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Abstract: This paper introduces a new class of bivariate time series models, Cross-

Related Structural Models (CRSMs). In this class of models, each time series is

modeled by a structural time series model and the structural parameters are mod-

eled as functions of the latent history of the other series. These models preserve

certain conditional independence structures over time and can incorporate all the

features of the univariate state space models. With minimum modifications, ex-

isting forecasting and filtering algorithms for the univariate models can be applied

to these models. By modeling the cross relationships through the structural pa-

rameters, these models allow flexible relationships to be modeled parsimoniously

and include parameters with clear interpretations. An application to a bivariate

hormone time series with pulses is used as an illustration.

Key words and phrases: Conditionally Gaussian model, multivariate time series

model, multiprocess dynamic linear model, pulsatile time series, state space model.

1. Introduction

In many situations one time series may be a precursor to a second series
which in turn provides feedback to the first series. Examples exist in many fields
such as biology, economics and meteorology. In biological systems, different hor-
mones regulate each other through feedback mechanisms; in economics, sales of
similar products may compete with each other for market share; in meteorology,
temperature and precipitation may be closely related. By modeling these rela-
tionships, we gain a better understanding of the underlying process, obtain more
efficient simultaneous estimates and produce more accurate forecasts.

In this article, we introduce a new class of multivariate time series models,
Cross-Related Structural Models (CRSMs), which allow flexible relationships be-
tween two or more time series. For the purpose of clarity, we focus on bivariate
time series models. In this class of models, each time series is modeled by a
structural dynamic model and the structural parameters are modeled as func-
tions of the history of the other series. Discussion of the methodological and
technical ideas underlying structural time series models can be found in Harvey
(1989) and Harvey and Shephard (1992). A Bayesian view of structural models
can be found in West and Harrison (1997). The basic idea of structural models
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is to use state space models with the state of the system representing the various
unobserved components and the parameters (structural parameters) having clear
interpretations. The use of a structural time series model allows a better under-
standing of the system and provides clear interpretations for the parameters. By
modeling the feedback mechanisms through the structural parameters, we not
only introduce a class of flexible models which can be used to describe many
potential relationships, possibly between two time series with totally different
model structures, but also preserve the conditional independence structures in
the univariate dynamic models, which enable us to adapt existing tools developed
in the state space models for estimation and forecasting.

This research is primarily motivated by our interest in modeling the rela-
tionship among hormones. Hormones play important roles in the regulation of
many biological processes, including the secretion of other hormones. Hormones
are known to be secreted in pulsatile patterns (e.g., Weiss, Jameson, Burrin and
Crowley (1990)). It is believed that there is a feedback mechanism such that the
release of one hormone may trigger the release of the second hormone, and when
the second hormone attains sufficient concentration in the blood, the secretion of
the first hormone will be turned off. Since these trigger-shutdown relationships
usually involve many intermediate hormones and are not necessarily one-to-one,
probabilistic relationships instead of deterministic relationships are desired. To
illustrate these ideas, we use the gonadotropin releasing hormone (GnRH) and
luteinizing hormone (LH) data studied by Midgley et al. (1997), in which blood
samples were drawn from the portal system and the jugular vein of each of the six
ewes every 5 minutes for 6 hours (N = 72), and assayed for the concentrations
of GnRH and LH. The primary interest is to study the feedback relationship
between GnRH and LH. LH is released from the pituitary in a pulsatile pattern
and has a central role in regulating the reproductive cycle. It is known that the
release of LH is regulated by GnRH which is also released in a pulsatile pattern by
the hypothalamus. It is also believed that LH and other hormones may provide
feedback to GnRH in a very complex way. Figure 1 shows the concentrations
and fitted values of GnRH and LH from ewe 1. Using a CRSM, we explore the
trigger-shutdown relationship between the two series.

In univariate time series, several authors (e.g., Bolstad (1988), Guo, Wang
and Brown (1999)) used multiprocess dynamic linear models (MDLMs) (Harrison
and Steven (1976)) to model pulsatile hormone time series, where the estimates
of the posterior probabilities of the process indicators can be used to identify
potential locations of the pulses. In the bivariate settings, we incorporate the
MDLMs in the CRSM framework. The trigger-shutdown mechanisms are mod-
eled by regressing the prior probability of being a pulse over the history of the
other series. Under this structure, the posterior probability of a pulse is a product
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Figure 1. GnRH and LH, and their fitted values using a CRSM. A:observed
and fitted values of GnRH. The dots with solid lines are observed concentra-
tions and the dotted lines are the smoothed values. B: posterior probabilities
of the pulse indicators. C:observed and fitted values of LH. D: posterior
probabilities of the pulse indicators.

of the prior, which is a function of the external series, and the likelihood, which
is a function of the internal history. This is a very robust probabilistic rela-
tionship because at a certain time point, even the prior probability of being a
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pulse given the information from the external series may be very strong, if the
internal series does not have any rise in the concentration, which contributes to
a small likelihood, the posterior probability of being a pulse may be still very
small. In such a situation, a deterministic feedback system may crash, while the
probability relationship can still hold and the overall strength of the relationship
is measured by the feedback parameter and its confidence interval. The lower
panels of Figure 1 show the posterior probabilities of the pulses, which are re-
flections of the feedback from the other series and the internal jumps. Further
details will be explained in Section 6.

One advantage of the CRSMs is that these models are conditionally Gaussian
when the underlying univariate models are Gaussian or conditionally Gaussian.
The basic idea behind these models is that, conditioned on a vector that consists
of the entire series of values of the mixture variables at all time points, the
conditional model is a Gaussian state space model and the Kalman filter can
be applied. Therefore under the Markov Chain Monte Carlo framework, one
only needs to sequentially draw the entire vector of the mixture variable and
then apply the Kalman filter within the draw. Efficient simulation techniques for
univariate conditionally Gaussian state space models (Carter and Kohn (1994,
1996), Fruhwirth-Schnatter (1994), Shephard (1994) and De Jong and Shephard
(1995)) can all be extended to CRSMs. Because of the conditionally Gaussian
structure, the approximate method by Harrison and Stevens (1976) can also be
extended to these models. The basic idea of the approximation method is to
approximate the filtered distribution by a normal distribution with the same
first two moments. The approximation method is computationally efficient and
is shown to produce accurate estimates in our limited simulation. Further details
of the estimation procedures are described in Sections 3 and 4.

This paper is structured as follows. In Section 2, we focus on models in which
each time series is characterized by a Gaussian state space model. Estimation
procedures are described in Section 3. In Section 4 we generalize our models
to the case where the univariate time series is characterized by a conditionally
Gaussian model. Up to Section 4 we assume that the parameters are known for
the purpose of clarity. In Section 5 we describe some methods to estimate the
parameters. In Section 6, an application is used as an illustration. Discussion
and remarks are in Section 7.

2. CRSMs with Gaussian Univariate Models

For simplicity we only consider bivariate time series. Our method can be
easily extended to multivariate time series. The model is decomposed into three
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levels: the observation level, the system level and the cross-regression level. The
system level defines the transition of the latent signals and the observation level
defines how we observe the latent signals. The first two levels are essentially
state space models with their structures set up so that the structural parameters
all have clear interpretations. The cross-regression level models the structural
parameters of interest as functions of the history of the other series. These func-
tions can be either linear or nonlinear. Because the only connection between the
two time series is through the cross-regression, the two structures of the univari-
ate models can be very different. In terms of using the observed history or the
latent history in the cross-regression, the models can be classified as Observa-
tional History Model (OHM) and Latent History Model (LHM). Since the OHM
is straight-forward, we will only focus on the LHM.

The model can be written as
(A) The observation equations:

y1(t) = F1(t)x1(t) + v1(t), v1(t) ∼ N(0, σ2
e1(t))

(1)
y2(t) = F2(t)x2(t) + v2(t), v2(t) ∼ N(0, σ2

e2(t));

(B) The system level equations:

x1(t) = H1(t)x1(t − 1) + w1(t), w1(t) ∼ N(0,W1(t))
(2)

x2(t) = H2(t)x2(t − 1) + w2(t), w2(t) ∼ N(0,W2(t)).

The y1(t) and y2(t) (t = 1, 2, . . . , N) are observed time series. The x1(t) and
x2(t) are state vectors, which can include dummy variables to allow more general
model structures. The F1(t), F2(t), H1(t) and H2(t) are observation matrices and
transition matrices and are of corresponding dimensions. All the matrices F1(t),
F2(t), H1(t), H2(t), W1(t) and W2(t) can contain unknown parameters. These
parameters, along with σ2

e1(t) and σ2
e2(t), are called structural parameters and

are denoted as θ1(t) and θ2(t).
The cross-regressions model θ1(t) and θ2(t) as functions of the latent history.

We denote the latent signals as z1(t) = F1(t)x1(t) and z2(t) = F2(t)x2(t). Since
we are usually interested in a lagged relationship and the cross-regression usually
only involves a subset of the structural parameters, we assume, without loss of
generality, that θ1(t) = {γ1(t), φ1(t)} and θ2(t) = {γ2(t), φ2(t)}, where γ1(t) and
γ2(t) are scalars and the structural parameters of interest, and φ1(t) and φ2(t)
are the rest of the parameters. Then we have
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(C) The cross-regressed equations:

g1{γ1(t)} = α1 + β1z2(t − τ1)
(3)

g2{γ2(t)} = α2 + β2z1(t − τ2),

where τ1 and τ2 are lags and can take values in {1, . . . , k} with k < N ; g1{·}
and g2{·} are link functions and can be viewed as transformation functions to
get rid of the domain restrictions for the structural parameters γ1(t) and γ2(t).
The choice of link functions is arbitrary as long as they are one-to-one from the
original domain to (−∞,+∞).

The number of terms on the right side of the cross-regressions can be in-
creased to allow more general feedback mechanisms. Multiple feedback mecha-
nisms can be incorporated simultaneously, we present it this way for the purpose
of simplicity. The new unknown parameters are now Θ = {φ1(t), φ2(t), α1, β1,
α2, β2}. For the first several observations, the latent history needed in the cross-
regressions may not be available. Therefore in order to fully specify the model,
the initial values {z1(−τ2+1), . . ., z1(−1); z2(−τ1+1), . . ., z2(−1); x1(0); x2(0)}
are needed. They can be either included as unknown parameters or given diffuse
priors. More generally the lags {τ1, τ2} should also be considered as unknown.
For the purpose of simplicity, we treat the parameters as known in discussing
the iterative procedures. The estimation of the parameters will be deferred until
Section 5.

Let capitals denote the collection of the whole history, i.e., for i = 1, 2,
Γi(N) = {γi(1), . . . , γi(N)}; Yi(N) = {yi(1), . . . , yi(N)}; Xi(N) = {xi(1), . . .,
xi(N)}; Zi(N) = {zi(1), . . ., zi(N)}.

3. Estimation Procedures

In state space models, estimation and forecasting are characterized by one-
step-ahead prediction, filtering and smoothing (signal extraction) algorithms.
The one-step-ahead prediction can be extended to m-step forecasting. These
algorithms can be extended to CRSMs. If we use the observed histories in the
cross-regressions, the estimation is straight-forward. The model can be viewed as
two separate state space models with time changing parameters that are calcu-
lated by the cross-regressions. The algorithms only involve one additional step to
the regular recursive algorithms in state space models: calculating the structural
parameters as functions of the history of the other series. The basic Kalman
filter and smoothing algorithms can be found in many time series books, such
as Anderson and Moore (1979). Modifications to the classical smoothing algo-
rithm that improve the computational efficiency are given by De Jong (1989) and
Koopman (1993).
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When latent histories are used, parallel recursive algorithms do not exist be-
cause the latent signals are estimated by their posterior distribution conditioned
on the entire series, which requires smoothing. An iterative scheme between the
two time series is needed. The difficulty in the iteration is that the estimates
of the latent signals are characterized by their posterior distributions and it is
desired to incorporate the entire distributions of the latent signals in the cross-
regressions. In the Markov Chain Monte Carlo (MCMC) framework, the itera-
tive scheme naturally leads to an efficient simulation based procedure, the Block
Gibbs Sampler, which exploits the advantage of the conditionally Gaussian struc-
ture. Because of the conditionally Gaussian structure, a non-simulation based
method is also possible; we extend the Harrison-Stevens approximation which
approximates the filtered distribution at each step by a normal distribution with
the same first two moments.

3.1. Block Gibbs sampler

The first method we propose is to extend the “Block Gibbs sampler” method
first proposed by Carter and Kohn (1994) and Fruhwirth-Schnatter (1994). Some
modifications of this “forward-filtering, backward-sampling” algorithm are later
given by several other authors (e.g., Carter and Kohn (1996), Shephard (1994)
and De Jong and Shephard (1995)). The basic idea is to exploit the conditionally
Gaussian structures. That is, conditioned on the series of the external latent
signals Z1(N) and Z2(N), the conditional model is reduced to two Gaussian
state space models with time changing parameters which are functions of Z1(N)
and Z2(N). Under the MCMC framework, we only need to sequentially draw
Z1(N) and Z2(N), then use the Kalman filter to generate the states X1(N) and
X2(N). For simplicity, we only outline the general scheme here. Readers are
referred to the papers above for details on how to draw the states using the
Kalman filter.

Block Gibbs Sampler:
(1.) Calculate (Γ2(N)|Y1(N)); use the filtering and smoothing methods to

draw X∗
2 (N) from (X2(N)|Y2(N),Γ2); calculate Z∗

2 (N) from X∗
2 (N).

(2.) Calculate (Γ1(N)|Z∗
2 (N)); use the filtering and smoothing methods to

draw X∗
1 (N) from (X1(N)|Y1(N),Γ1); calculate Z∗

1 (N) from X∗
1 (N).

(3.) Calculate (Γ2(N)|Z∗
1 (N)); use the filtering and smoothing methods to

draw X∗
2 (N) from (X2(N)|Y2(N),Γ2); calculate Z∗

2 (N) from X∗
2 (N).

(4.) Go to (2.)
Under very weak conditions (Tierney (1994)), the block Gibbs sampling is

guaranteed to converge.



968 WENSHENG GUO AND MORTON B. BROWN

3.2. Normal approximation to the filtered distribution

Although the block Gibbs sampler produces an almost exact solution, and is
much more computationally efficient than regular MCMC procedures that draw
one observation at a time, it still requires advanced computing resources espe-
cially when the dimension of the problem is large. In this section, we introduce
an efficient O(N) approximate method, which can be viewed as an extension of
the Harrison and Stevens’ (1976) method. Harrison and Stevens proposed to
approximate the filtered distribution at each step by a normal distribution with
the same first two moments for multiprocess dynamic linear models (MDLMs).
Because of the conditionally Gaussian structure of the CRSMs, this method can
be extended to them. The mean and variance of the filtered distribution at time
t can be calculated using

E(x1(t)|Y1(t)) = E(E[x1(t)|Y1(t), z2(t − τ1)]) (4)

V (x1(t)|Y1(t)) = V (E[x1(t)|Y1(t), z2(t − τ1)])

+E(V [x1(t)|Y1(t), z2(t − τ1)]). (5)

The external signal z2(t− τ1) serves as the mixture variable. Because we approx-
imate the filtered distribution by the marginal distribution at each step of the
Kalman filter, (x1(t)|Y1(t)) implicitly depends on {z2(t − τ1 − 1), . . . , z2(−τ1)}
through (x1(t−1)|Y1(t−1)), (i.e., conditional on (x1(t−1)|Y1(t−1)), (x1(t)|Y1(t))
is independent of {z2(t−τ1−1), . . . , z2(−τ1)}. The formulas for x2(t) are similar.
The smoothing is then run backward based on the normal approximations from
the forward filtered results.

The original Harrison-Stevens approximation was proposed for MDLMs
where the mixture variable is discrete. The computation of (4) and (5) in MDLMs
is straight-forward because we only need to calculate the conditional means and
conditional variances for all the possible values of the mixture variable and then
combine them. (See Harrison and Stevens (1976) or Bolstad (1988) for details).
When the mixture variable is continuous, as in CRSMs, numerical integration
such as Gauss-Hermite quadrature (Abramowitz and Stegun (1987)) is needed.
We only need to calculate the conditional means E[x1(t)|Y1(t), z2(t − τ1)] and
conditional variances V [x1(t)|Y1(t), z2(t − τ1)] for a few selected fixed values of
z2(t−τ1), which can be calculated using the Kalman filter. The marginal expecta-
tion is then a weighted sum of these values. The details are given in the appendix.
Since this is one-dimensional integration and the number of knots needed for an
accurate integration is very small (10 in our example), the resultant algorithm is
computationally efficient.
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The outline of the algorithm is as follows.

Approximate method:
(1.) Calculate (Γ2(N)|Y1(N)); apply the Kalman filter and smoothing al-

gorithms to calculate the means and variances of (X2(N)|Y2(N)); calculate the
means and variances of (Z2(N)|Y2(N)) from (X2(N)|Y2(N)).

(2.) Conditional on (Z2(N)|Y2(N)), apply the forward algorithm to Y1,
which is the Kalman filter with an approximation step using equations (4) and
(5) at each filtering step; apply the smoothing method based on the approximated
filtered results to obtain the means and variances of (X1(N)|Y1(N)); calculate
the means and variances of (Z1(N)|Y1(N)).

(3.) Conditional on (Z1(N)|Y1(N)), apply the forward algorithm to Y2,
which involves an approximation step using equations similar to (4) and (5)
at each filtering step; apply the smoothing method based on the approximated
filtered results to obtain the means and variances of (X2(N)|Y2(N)); calculate
the means and variances of (Z2(N)|Y2(N)).

(4.) Iterate between (2) and (3) until convergence.
The extension to m-step-ahead forecasting is immediate. That is, replace

(z1(t− τ2)|Y1(N)) and (z2(t− τ1)|Y2(N)) by their forecasted distributions, when
t− τ1, t− τ2 > N . Since no extra smoothing is required, the forecasting is carried
out in parallel operations.

4. CRSMs with Conditionally Gaussian Univariate Models

In this section, we extend CRSMs to the case where the underlying univariate
models are conditionally Gaussian themselves. One of the advantage of CRSMs
is that, when the underlying univariate models are conditionally Gaussian, the
resultant CRSMs are still conditionally Gaussian. That is, conditioned on the
external signal and We focus on the case when the underlying univariate models
are MDLMs, which are special conditionally Gaussian models where the mixture
variable is discrete, although the methods we describe here can also apply to
other types of conditionally Gaussian models (see Shepard (1994) for examples).

Consider the following model.
(A) The observation equations:

y1(t) = F1(t)x1(t) + v1(t), v1(t) ∼ N(0, σ2
e1(t))

y2(t) = F2(t)x2(t) + v2(t), v2(t) ∼ N(0, σ2
e2(t)).

(B) The system level equations:

x1(t) = H1(t)x1(t − 1) + w1(t),

x2(t) = H2(t)x2(t − 1) + w2(t),
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with

w1(t) ∼ N(µ1j(t),Σ1j(t)) if i1(t) = j, j = 0, ..., k1 − 1,
w2(t) ∼ N(µ2j(t),Σ2j(t)) if i2(t) = j, j = 0, ..., k2 − 1,

where i1(t) and i2(t) are mixture variables that are indicators of the underlying
processes.

(C) The cross-regressed equations:

γ1(t) = g1{α1 + β1z2(t − τ1)}
γ2(t) = g2{α2 + β2z1(t − τ2)}.

Denote I1(N) = {i1(1), i1(2), . . . , i1(N)} and I2(N) = {i2(1), . . . , i2(N)}.
The block Gibbs sampler is now extended as follows.

Block Gibbs Sampler:
(1.) Generate a candidate point (Z∗

1 (N), Z∗
2 (N), I∗1 (N), I∗2 (N))

(2.) Calculate (Γ1(N)|Z∗
2 (N)) and generate I∗1 (N) from p(I1(N)|Y1(N),

Z∗
1 (N), Γ1(N)); draw X∗

1 (N) from p(X1(N)|Y1(N),Γ1, I
∗
1 (N)); calculate Z∗

1 (N)
from X∗

1 (N).
(3.) Calculate (Γ2(N) |Z∗

1 (N)) and generate I∗2 (N) from (I2(N) |Y2(N),
Z∗

2 (N), Γ2(N)). Then draw X∗
2 (N) from p(X2(N)|Y2(N), Γ2(N), I∗2 (N)); calcu-

late Z∗
2 (N) from X∗

2 (N).
(4.) Go to (2.)
Readers are referred to Carter and Kohn (1994, 1996) and Shephard (1994)

for details on how to use the Kalman filter and smoothing algorithm to gener-
ate the indicator variables I1(N) and I2(N) and the state variables X1(N) and
X2(N).

Because of the conditionally Gaussian structure of CRSMs, the approximate
method can also be extended here. The method follows the same iterative scheme
given in Section 3, except a filtering step now involves two steps of approxima-
tions: the first with respect to the integration over the external latent signals, the
second with respect to the normal approximation to the mixture of normals. The
second step is a regular Harrison-Stevens approximation. Since the calculation
is straight-forward, we omit the details.

5. Estimation of the Unknown Parameters

Because CRSMs are conditionally Gaussian, the parametric estimation meth-
ods for conditionally Gaussian models can be applied. Some of the references are
Carter and Kohn (1994, 1996, 1997) for a Bayesian approach, Shepard (1994)
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for simulated EM, and Billio and Monfort (1997) for simulated likelihood. The
Bayesian methods connect naturally with the block Gibbs sampler. Though, the
priors have to be specified case-by-case. Since the number of simulations needed
to obtain 3 − 4 decimal place accuracy for the criterion function in simulated
EM and likelihood steps is very large, these methods are only practical when the
number of unknown parameters is small. In the problems that we consider, there
are usually a large number of unknown parameters to be estimated. We therefore
focus on the approximate likelihood method using the normal approximation to
the posterior distributions method. Denote the collection of unknown parameters
as Θ = {Θ1,Θ2}, where Θ1 contains all the parameters associated with series
one and Θ2 includes all the parameters associated with series two. The likelihood
can be calculated using the one-step-ahead-prediction density p(yi(t)|Yi(t−1),Θi)
which is available in the Kalman filter:

L(Θi|Yi(N)) =
N∏

t=1

p(yi(t)|Yi(t − 1),Θi), i = 1, 2, (6)

where Yi(t−1) denotes the collection of whole history up to t−1. Because of the
normal approximation to the filtered distributions, this is only an approximate
likelihood.

The iterative scheme becomes this.
(1a) Conditional on Y1(N), obtain Θ̂2 that maximizes L(Θ2|Y2(N)), which

only involves the forward filtering algorithm.
(1b) Calculate (X2(N)|Y2(N), Θ̂2) using the smoothing algorithm; calculate

(Z2(N)|Y2(N), Θ̂2).
(2a) Conditional on (Z2(N)|Y2(N), Θ̂2), obtain Θ̂1 that maximizes L(Θ1|

Y1(N)).
(2b) Calculate (X1(N)|Y1(N), Θ̂1) using the smoothing algorithm; calculate

(Z1(N)| Y1(N), Θ̂1).
(3a) Conditional on (Z1(N)|Y1(N), Θ̂1), obtain Θ̂2 that maximizes L(Θ2|

Y2(N)).
(3b) Calculate (X2(N)|Y2(N), Θ̂2) using the smoothing algorithm; calculate

(Z2(N)|Y2(N), Θ̂2).
(4) Iterate between (2) and (3) until convergence.
In our experience, this algorithm usually converges within two or three iter-

ations. Then (Z1(N)|Y1(N), Θ̂1) and (Z2(N)|Y2(N), Θ̂2) in the final stage serve
as estimates of the latent signals.

So far we have treated the lags as known. In practical applications, re-
searchers usually have a rough idea about the range of the lags. Estimation of
the lags can be done by fitting models with different values for the lags and
choosing the ones that maximize the profile likelihoods.
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6. Application to Hormone Data

We illustrate the methods proposed above by modeling the bivariate hormone
time series shown in Figure 1. One of the objectives is to study the relationship
of the pulsatile secretions between the two hormones. Using a CRSM, we explore
whether a rise or a drop in the concentration of one hormone has an effect on
the release of the other hormone. As an illustration, we show the result of the
analysis of portal GnRH and jugular LH of ewe 1. The results of the other five
ewes are consistent with those of the first.

Under the exponential-decay-toward-baseline assumption, which is a result
from the one compartmental model, we have the following model.

(A) The observation equations:

y1(t) = x1(t) + b1 + v1(t), v1(t) ∼ N(0, σ2
e1)

(7)
y2(t) = x2(t) + b2 + v2(t), v2(t) ∼ N(0, σ2

e2),

where b1 and b2 are the baselines; x1(t) and x2(t) are the pulsatile components;
v1(t) and v2(t) are the measurement errors.

(B) The system level equations:

x1(t) = a1x1(t − 1) + w1(t)
(8)

x2(t) = a2x2(t − 1) + w2(t),

with
w1(t) ∼ N(µ1j , σ

2
1j) if i1(t) = j, j = 0, 1,

w2(t) ∼ N(µ2j , σ
2
2j) if i2(t) = j, j = 0, 1,

where a1 and a2 are the decay factors which are functions of the half-lifes, i1(t) =
1 or i2(t) = 1 indicates a pulse at time t while i1(t) = 0 or i2(t) = 0 indicates
no pulse. With µ10, µ20, σ2

10 and σ2
20 set to zero, w1(t) or w2(t) is zero with

probability one when i1(t) = 0 or i2(t) = 0; µ11, µ21, σ2
11 and σ2

21 are the mean
pulse amplitudes and their associated variances. Denote the prior probabilities
of being pulses as π1(t) = p(i1(t) = 1) and π2(t) = p(i2(t) = 1).

(C) The cross-regressed equations:

logit{π1(t)} = α1 + β1z2(t − τ1)
(9)

logit{π2(t)} = α2 + β2z1(t − τ2),

where logit{π1(t)} = log{π1(t)/(1 − π1(t))}, and z1(t) and z2(t) are the latent
concentrations, modeled by b1 + x1(t) and b2 + x2(t) respectively.

The unknown parameters besides {τ1, τ2} are Θ1 = {b1, a1, σe1, µ11, σ11, α1,
β1} and Θ2 = {b2, a2, σe2, µ21, σ21, α2, β2}. The initial states x1(0) and x2(0) are
assigned diffuse prior distributions N(0, 10000). When z2(t − τ1) and z1(t − τ2)
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are not yet available in the first few values, we assign π1(t) and π2(t) to their
average values, obtained by running the two univariate models separately. The
two averages are 0.323 for GnRH (series 1) and 0.296 for LH (series 2). Because
of the large number of unknown parameters, we use the approximate likelihood
method to estimate the parameters. A grid of 1 to 12 lags is used to search
for the optimal estimates τ̂1 and τ̂2. Using the approximate maximum profile
likelihoods, τ̂1 = 2 and τ̂2 = 1. This means that pulses in GnRH lead those in
LH by 1 time point (5 minutes), while LH has a 2 time point (10 minutes) lagged
feedback to GnRH.

Table 1. Point estimates of the parameters with their 95% bootstrap confi-
dence intervals.

GnRH LH
Parameters Estimate 95% CI Estimate 95% CI

a 0.11 (0.10, 0.13) 0.81 (0.75, 0.86)
σe 0.10 (0.07, 0.12) 0.75 (0.58, 0.92)
β −2.78 (−6.51,−1.42) 6.09 (2.93, 22.88)
α 24.09 (12.07, 57.62) −5.94 (−21.87,−3.87)
µ 4.33 (2.98, 6.06) 3.54 (3.03, 4.08)
σw 3.44 (2.25, 4.34) 0.95 (0.05, 1.39)
b 0.27 (0.23, 0.30) 4.64 (2.46, 6.15)

The estimates of parameters, along with their 95% bootstrap confidence in-
tervals, are shown in Table 1. Because of the normal approximations to the
filtered distributions, the likelihoods are approximate and the naive observed
information matrices do not provide correct variance estimates. We used a para-
metric bootstrap to obtain the 95% confidence intervals. We generated 1000
replicates from the estimated parameters and re-estimated the parameters. We
excluded 6 extreme outliers. The boxplots of the approximate MLEs are shown
in Figure 2. The approximate method appears to yield unbiased estimates. From
Table 1, the rises in GnRH appear to trigger the pulsatile secretions of LH, since
β̂2 is positive and its 95% confidence interval does not include zero. The increase
in LH may have a negative feedback to the GnRH release, since the β̂1 is neg-
ative and its 95% confidence interval does not include zero. Other parameters
of interest are the mean pulse amplitudes µ1 = 4.33 and µ2 = 3.54, and the
baselines b1 = 0.27 and b2 = 4.64. They are all significantly different from zero
since their 95% confidence intervals do not include zero. For simplicity, we did
not re-estimate the lags in the parametric bootstrap. This can be done easily to
quantify the variability of the estimates of the lags.
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Figure 2. Boxplots of the approximate MLEs in the 1000 parametric boot-
straps. The dotted lines are the true values.

The upper panels of Figure 1 show GnRH and LH with their fitted values.
The lower panels plot the posterior probabilities of the pulse indicators. The
smoothed values of GnRH almost completely overlap the observed ones, since
the portal GnRH data are very clean. In LH, the model only picks up the large
jumps and ignores the small blips. From the concentration data, every GnRH
pulse is followed by a LH pulse, the secretion of GnRH seems to be stopped by
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the rise of LH. When LH drops to a certain level, it appears to trigger another
GnRH pulse. This phenomenon is confirmed by the posterior probabilities of the
pulse indicators, and also matches the parameter estimates of the model.

For comparison, we re-fitted the two time series separately using two multi-
process dynamic linear models without a feedback relationship. The results are
shown in Figure 3. It can be seen that the estimation of pulses in GnRH is still
relatively clean because of the small measurement errors in GnRH. The estima-
tion of the pulse locations in the LH is very noisy and the one-to-one relationship
between the hormones becomes difficult to see. We conclude that the CRSM not
only identifies the potential feedback relationship between GnRH, but also pro-
duces better estimates of the pulses by borrowing the external information from
the other hormone.
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Figure 3. Separate fits without feedback relationship. A: observed and fitted
values of GnRH. The dots with solid lines are observed concentrations and the
dotted lines are the smoothed values. B: posterior probabilities of the pulse
indicators. C: observed and fitted values of LH. D: posterior probabilities of
the pulse indicators.
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Despite the statistical significance of β1 and β2, we have to point out that the
probabilistic relationships in our model do not ensure causality. For example, the
apparent LH feedback to GnRH can be an artifact of a constant latency between
GnRH peaks. Guo and Brown (2000) showed that regularity can be explained by
a negative feedback relationship. The stronger the negative feedback, the more
regular the system may appear. Such a negative feedback relationship needs to
be confirmed by controlled experiments.

7. Concluding Remarks

We have introduced a class of bivariate time series models, in which each time
series is modeled by a structural time series model and the structural parameters
are modeled as regressions over the history of the other series. Traditional vec-
tor time series models require all time series to share the same model structure
and characterize the relationship between series through marginal correlation
coefficients. In contrast, CRSMs characterize the relationship through cross-
regressions. As a result, these models allow very flexible relationships that can
be potentially across time series models with very different structures. Another
unique structure of CRSMs is that the cross-regressions model the relationship
through the structural parameters instead of directly through the outcomes. This
not only increases the flexibility in modeling different relationships, but also in-
troduces a robust probabilistic relationship which is particularly useful when the
relationship is not one-to-one. Finally, CRSMs are conditionally Gaussian in
general when the underlying univariate time series models are Gaussian or con-
ditionally Gaussian. This unified structure enables us to adapt existing efficient
estimation procedures for state space models.

For simplicity, we introduced the framework for bivariate time series with a
single pair of crossed lagged relationships. This can be extended to multivari-
ate time series and cases with multiple cross-relationships. The cross-regression
should be viewed as a general way to parameterize a complex relationship, which
can include internal history as well as external history as regressors. These
relationships can be either linear or nonlinear. The feedback relationship can
also include multiple time points. Covariates can also be introduced into the
cross-regressions. If we incorporate time dependent covariates into the cross-
regressions, the relationship can then also be changing over time. The cross-
regression structure introduces a new concept of modeling relationships between
time series.

A special case of interest is when the relationship is one directional. In
this case, we only need one equation in the cross-regression and the lag can
be any nonnegative integer. The iterative estimation procedure reduces to a
two-step procedure: first estimate the influential time series, then incorporate
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the posterior estimates of this time series in estimating the second time series.
When the observed signal of the influential time series is used, the structural
parameters of interest in the second time series are the mean parameters and
the lag is set to zero, this model reduces to a Multiregression Dynamic Model
(MDM) (Queen and Smith (1993)).

Similar to other regression models, causality cannot be proven by the use of
these models. For example, in the physiological data set presented in this paper,
the role of GnRH as a precursor to LH has been established, while the feedback
mechanism of LH on GnRH is yet to be confirmed by controlled experiments.
Therefore, we emphasize that the use of these models is only an aid in exploring
many potential relationships. Although some model selection criteria, such as
AIC and Bayes factor, can be used as supplements in choosing among alternative
models, physical (or physiological) relevance is the key in model selection.

Theoretically, CRSMs can be extended to general non-Gaussian cases. How-
ever, it is well-known that estimation of general non-Gaussian state space models
is very computationally intensive. This extension of CRSMs can only intensify
the needed computation. It will only be practical when more efficient estimation
procedures for the general non-Gaussian state space models become available.

Appendix. Numerical integration for equations (4) and (5)

To calculate the marginal expectation and variance of the filtered distri-
bution, we need to calculate the conditional expectations and conditional vari-
ances for a few selected values of z2(t − τ1), then calculate the marginal val-
ues as weighted sums. The selected knots bi and corresponding weights wi, for
i = 1, . . . , T are listed in Abramowitz and Stegun (1987). The number of knots
T only needs to be 10 or 20 to produce accurate estimates in our example. The
elements needed in equations (4) and (5) are:

E[x1(t)|Y1(t)] =
T∑

i=1

wiexp(b2
i )E(x1(t)|Y1(t), z2(t − τ1) = bi)f(z2(t − τ1) = bi);

V [E(x1(t)|Y1(t), z2(t − τ1)] = E[E(x1(t)|Y1(t), z2(t − τ1))]2 − [E(x1(t)|Y1(t))]2;

E[E(x1(t)|Y1(t), z2(t − τ1))]2 =
T∑

i=1

wiexp(b2
i )[E(x1(t)|Y1(t), z2(t − τ1) = bi)]2

f(z2(t − τ1) = bi);

E[V (x1(t)|Y1(t), z2(t − τ1))] =
T∑

i=1

wiexp(b2
i )V (x1(t)|Y1(t), z2(t − τ1) = bi)

f(z2(t − τ1) = bi).
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The elements E(x1(t)|Y1(t), z2(t−τ1) = bi) and V (x1(t)|Y1(t), z2(t−τ1) = bi)
are available in the Kalman filter. The distribution f(z2(t−τ1) = bi) is Gaussian.
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