection 3.1 apply approximately here.

With regard to Theorem 2, if the target posterior is approximately normal,
the Gaussian approximation approach (Sahu and Roberts (1999)) anticipates
a similar continuity with regard to exact posterior sampling of 7. Indeed, in
Subsection 3.2 we need only replace X7 X with X7 M~1X.

4. Computational Findings with Normal Data

There seems little benefit in routine numerical illustration of Theorems 1 and
2. Of greater practical interest is whether these results continue to hold when
variance components are unknown, particularly when the prior for the component
is imprecise but with a large mean. In such cases, analytical calculation becomes
intractable. As a first illustration of this, consider the usual balanced one-way
ANOVA model

Y;j:[,b-i-oéi—l-ﬁij, i=1,....k, j=1,...,m, (16)

where ¢;; “ N(0,1). Evidently, (16) is of the form in (2) with X being block
diagonal having blocks equal to m X 1 column vectors of 1’s, Ay being a k x 1
column vector of 1’s, By = (a1,...,ax)T, and B, = p.

Turning to the prior, we assume «; b N(0,02), and pu ~ N(0, UZ) indepen-
dently of the a;. In the notation of (3), this means Vp = I, and V; = 1. We use
the BUGS language (http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml) as our
computational engine. This package makes the necessary programming essen-
tially trivial, but does require a reparametrization to 7, = 1/ aﬁ and 7, = 1/02,
with gamma priors for each. We use the notation 7 ~ G(a,b) to denote a gamma
distribution with mean a/b, and IG(a,b) to denote an inverse Gamma distribu-
tion with mean b/(a — 1). Markov’s inequality is useful in suggesting priors to
encourage o2 large or small. That is, P(0? < ¢) = P(1? > ¢ 1) < ca/b. So if
a/bis small, e.g., a/b = 1072 and ¢ = 10, then P(c? > 10) > .9. Also, if a > 1,
P(0? > c¢) <b/[(a—1)c]. Soif a=2,b=".1and c =1, then P(c? <1) > .9.

We thus consider four illustrative specifications for the pair (74, 7,,), where in
each case 7, and 7, are a priori independent: (i) 7, ~ G(2,2), 7 ~ G(1000,1);
(i) 7, ~ G(2,2), Ta ~ G(2,100); (iii) 7, ~ G(2,100), 7o ~ G(2,100); and (iv)
Ty ~ G(7,7), Ta ~ G(7v,7), for v = .001. Case (ii) roughly meets the conditions
of Theorem 1, while Case (i) is very far from these conditions (P(c2 < .1) > .99).
Case (iii) roughly meets the requirements for Remark 2. Case (iv) is a typical
“default” specification in BUGS, yielding a prior which is quite vague and nearly
improper.
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Table 1. Tllustrative generated dataset, oneway ANOVA model.

observations Y;;, j=1,...,10
1.447 —0.331 2.673 0.288 —0.955 —0.247 1.795 —0.481 —0.841 0.867
—1.095 0.100 —0.022 0.520 0.305 1.650 0.153 0.808 0.886 0.854
1.594 1.975 1.722 —-0.215 1.102 1.427 3.355 2.339 0.684 0.450
—1.775 —1.678 —2.638 —1.217 0915 —0.399 —1.011 —2.307 0.636 —1.016
0.263 —0.246 0.962 0.041 0.656 1.319 0.427 2.441 —0.259 1.985

G W N s,

In our investigation, we take k = 5, m = 10, and generate an illustrative
dataset from the model (16) with y = 0 and 7, = 1. The resulting data are shown
in Table 1, and arise from a sampled a vector of (0.391, 0.320, 1.265, —0.918,
0.622). Initializing the mean parameters to 0 and the precision parameters to 1,
we used BUGS to produce a single chain of 10,000 samples from the joint posterior
distribution, following a burn-in period of 1000 iterations (more than sufficient
for the chain to be in its post-convergence steady state, as indicated by visual
inspection of its sample trace). Table 2 gives the resulting lag 1 sample autocor-
relations for u, a1, and 171 = p + a1 under each of the four prior specifications
listed above. As expected, the post-convergence 7; chain is essentially uncorre-
lated in Case (ii), but similarly small 7; correlations are seen in all four cases.
In Case (iii), the correlations in the p and ay chains are very near 1, in concert
with Remark 2. Finally, the BUGS default prior leads to correlations intermediate
to those in the preceding cases.

Table 2. Post-convergence lag 1 sample autocorrelations, oneway ANOVA
model, with priors for 7, and 7, as indicated (in Case (iv), v = .001).

case: (i) (i) (iii) (iv)
prior for 7,: | G(2,2) G(2,2) G(2,100) G(v,v)
prior for 7,: | G(1000,1) G(2,100) G(2,100) G(v,7)

w —.00769 977 996 871
a1 .0129 .891 982 494
m —.0169  —.00504 —.00437 .00237

5. A Poisson Regression Example

In this section we investigate whether the implications of our theorems still
hold when we depart from the normal errors setting. In particular, we consider
a spatial Poisson model that features the identifiability and overparametrization
issues present in model (2). Let Y; denote the number of disease events in region

i. We assume Y; ‘2 Poisson(E; exp(n;)), where F; is a known expected number of
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events, and thus 7; is the log-relative risk of disease in region 4, modeled linearly
as

n=p+0;i+¢;,i=1,...,n. (17)

Here 4 is an overall intercept, and 8 = (61,...,0,)" and ¢ = (¢1,...,¢n)"
are vectors of region-specific random effects capturing regional heterogeneity and
clustering, respectively (see the prior specification below). The mean structure in
(17) can be written in the general form used in (2) by letting Y = (Y1,...,Y,)7,
By = 0, By = ¢, By = p, and subsequently setting Xo = I, A; = I,,, and
Ay =1,.

Turning to the prior specification, all three model components are given
Gaussian specifications, namely p ~ N(0,1/7,), 6; ud N(0,1/7), and ¢; ~
CAR(7.). This lattermost notation refers to a conditionally autoregressive spec-
ification in which ¢; | ¢jz; ~ N <m% > jadii P ﬁ) , where m; is the number
of regions adjacent to region i, and the sum in the prior mean is taken over
these regions. Besag (1974) showed that this formulation is equivalent to an
(improper) joint multivariate normal distribution for ¢. The CAR prior is trans-
lation invariant, so a sum-to-zero constraint > ;- ; ¢; = 0 is typically imposed. A
fully Bayesian model specification is completed by specifying fixed values or prior
distributions for each of 7,7, and 7.. Appropriate choices in this regard (seek-
ing a “fair” prior balance between heterogeneity and clustering) are discussed in
Bernardinelli et al. (1995), Best et al. (1999), and Carlin and Pérez (2000).

To illustrate this model, we return to the often-analyzed Scottish lip cancer
data of Clayton and Kaldor (1987). This dataset provides observed and expected
cases of lip cancer in the 56 districts of Scotland for 1975-1980. Eberly and Carlin
(2000) investigate convergence and Bayesian learning for this dataset and model,
using fixed values for 7,75, and 7.. We investigate Theorems 1 and 2 using
several mutually independent prior specifications for these three parameters, in
the following cases: (i) 7, ~ G(2,2), 7, ~ G(1000,1), 7. ~ G(1000,1); (ii)
T~ G(2,2), T~ G(2,2), 7. ~ G(2,100); (iii) 7, ~ G(2,2), 7, ~ G(2,100), 7, ~
G(2,2); (iv) 7, ~ G(2,100), 7, ~ G(2,100), 7. ~ G(2,100); (v) 7, ~ G(10,10%),
7, ~ G(.001,.001), 7. ~ G(.1,.1); and (vi) 7, ~ G(10, 10°%), 7, ~ G(3.2761,1.81),
Te ~ G(1,1). Here Case (i) fails to meet the conditions of Theorems 1 or 2. Cases
(ii) and (iii) roughly satisfy the conditions of Theorem 1, with 3, = ¢ in (ii) and
Bo = 0 in (iii) so we can compare these two possible choices. Case (iv) meets the
conditions of Theorem 2. Case (v) is the “fair” specification recommended by
Best et al. (1999), while Case (vi) is an alternative such specification proposed
by Carlin and Pérez (2000). Note that neither of these two papers uses a prior
for 7,; the above specifications for 7, in these two cases essentially fix 7, = .0001.
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Initializing all the parameters to 0, we again used BUGS to produce a single
chain of 10,000 samples from the joint posterior distribution, following a burn-in
of 1000 iterations (a period which again appears more than adequate in all cases).
Table 3 is pertinent to Theorem 1, showing the lag 1 sample autocorrelations for
four model parameters, p, 19g, 6ag, ¢Pog, and three parameter contrasts, d; =
a8 — @1, do = g — 01, and ds = mag — 1. (The 56 counties are arranged in
increasing order of crude disease rate, so county 28 was selected as an “average”
county.) Note that, of these seven quantities, only 78 and d3 are estimable.
The results are similar to those in Table 2 above. Autocorrelations are higher
for m9g and d3 in Case (i), but low in Cases (ii), (iii), and (iv), in concert with
Theorem 1. The two “fair” specifications given in Cases (v) and (vi) also seem
to produce acceptable autocorrelations for these two estimable parameters, and
slightly lower autocorrelations for fag, di, and dz than in Cases (ii), (iii), and

(iv).

Table 3. Post-convergence lag 1 sample autocorrelations, Scottish lip cancer
data model, with priors for 7,7, and 7. as indicated.

case: (i) (ii) (iii) (iv) ) (vi)
prior for 7,:| G(2,2)  G(2,2) G(2,2) G(2,100) G(10,10°) G(10,109)
prior for 7,: | G(1000,1) G(2,2) G(2,100) G(2,100) G(.001,.001) G(3.2761,1.81)
prior for 7.:|G(1000,1) G(2,100) G(2,2) G(2,100) G(.1,.1) G(1,1)
| 956 .996 998 1999 1999 998
f2s| —.00392  .744 810 956 198 441
dog| 994 891 950 975 956 954
ms| 134 —.0266 —.0133 —.0177  —.00379 —.0712
di| .696 719 837 951 179 500
dy| 00499 724 770 950 254 413
ds| .322 —.0411  —.0127 —.00687 .0330 —.0571

We illustrate Theorem 2 by comparing trace plots and kernel density es-
timates (KDEs) for 11,1928, and 756 using iterates 1-1000 to those using iter-
ates 10,001-11,000. We use Cases (i) and (iv), and initialize all the chains to

“bad” starting values far from the true posterior (,u(o) = qbz(-o) = 91(0) = —3, and
T,SO) = T}(LO) = TC(O) = 1) so that any resulting slow convergence will be apparent

in the plots.
Figures 1(a) and (b) compare the results for Case (i). The burn-in period is
clearly visible in the former, and the KDEs pairs look rather different. Figures

2(a) and (b) consider Case (iv). Now convergence is essentially immediate, and
(t)

i

the sample trace and KDE pairs look very similar, suggesting that the n
roughly draws from their true posterior for every t.

are
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Figure 1. Convergence plots, first and last 1000 iterations, Scottish lip cancer
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6. A Binary Response Three-Level Example

We turn to an illustration of our results using a three-stage multilevel gen-
eralized linear model where the response variable is binary. In particular, the
response concerns the health status of root apexes of oak trees from the Mesola
forest in the Veneto region of northeastern Italy. Full description of the dataset
along with the questions of interest and a thorough data analysis, using multilevel
models, is provided in Trevisani (1999).

Here we consider a portion of the data consisting of trees classified as non-
declining. We are naturally led to a multilevel structure. That is, for the nonde-
clining class, 5 trees were randomly selected. The area below the crown of each
tree was partitioned into 6 sectors. Within each sector, 15 roots were randomly
drawn. Finally, within each root 15 apexes were examined, starting at the distal
part, for presence of ectomycorrhization. Ectomycorrhiza is a symbiosis occurring
at the fine root apexes of the trees with some species of fungi, which improves
uptake of water and nutrients and as a result, resistance to stress. Also recorded
is the vitality of the apex as a binary response (1 = healthy, 0 = not). The
primary objective of the study is to examine the relationship between vitality
and ectomycorrhization.

Almost surely, the responses at the apexes are not independent. Correlation
is introduced through sector level and root-within-sector level random effects.
Covariate information at the apex level is a (centered) indication of ectomycor-
rhization. At the root level a centered and scaled root length is recorded as well
as a categorical measure of extent of mycorrhiza (the number of apexes) having
4 categories: 0, 1-7, 8-14, and 15. Dummy variables are introduced for the last
three categories; order is ignored. Finally, a sector-level classification, to reflect
root distribution of ectomycorrhization, is introduced.

Hence, denoting the vector of logs by the log of the vector, the model becomes

log 1 ?jpij = AijMNijs

where p;; is 15x1 with entries p;;, denoting the probability of vitality status =
1 for the kth apex in the jth root in the ith sector. X;; is 15x2 with the first
column consisting of 1’s and the second of X',-jk, the apex level ectomycorrhization
indicator. The vector ;518 2x1 with 7;;1 = 16551 +pacijo+p3cij3+@ali; +vi1 +
vij1 and n;j2 = Y2 + v;j2. Here E-j is the standardized root length, the c;;’s are
the root level dummies and v;;1 and v;;2 are root-within-sector random effects.
Finally, v;1 = 01 + d28; + w51 and ~y;0 = d3 + d48; + pi2, where s; is a dichotomous
measure of sector level mycorrhizal distribution and p;1 and p;e are sector level
random effects.

Paralleling Subsection 3.1, but omitting details, we may write the mean
vector on the logit scale as X088y + XoA18; + X0A285 + XoAsB3, where 3 is
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the set of v;;1’s and v;j2’s, By is the set of p;1’s and p0’s, ,Bg = (01, 02,93, 04) and
BL = (¢1, 02, p3,p4). We model v;; = (52;) ~ N ((8),7‘51]) so that 03 = 1/7,

and Vj is block diagonal with I5 as the blocks. Similarly, we model p; = (Zg) ~

N ((8) , 7';1[) so that 0% = 1/7,, and V; is again block diagonal with I5 as blocks.
Under a binary regression, 3, and (35 require proper priors to provide a proper
posterior. For illustration, we use multivariate normals with mean 0 and diagonal
covariance matrices which are a multiple of the diagonal part of the respective
asymptotic covariance matrix resulting from fitting a standard logistic regression,
ignoring all random effects.

Note that, with¢=1,...,30, 7 =1,...,15, and k= 1,...,15, the response
vector Y is 6750 x 1. Sharply discerning the qualitative conclusions of Theorems
1 and 2 using this large dataset with the foregoing complex model will be difficult.
Nevertheless, we investigate using the following fixed values for the precisions 7,
and 7,: (i) 7, = 7, = 1000, and (i) 7, = 7, = 0.01. Case (i) is far from the
conditions of Theorems 1 and 2, while Case (ii) supports both. We keep the
variability for 85 and B3 unchanged in both cases.

Table 4. Post-convergence lag 1 sample autocorrelations, three-level forest

data model.
prior case: (1) (ii)
2 0.5140 0.9960
04 0.5220 0.9880

V111 0.0115 0.2830
V112 0.0144 0.2220

it —0.0010 0.9870
12 —0.0059 0.9790
dy 0.1830 —0.0082
do 0.0490 —0.0042

Table 4 is pertinent to Theorem 1, showing the lag 1 autocorrelations for eight

parameters of interest. Only d; = log (&ﬁ) and dy = log <15;ﬁ : 1;:%) are

estimable. The observable patterns in Table 4 from Case (i) to (ii) include a small
but decreasing autocorrelation for the well-identified parameters (particularly
dy), and an increase for the level 1 random effects, v111 and vij2, the level 2
random effects, p11 and p12, and the fixed coefficients, 6o and d4. The generally
low autocorrelation for the level 1 random effects is most likely due to the large
sample size.

To illustrate Theorem 2, Figures 3 and 5 show trace and KDE plots of the
first 1000 iterations for the two estimable parameters; similarly Figures 4 and 6
for the post-convergence iterations 4001-5000. Comments analogous to those in
the previous section can be made. In Cases (i) and (ii), adding randomness to
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T, and 7, through hyperpriors provides patterns that are qualitatively similar to
those in Table 4 and Figures 3-6, but, not surprisingly, a bit more obscured, and
thus are not presented.

Trace of dj Kernel density for dp

(1000 values per trace) (1000 values)

10

dy
-5 0 5
0 0.5
ﬁ

-
0 500 1000 0 5
Trace of do Kernel density for do
(1000 va]léxeersag(e)x["ltrace) (IOOOdvialucs)

10

da
—30 —20 —10 O
0 0.1 0.2
.g

o
o
=)
S

1000 —30 —20 -—10 0

Figure 3. Convergence iplots: first 1000 iterations, tderee-level forest data
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7. Summary and Connections to Related Work

Working under the model in (2) with prior in (3), we have shown that, after
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convergence, as the prior variance for 3, — oo, lag-one autocorrelation in the
sequence of BO, n, ETn, and, rather generally, g(n) will be essentially 0. We have
also shown that nonestimable parameters need not exhibit such behavior and, in
fact, may reveal severe autocorrelation. Our Theorem 1 says nothing about how
choice of (3) affects convergence behavior of the associated Gibbs sampler, nor
about how dispersed the posteriors of n, £Tn, or g(n) are as we vary (3).

Our result does connect weakly to earlier work of Gelfand, Sahu and Car-
lin (1995, 1996) which argues on behalf of hierarchical centering to improve the
behavior of the posterior with regard to intercorrelation, hence the preconver-
gence behavior of the associated Gibbs sampler. In our notation Bo would be the
highest-order hierarchically centered parameter, but whether there is a unique
overall hierarchical centering depends upon the form of X.

Our second result shows that when all variance components in (3) grow
large, iterative sampling yields essentially immediate convergence for Bo- On the
other hand, the posteriors for components of 3 (and nonestimable parameters)
will tend to impropriety. Hence Theorem 2 may be viewed as a “convergence”
result. In the limit, for n (and g(n)) we have immediate convergence, while for
nonestimable parameters we can never have convergence. A practical implication
is the suggestion of how to “design” the prior to achieve better convergence for
the estimable parameters in the model, in the case where they are the only ones
of interest. Besag, Green, Higdon and Mengersen (1995, p.15) hint informally
at this idea. The “exact sampling” under Theorem 2 differs from the use of this
term in conjunction with coupling from the past, as for example in Propp and
Wilson (1996).

Finally, the likelihood arising under (2) is evidently a function of the form
L(XQBO;Y). Thus no nonestimable parameters are identified in the likelihood.
This raises the question of whether we may profitably view (2) and (3) in terms
of a missing data setting and thus consider the data augmentation acceleration
techniques as described in, e.g., Meng and Van Dyk (1999) or Liu and Wu (1999).
To illustrate with our simple example of Section 2, Y'|0 ~ N(6,1 + G?b)‘ Using
parameter expansion, we could write Y|0, ¢, ~ N(0 + ¢ — o, 1) and now take
Pla ~ N(a,aq%), whence Y|0,a ~ N(0,1 + 035), as above. In other words, the
posterior for A|Y is the same in both cases. A Gibbs sampler introducing a
suitable prior for «, f(«|f), can improve upon the usual Gibbs sampler which
sets a = 0 with probability 1.

However, under this expanded model the overall posterior for # and ¢ differs
from that under the original model. If we want f(¢|Y) we would have to run
a different expanded Gibbs sampler; if we want f(6,¢|Y") it is not clear how to
use expansion. More generally, under (2) we could design an expanded Gibbs
sampler for any component of 3, whereas our results apply to the entire posterior
of 3, of ,BO, and of n.
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