
Statistica Sinica 11(2001), 1141-1157

COMPUTING THE JOINT DISTRIBUTION OF GENERAL

LINEAR COMBINATIONS OF SPACINGS OR

EXPONENTIAL VARIATES

Fred W. Huffer and Chien-Tai Lin

Florida State University and Tamkang University

Abstract: We present an algorithm for computing exact expressions for the distribu-

tion of the maximum or minimum of an arbitrary finite collection of linear combina-

tions of spacings or exponential random variables with rational coefficients. These

expressions can then be manipulated or evaluated using symbolic math packages

such as Maple. As examples, we apply this algorithm to obtain the distributions of

the maximum and minimum of a moving average process, and the distribution of

the Kolmogorov-Smirnov statistic.

Key words and phrases: Kolmogorov-Smirnov statistic, moving average process,

symbolic computations.

1. Introduction

Suppose X1,X2, . . . ,Xn are i.i.d. from a uniform distribution on the interval
(0, 1), and let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the corresponding order statistics.
We define the spacings S1, S2, . . . , Sn+1 to be the successive differences between
the order statistics Si = X(i) − X(i−1), where we take X(0) = 0 and X(n+1) =
1. Finally, we define S(n) = (S1, S2, . . . , Sn+1)′. This paper is concerned with
the evaluation of probabilities involving linear combinations of spacings with
arbitrary rational coefficients. We present an algorithm for evaluating

P (AS(n) > tb), (1)

where A is any matrix of rational values, b is any vector of rational values, and
t > 0 is a real-valued scalar. (For vectors x = (xi) and y = (yi), we take x > y

to mean that xi > yi for all i.) This algorithm produces an exact expression for
the probability in (1) which is piecewise polynomial in the argument t. With
this expression, we can use symbolic math packages such as Maple to evaluate
(1) to any required degree of precision. The computer programs we have written
are also convenient for evaluating quantities which can be expressed as sums of
probabilities of the form (1).

1142 FRED W. HUFFER AND CHIEN-TAI LIN

Our methods and programs can also be used for computations involving
linear combinations of exponential random variables. In fact, by simply re-
interpreting the symbols, the expression we obtain for (1) is valid for the cor-
responding problem with exponential variates obtained by replacing S(n) by a
vector Z of i.i.d. exponentials.

Our approach in this paper has much in common with earlier work reported
in Huffer and Lin (1997a, 1999a). However, in this earlier work, A had to belong
to a special class of binary matrices, and b had to be a vector of ones. The
method in Lin (1993) can compute (1) for some, but not all, rational matrices
A. Unfortunately, one cannot characterize the problems that can be solved by
this method. With the new algorithm, we can solve a much greater variety of
problems.

The approach we use to evaluate (1) depends on the repeated, systematic
use of two basic recursions given later as equations (16) and (17). Each recursion
is used to re-express a probability like that in (1) by decomposing it into a sum
of similar, but simpler components. The same recursions are then applied to
each of these components and so on. The process is continued until we obtain
components which are simple and easily expressed in closed form.

In Section 2 we present two examples to illustrate our methods. Section 3
gives some definitions and results we use in our algorithm. Section 4 contains a
detailed description of the algorithm. Finally, Section 5 contains some remarks
on the implementation and performance of the algorithm.

2. Examples

It is convenient to regard the probability in (1) as being defined even when
the number of columns in A is less than n + 1, the number of entries in S(n).
Let k be the number of columns in A. If k < n + 1, then in computing AS(n)

we simply discard the extra entries of S(n), or equivalently, we pad the matrix
A with extra columns of zeros and define

AS(n) = (A |0)S(n) . (2)

Our expressions for (1) are written in terms of a function R(j, λ) defined, for
integers j ≥ 0 and real values λ ≥ 0, by

R(j, λ) =

(n
j

)
tj(1 − λt)n−j for λt < 1 ,

0 for λt ≥ 1 .
(3)

The dependence of R on n and t can be left implicit because these values are fixed
in any given application of our methods. If we replace S(n) in (1) by a vector Z

COMPUTING THE JOINT DISTRIBUTION 1143

of i.i.d. exponential random variables with mean 1, then our expressions remain
valid so long as we redefine R to be R(j, λ) = tje−λt/j!.

Example 1. For our first example, we compute the probability of the event

3⋂
i=0

{Si+1 + 2Si+2 + 3Si+3 + 2Si+4 + Si+5 > t} . (4)

This problem has the form in (1) with A and b given by

A =

1 2 3 2 1 0 0 0
0 1 2 3 2 1 0 0
0 0 1 2 3 2 1 0
0 0 0 1 2 3 2 1

 and b =

1
1
1
1

 . (5)

The probability of (4) as a function of t gives the distribution of the minimum
(call it L) of a particular finite moving average of spacings (or exponential random
variables). Moving averages of i.i.d. exponential random variables occur when
considering the null distribution of spectral estimates in time series. See, for
example, Theorem 6.1.1 and formula 7.6.18 in Priestley (1981).

For the probability of (4) we get

−17415/64R(0, 2/3) − 243/8R(1, 2/3) + 27/4R(2, 2/3) + 5120/3R(0, 3/4)

−21875/24R(0, 4/5)−1944/1 R(0, 5/6)+823543/576 R(0, 6/7)−40/3R(0, 1/1)

−17/12R(1, 1/1) − 11/12R(2, 1/1) + 3125/576R(0, 6/5) + 3/64R(0, 2/1) . (6)

This expression is easy to manipulate and evaluate using symbolic math packages
such as Maple. For example, it is easy to study the cdf and density of L by
plotting (6) and its derivative as functions of t. It is also routine to use (6) to
obtain the exact moments of L.

A closely related problem is to calculate the probability of the event

3⋂
i=0

{Si+1 + 2Si+2 + 3Si+3 + 2Si+4 + Si+5 ≤ t} . (7)

As a function of t, this probability gives the distribution of the maximum of the
moving average process.

Since this problem involves “≤” instead of “>”, it does not quite fit the form
in (1). However, it is easily converted into this form in one of two ways. The first
is to note that the event AS(n) ≤ tb is equivalent to (−A)S(n) ≥ t(−b) which
does have the required form (except for the unimportant difference between “>”
and “≥”). The second is to use an inclusion-exclusion argument to write

P (AS(n) ≤ tb) = 1 +
∑
π

(−1)#(π)P (A[π]S
(n) > tb) . (8)

1144 FRED W. HUFFER AND CHIEN-TAI LIN

Here, the sum is taken over all non-empty subsets π of {1, . . . , r} where r is the
number of rows of A. We define #(π) to be the number of elements in π, and
use A[π] to denote the matrix consisting of the given subset of the rows of A.
Now the terms on the right hand side have the required form.

The second method turns out to require less computational effort in this
case. Using (8), we express the probability of the event (7) as a sum of 15 terms
and evaluate each of these terms to get

1 − 81/1R(0, 1/3) + 9375/64R(0, 2/5) − 2696/27R(0, 1/2) + 4/1R(1, 1/2)

+1701/20R(0, 2/3)+40625/72 R(0, 4/5)−3125/72 R(1, 4/5)−648/1 R(0, 5/6)

+823543/576R(0, 6/7) − 65536/45R(0, 7/8) + 319/6R(0, 1/1) + 1/3R(1, 1/1)

−3125/288R(0, 6/5) + 512/27R(0, 5/4) − 8/3R(0, 3/2) + 1/16R(0, 2/1) . (9)

Example 2. As in Section 1, let X(i) = S1 + S2 + · · · + Si for i = 1, . . . , n
denote the order statistics from a sample of size n from the uniform distribution
on (0, 1). Our algorithm can be used to compute

P
(n⋂

i=1

{
ci < X(i) < di

})
(10)

for any rational values ci and di. To put this in standard form (1), we simply
rewrite each of the inequalities ci < X(i) < di as a pair of inequalities X(i) > ci

and −X(i) > −di, and then use the obvious choices of A and b to represent the
entire collection of inequalities. (Note that if ci ≤ 0 or di ≥ 1, the corresponding
inequality can be omitted.) In this situation we do not need the variable t in (1),
that is, we set t = 1.

For a second example, we compute the distribution of the Kolmogorov-
Smirnov (K-S) statistic Dn = supx |Fn(x) − F (x)|, where Fn is the empirical
cdf of n i.i.d. observations from a continuous distribution F . The distribution of
Dn does not depend on F , so we can assume that F is the uniform distribution
on (0, 1). Then it is easy to show that

{Dn < y/n} =
n⋂

i=1

{
(i − y)/n < X(i) < (i − 1 + y)/n

}
(11)

so that we may apply the discussion of the previous paragraph to compute the
distribution of Dn. For instance, when n = 10 and y = 4, this discussion leads

COMPUTING THE JOINT DISTRIBUTION 1145

to P (D10 < 4/10) = P (AS(n) > b) where

A =

−1 0 0 0 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0 0 0
−1 −1 −1 0 0 0 0 0 0 0
−1 −1 −1 −1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0
−1 −1 −1 −1 −1 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0
−1 −1 −1 −1 −1 −1 0 0 0 0

1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

and b =

−4/10
−5/10
−6/10
−7/10

1/10
−8/10

2/10
−9/10

3/10
4/10
5/10
6/10

.

(12)
Our algorithm finds the exact value of this probability to be 0.9410107548 by
setting t = 1.

We can handle much larger values of n. For example, using a program written
in Maple we obtained the following numerical results:

P (D50 < 5/50) ≈ 0.3376887295, P (D70 < 10/70) ≈ 0.8960384325 (13)

(rounded to 10 places). However, computation time increases with n. Using a
laptop with a Pentium III processor, the time required to obtain these values was
about 17 and 84 seconds, respectively.

It is, of course, well known how to compute the exact distribution of Dn, at
least when n is not too large. For instance, the original approach of Kolmogorov
(see Birnbaum (1952)) can also be used to obtain the results in (13). Explicit
piecewise polynomial expressions for the cdf of Dn may be computed using the
work of Drew, Glen, and Leemis (2000). Our algorithm has no advantage over
these other approaches for this particular problem. The advantage of our method
is its generality and ease of use; we can deal with many variations of the basic
K-S statistic just by modifying the sequences ci and di, whereas other approaches
(such as those of Drew, Glen, and Leemis) require a great deal of thought and re-
programming to adapt them to new situations. For example, we may compute
the cdf of Cn, a variant of Dn introduced by Pyke (1959) and Brunk (1962),
simply by replacing (11) by

{Cn < y/(n + 1)} =
n⋂

i=1

{
(i − y)/(n + 1) < X(i) < (i + y)/(n + 1)

}
.

As another example, Barr and Davidson (1973) give a version of the K-S statistic
for censored data in which only the smallest m order statistics are observed. We

1146 FRED W. HUFFER AND CHIEN-TAI LIN

compute the distribution of their statistic simply by replacing the intersection
from 1 to n in (11) by an intersection from 1 to m, that is, by taking ci = 0 and
di = 1 for i > m. Our algorithm may also be used for computing the distribution
of one-sided versions of the K-S statistic.

Other Applications. Our approach can be used to evaluate the joint distri-
bution of statistics which can be expressed as linear combinations of spacings or
exponential random variables. For example, we can obtain the joint distribution
of the sample mean and sample median for random samples from the uniform
distribution.

Secondly, we can evaluate various probabilities and moments related to the
number of clumps or gaps among randomly distributed points on an interval or
circle. In particular, we can use our procedure to compute the distribution of the
scan statistic on the interval or the circle. (See Glaz and Balakrishnan (1999)
for a review of research on the scan statistic.) Huffer and Lin (1997b, 1999b)
discuss these applications. Many of these problems can be solved using the
earlier algorithm in Huffer and Lin (1997a), but not all. In particular, our earlier
algorithm could not handle problems involving random points on a circle. See
Example 3 of Huffer and Lin (1997a). There are other approaches to computing
the distribution of the scan statistic on the circle. In particular, we note the
work of Weinberg (1980) and Takács (1996). However, these approaches produce
answers only when the length of the scanning arc (or window) is rational, and,
moreover, they require a separate calculation for each window length. For clumps
of a given size, our algorithm leads to a single expression (of the type in (6)) valid
for all window lengths.

Another potential application of our method is to the Bayesian bootstrap.
Suppose A is a (n + 1) × p matrix whose columns are an i.i.d. sample from an
unknown p-variate distribution F with mean vector µ. The Bayesian bootstrap
distribution for µ, which is a certain limit of posterior distributions, coincides
with the distribution of AS(n) (see Choudhuri (1998)). Similarly, the Bayesian
bootstrap distribution for the lower moments of F is the same as that of AS(n)

with a different choice of the matrix A (see Gasparini (1995)). Thus, our algo-
rithm may prove to be of use in calculating characteristics of Bayesian bootstrap
distributions.

3. Recursions and Elementary Properties

In this section we present the two recursions upon which our algorithm is
based. We also list some elementary properties which are used in the course of
the algorithm. The recursions (given in equations (16) and (17) below) are stated
in terms of a function Q defined by

Q(A, b, λ, p) = p!R(p, λ)P
(
(1 − λt)AS(n−p) > tb

)
. (14)

COMPUTING THE JOINT DISTRIBUTION 1147

Note that (3) implies that both R and Q are zero when λt ≥ 1. We chose this
particular definition of Q because it leads to a fairly simple form for the recursion
(17) below. As in the definition of R, the dependence of Q on n and t is left
implicit. The algorithm works by using the recursions to successively reduce the
dimensionality of A and b. When the dimensions reach zero and both A and b

are empty, we define
Q(∅, ∅, λ, p) = p!R(p, λ) . (15)

Let A be an arbitrary matrix. Let r and q be the number of rows and
columns of A. For any r × 1 vector x, define Ai,x to be the matrix obtained by
replacing the ith column of A by x. Let c = (c1, . . . , cq)′ be any q × 1 vector
satisfying

∑q
i=1 ci = 1. Define ξ = Ac. Then

Q(A, b, λ, p) =
q∑

i=1

ciQ(Ai,ξ, b, λ, p) . (16)

This recursion is an immediate consequence of the more general recursion given
in Huffer (1988). See Huffer (1988), Lin (1993), and Huffer and Lin (1999a) for
its applications.

Suppose A = (aij) and b = (bj) satisfy the following (for some k ≥ 1):
(R1) a1j = 0 for j > k,
(R2) aij = ai1 for j ≤ k, (i.e., the first k columns of A are identical),
(R3) a11 > 0 and b1 > 0.
Then

Q(A, b, λ, p) =
k−1∑
i=0

δi

i!
Q(A∗

(−i), b
∗ − δa∗, λ + δ, p + i) , (17)

where δ = b1/a11, A∗ is a matrix obtained by deleting the first row of A, A∗
(−i)

is a matrix obtained by deleting the first i columns of A∗, b∗ is a vector obtained
by deleting the first entry of b, and a∗ is a vector obtained by taking the first
column of A and deleting the first entry. We give a proof of this recursion at
the end of this section. Under the stated conditions, (17) allows us to reduce the
dimension of A (and b) by deleting one row.

In connection with (17), we also use the following simple recursion. If con-
ditions R1 and R2 hold, but instead of R3 we have a11 < 0 and b1 < 0, then

Q(A, b, λ, p) = Q(A∗, b∗, λ, p) − Q(Ao, bo, λ, p) , (18)

where A∗ and b∗ are as described above, and Ao and bo are obtained by negating
the first row of A and the first entry of b respectively. Note that Ao and bo now
satisfy R1–R3, so that (17) can be applied to Q(Ao, bo, λ, p). The recursion (18)
is merely a special case of the fact that P (C ∩ D) = P (C) − P (C ∩ Dc) for any
events C and D.

1148 FRED W. HUFFER AND CHIEN-TAI LIN

We now list some other properties which are useful in the process of evalu-
ating Q. These properties are straightforward and proofs are omitted. For any
permutation matrix G,
(E1) Q(A, b, λ, p) = Q(AG, b, λ, p),
(E2) Q(A, b, λ, p) = Q(GA,Gb, λ, p).
For any diagonal matrix D with strictly positive entries on the diagonal,
(E3) Q(A, b, λ, p) = Q(DA,Db, λ, p).
Let (A, b) denote the set of inequalities in (14). Property E1 follows from the
exchangeability of the spacings. Property E2 reflects the fact that we can ar-
bitrarily re-order the inequalities in (A, b). Property E3 ensures that we can
always make the entries in b to be ±1 or 0. Note that property E1 allows us to
delete any columns in A which consist entirely of zeros; we permute the columns
of A so that the columns of zeros are at the end, and then delete them by using
the convention in (2).

The value of Q remains the same when we delete redundant inequalities from
(A, b). Also, if any inequalities in (A, b) are contradictory, then Q(A, b, λ, p) = 0.
In particular, we can delete the ith row of A and the ith entry of b without
changing the value of Q whenever any of the following conditions are true:
(S1) aik ≥ ajk for all k and bi ≤ bj ,
(S2) aik ≥ 0 for all k (with aik > 0 for some k) and bi ≤ 0,
(S3) aik = 0 for all k and bi < 0.
The value of Q is 0 whenever any of the following conditions are true:
(S4) aik + ajk ≤ 0 for all k and bi + bj ≥ 0,
(S5) aik ≤ 0 for all k and bi ≥ 0.
Properties S3 and S5 allow us to eliminate terms Q in which A has any rows
consisting entirely of zeros.

The remainder of this section is devoted to a proof of the recursion in (17).
Readers can skip this proof without loss of continuity.

The expression AS(n) > tb stands for a conjunction of inequalities. Under
R1–R3, the first of these inequalities is D ≡ {a11(S1 + · · ·+Sk) > b1t} = {X(k) >

δt}. (Recall that X(k) is the kth order statistic of our n random points.) Clearly
D = ∪k−1

i=0 Di where Di is the event that exactly i of the random points fall in the
interval (0, δt], that is, Di = {X(i) ≤ δt < X(i+1)}. Thus

P (AS(n) >tb)=P (D ∩ {A∗S(n) >tb∗})=
k−1∑
i=0

P (Di)P (A∗S(n) >tb∗ |Di) . (19)

Condition on the event Di where i < k. Define the (n − i + 1)-dimensional
vector T i by T i = (X(i+1)−δt, Si+2, . . . , Sn+1)′. The vector T i gives the spacings

COMPUTING THE JOINT DISTRIBUTION 1149

between the n − i random points lying in the interval (δt, 1). Under R1–R3, the
inequalities in A∗S(n) > tb∗ are

{ n+1∑
�=1

aj�S� > bjt
}

=
{

aj1X(i+1) +
n+1∑

�=i+2

aj�S� > bjt
}

=
{

aj1(X(i+1) − δt) +
n+1∑

�=i+2

aj�S� > (bj − δaj1)t
}

=
{ n+1∑

�=i+1

aj�T
i
�−i > (bj − δaj1)t

}

for j ≥ 2. Thus we have P (A∗S(n) > tb∗ |Di) = P (A∗
(−i)T

i > t(b∗ − δa∗) |Di).
Now note that, conditional on Di, the points in (δt, 1) are i.i.d. uniformly

distributed on this interval. Thus, using L to mean “the law of”, we have
L(T i |Di) = L((1 − δt)S(n−i)) which leads to P (A∗S(n) > tb∗ |Di) = P ((1 −
δt)A∗

(−i)S
(n−i) > t(b∗ − δa∗)). Substituting this in (19), we obtain

P (AS(n) >tb)=
k−1∑
i=0

(
n

i

)
(δt)i(1 − δt)n−i

+ P
(
(1 − δt)A∗

(−i)S
(n−i) >t(b∗ − δa∗)

)
.

Here we use (x)+ = max(x, 0) to denote the positive part of x.
This last equation holds for all n and all matrices A. If we replace n by

n − p and A by (1 − λt)A, and also multiply both sides of the equation by
p!R(p, λ), then we obtain (after a little algebra) the recursion (17). Note that,
when replacing A by (1 − λt)A, we must also replace the quantities δ = b1/a11

and a∗ (which depend on A) by δ/(1 − λt) and (1 − λt)a∗ respectively.
When A consists of a single row, then A∗ and b∗ are “empty”. The definition

in (15) has been chosen so that (17) remains true even in this case.

4. The Algorithm

Our goal is to evaluate P (AS(n) > tb) = Q(A, b, 0, 0) through a series of
steps. At each step, (16) or (17) is used. Each application of these recursions
produces terms (on the right hand side of (16) or (17)) which are “simpler” than
the parent term (on the left hand side). The net effect is to successively reduce
the dimensionality of the A-matrices in these terms until at last we arrive at
terms which can be evaluated using (15) and (3).

We assume the matrix A consists of blocks arranged in a lower triangular
fashion. A typical example is given in Figure 1, here a, b, c, . . ., denote distinct
nonzero rational numbers. We say that such a matrix has been put in “standard
form”. To be precise, a matrix A is in standard form if, for some value of B ≥ 1,
we have the following.

1150 FRED W. HUFFER AND CHIEN-TAI LIN

(i) A is a B × B array of blocks. We refer to these blocks by their positions
(�,m) in this array where 1 ≤ �,m ≤ B.

(ii) Blocks above the diagonal (with � < m) consist entirely of zeros.
(iii) Blocks along the diagonal (with � = m) contain no zeros.

a a 0 0 0 0 0
b b c d d 0 0
0 0 e e f 0 0
g h 0 0 q r r
s t u u u v w

Figure 1. Example of a matrix in standard form.

Any matrix A can be arranged in standard form as follows. First, the matrix
is simplified (or the corresponding term is deleted) by using properties S1–S5.
In particular, any rows or columns consisting entirely of zeros are eliminated.
Then the permutation properties E1 and E2 are employed to arrange the matrix
into blocks satisfying (ii) and (iii). There are many ways to do this. In our
algorithm, we try to make the region of zeros in the upper right as large as
possible, but the success of our algorithm does not depend on our finding the
best such arrangement. The approach in our current program is to use E2 to
arrange the rows according to the number of nonzero entries in each row, the
rows with the fewest nonzero entries being placed at the top of the matrix. Then
we use E1 to move the zero entries to the rightmost columns of the matrix as
much as possible.

Note that the blocks of a matrix in standard form can (and often do) consist
of a single row or column, or even a single entry. Also, if a matrix contains no
zero entries, then it is already in standard form (with B = 1).

Our standard form is similar to various conditions found in the literature
under names like lower block triangular form. However, the latter often carries
the requirement that the blocks along the diagonal be square matrices. Also,
we require that diagonal blocks be entirely free of zeros and this is not a part
of the usual definition of lower block triangular. The use of row and column
permutations to put matrices in lower block triangular form (as we do above) is
well known. See Duff (1977) for example.

We begin with A in standard form and, each time (16) or (17) is used, the
resulting A-matrices are put back into standard form.

To motivate the form of our algorithm, note that

we can always reduce the dimensionality of terms which
satisfy conditions R1 and R2.

(20)

COMPUTING THE JOINT DISTRIBUTION 1151

Here are the various cases. If a11 > 0 and b1 > 0, apply (17) to this term and
reduce the number of rows. If a11 < 0 and b1 < 0, apply (18) followed by (17) to
reduce the number of rows. If a11 > 0 and b1 ≤ 0, then (using property S2) we
can delete the first row of A and the first entry of b without changing the value
of the term. Finally, if a11 < 0 and b1 ≥ 0, then (by property S5) the value of
the term is zero.

The strategy is to use repeated applications of (16) to enlarge the region of
zeros (the union of those blocks above the diagonal) and “drive” the terms closer
to conditions R1 and R2. Then, when terms satisfy R1 and R2, we use (17) to
reduce the dimensionality. Many different algorithms can be constructed using
this basic strategy. We present one such scheme below.

We first describe how (16) gets used in our algorithm. Suppose that D is
one of the blocks in the standard form for A, and that the first row of D contains
distinct values α and β in columns i and j of A. To be precise, assume that D
is the (�,m) block and that it begins in row r of A. Then α = ari and β = arj.
We can use (16) to simplify A in either of the following two cases.
Case 1. � = m. Take the vector c in (16) to have entries ci = β/(β − α),

cj = −α/(β − α), and ck = 0 for k �= i, j.
Case 2. � > m and aki = akj for k < r. Suppose the last nonzero entry in row r

of A occurs in column s, and the value of this last nonzero entry is γ.
Take the vector c in (16) to have entries ci = γ/(β−α), cj = −γ/(β−α),
cs = 1, and ck = 0 for k �= i, j, s.

In Case 1 or Case 2, the vector ξ = Ac will have zeros in entries 1 through r.
Thus, if we use this vector in (16) and rearrange the resulting terms back to
standard form, we obtain new terms in which the region of zeros is strictly larger
than in the parent term.

We illustrate these cases using the example matrix in Figure 1. The (2, 2)
block gives an instance of Case 1 with i = 3, j = 4, and r = 2. The (3, 1) block
gives an instance of Case 2 with i = 1, j = 2, and r = 4.

Combining the ingredients given above, we can now give a complete descrip-
tion of our algorithm. To evaluate Q(A, b, λ, p), do the following.
(a) Search the nonzero blocks of A and find the first block which contains two

distinct values in the same row. If there are no such blocks, go to (b). The
blocks may be searched in any order so long as a block is never searched
until all the blocks lying directly above it have already been searched. (One
possible search order is that in Figure 2.) Using property E2, move the row
containing the two distinct values so that it becomes the top row of the block.
The resulting block must satisfy the conditions of Case 1 or Case 2. Now
apply (16).

(b) If no blocks contain any rows with distinct values, then R1 and R2 must be
true. Apply the discussion following (20) to simplify this term.

1152 FRED W. HUFFER AND CHIEN-TAI LIN

1
2 5
3 6 8
4 7 9 10

Figure 2. One possible ordering for searching the blocks.

Now apply this same procedure to any terms produced in (a) or (b) above. As
the algorithm proceeds, terms which can be evaluated using (15) are collected
together. At the termination of the algorithm, these terms make up our answer.

It is clear that every term Q(A, b, λ, p) where A is in standard form can be
simplified by using (a) or (b) above. Moreover, all new terms produced by (a) or
(b) involve matrices having either a larger region of zeros or a smaller number of
rows than A. Thus the algorithm terminates after finitely many steps.

5. Implementation and Performance

When writing a computer program to implement this algorithm, there are
many issues that must be dealt with. We shall briefly comment on some of these.
In our current work we use a C program (available from the authors) to carry
out the algorithm and construct expressions like those in (6). We then use Maple
to manipulate and evaluate these expressions.

When our C program is executed, a large number of terms are generated by
the successive application of (16) and (17). At any intermediate point during
execution, the terms that remain to be evaluated may be thought of as a sum of
the form ∑

i

wiQ(Ai, bi, λi, pi) , (21)

where the values wi are rational numbers. The computer program must decide
which of the terms in (21) is the next to be simplified using the process in (a)
and (b) of Section 4. Our current program orders the terms in (21) primarily
according to the dimension of the matrix Ai : the term with the largest dimension
is evaluated first. The terms are ordered first according to the number of rows
in Ai, terms having the same number of rows are then ordered by the number of
columns. Next, terms having the same number of rows and columns are ordered
by the total number of entries in the blocks which lie on or below the diagonal of
Ai ; terms with the largest total are evaluated first. (For later use, we introduce
notation for this total. Let A be any matrix arranged in standard form. Let
r� × cm be the dimension of the (�,m) block of A. Define the total T = T (A) by
T (A) =

∑
�≥m r�cm .) Finally, any terms having the same matrix Ai in (21) are

grouped together; this improves the efficiency of the program since terms with
the same Ai are simplified in the same way during applications of (16).

COMPUTING THE JOINT DISTRIBUTION 1153

The ordering of terms in (21) described above serves two purposes. First,
it facilitates searching the list of terms. Secondly, it improves the efficiency of
the algorithm by guaranteeing that no term Q(Ai, bi, λi, pi) will arise more than
once in the course of the evaluation process. To see this, remember that all the
new terms produced by (a) or (b) of Section 4 involve matrices having either a
larger region of zeros (and hence a smaller value of T) or a smaller number of
rows than in the parent term.

During the evaluation process, new terms are combined with old terms when-
ever possible. That is, whenever a new term w′

iQ(Ai, bi, λi, pi) is created which
is identical to an old term wiQ(Ai, bi, λi, pi) (except perhaps for wi), they are
combined into a single term (w′

i + wi)Q(Ai, bi, λi, pi). The rational values wi

and λi, and the entries in Ai and bi are all represented by pairs of integers (the
numerator and denominator) and manipulated using exact rational arithmetic.

The algorithm can, in principle, compute (1) exactly for any A and b with
rational entries. However, as we increase the dimensionality of A, more and
more computer time and memory is required. This is probably unavoidable in
any algorithm based primarily on (16) and (17).

It is very difficult to predict how much time and memory will be needed to
compute (1) in any particular case. There is no simple relationship between the
dimension of the matrix A and the amount of computational effort required. One
reason for this is that the total number of terms that arise during the course of
the algorithm is greatly affected by how often we are able to combine identical
terms and by how often we are able to employ the simplification properties S1–S5
in Section 3. The amount of combination and simplification which occurs seems
to vary greatly from problem to problem.

By considering T (A), it is possible to give a very crude upper bound for
the total number of terms that arise. At each step of the algorithm, one of
three things happens: (i) recursion (16) is applied as in Case 1 of Section 4;
(ii) recursion (16) is applied as in Case 2; (iii) recursion (17) is used. For each
of these possibilities, the new terms which are produced have a strictly smaller
value of T than the original term. In the worst case, (i) leads to two new terms
having values of T one less than in the parent term. Repeated application of
(i) then gives (in the worst case) successive doublings of the number of terms
accompanied by successive reductions of T by one. It can be seen that repeated
application of possibilities (ii) or (iii) results in a smaller number of terms than
this. (A single application of (ii) or (iii) can produce three or more new terms,
but this greater number of terms is offset by a greater reduction in the value of T .)
Arguing in this way, we find that the total number of terms which arise during
the evaluation of P (AS(n) > tb) can grow no faster than constant × 2T (A). This
rate of growth is very pessimistic and assumes, for instance, that no combination

1154 FRED W. HUFFER AND CHIEN-TAI LIN

or simplification occurs in the course of the algorithm. In real problems, the
computational resources required to compute (1) can increase very rapidly with
the dimension of A, but do not seem to climb as fast as the upper bound would
suggest.

To illustrate these remarks, we list in Table 1 the times required by our C
program to compute (1) for some matrices A having a “moving average” pattern
like that in (5). We take b to be a vector of ones throughout. The computations
were done on a laptop computer with a Pentium III processor and 64 megabytes
of RAM. For A in (5), computations to (6) took about 2 seconds. If we continue
the pattern in (5) by adding another row (with nonzero entries (1, 2, 3, 2, 1)) to the
matrix, computation time increases dramatically to about 210 seconds. Adding
a sixth row causes a further dramatic increase to about 29,000 seconds. These
results, given in the third row of Table 1, show how rapidly computation time
can grow with the size of the problem. If, however, in each row of these matrices
we replace the pattern (1, 2, 3, 2, 1) by (1, 1, 1, 1, 1), the situation, described in the
first row of Table 1, is very different. Computation times are now much smaller,
and rate of growth (with the size of the problem) is much slower (the pattern
(1, 1, 1, 1, 1) leads to much more combination and simplification of terms).

Table 1. Elapsed time (in seconds) required for various moving average com-
putations (similar to Example 1) performed on a laptop computer with a
Pentium III processor.

Pattern 4 rows 5 rows 6 rows
(1) (1, 1, 1, 1, 1) .010 .013 .016
(2) (2, 1, 1, 1, 1) .12 7.1 930 †
(3) (1, 2, 3, 2, 1) 2.0 210 29000 †

It is clear from the second and third rows of Table 1 that, for problems of
a general nature, our algorithm will be useful only for matrices A with fairly
modest dimensions. For some special classes of problems, such as those in the
first line of Table 1, we can handle somewhat larger matrices. There is one
special class of problems where we can handle quite large matrices; these are the
problems of type (10) considered in Example 2. (Recall that we were able to
calculate tail probabilities for the Kolmogorov-Smirnov statistic with n = 70.)
These problems are special because their solution only requires (17). To see why
this is so, consider the matrix A in (12) that satisfies conditions R1 and R2 of
Section 3. We can immediately apply (17). Moreover, all resulting terms satisfy
R1 and R2 so that (see the discussion following (20)) we can apply (17) to them
also, and so on. Since we do not have to use (16) for this class of problems,
the total number of terms grows more slowly with the dimension of the problem.

COMPUTING THE JOINT DISTRIBUTION 1155

Also, since each application of (17) reduces the number of rows by exactly one, we
know, at the start of any problem of this type, how many steps will be involved
in its solution.

Our current C programs do not actually implement a true arbitrary precision
rational arithmetic; we simply store integers (the numerators and denominators)
as variables of type “double” or “long double”, depending on the version of the
program. As a consequence, if integers become too large, we lose the rightmost
digits, and the resulting answers are no longer exact. This happened in the two
cases marked with a dagger (†) in Table 1. The answers obtained in these two
cases, although not exact, seem to be highly accurate; consistency checks suggest
that numerical values computed using these answers are accurate to at least 9
decimal places. In other cases where such errors have occurred we have obtained
similar accuracy. However, when answers are not exact, it is generally difficult to
determine their accuracy; we do not have any theoretical results allowing us to
bound the magnitude of the errors. This problem can be avoided (at the cost of
program speed) by implementing the entire algorithm within Maple, which does
have exact rational arithmetic. Some progress has been made in this direction; we
have written a Maple program implementing that subset of our algorithm needed
to handle the problems of type (10) discussed above. We used this program for
the calculations in Example 2.

We would like to conclude with a few remarks comparing the algorithm of this
paper with that in Huffer and Lin (1997a) and the earlier unpublished algorithm
in Lin (1993). We shall refer to them, in the order just mentioned, as A1, A2,
and A3. These algorithms are similar in that they all rely on (16). However,
this recursion is used rather differently in each of the algorithms. While (17)
plays a very important role in A1, there is nothing analogous to it in A2 or A3.
Similarly, the formulation of our problem in terms of the function Q, which is
expressly designed for use with (17), is new to A1.

The algorithm A2 is specialized: it can only be used to calculate (1) for a
special class of binary matrices A. However, for this special class of problems,
it is more efficient than either A1 or A3. In particular, A2 is the best algorithm
for computing the distribution of the scan statistic on the interval and for the
applications considered in Huffer and Lin (1997b). The algorithm A3 is more
general than A2, and can compute (1) for a variety of matrices A with rational
entries. Unfortunately, A3 does not work for all rational matrices (for instance,
it fails for the Kolmogorov-Smirnov problems considered in Example 2, and for
problems like those in rows 2 and 3 of Table 1), and we have no results to tell
us in advance whether it will work on any given problem. Our current algorithm
A1 remedies this; it is guaranteed to produce a solution (in finitely many steps)
for any rational matrix A.

1156 FRED W. HUFFER AND CHIEN-TAI LIN

Algorithm A3 uses (16) in a complicated and somewhat ad hoc fashion while
A1 uses (16) in a very simple way: the number of nonzero entries in the vector c is
always two or three. However, the more complicated approach in A3 does seem to
be more efficient than A1 on some problems. For instance, A3 is better than A1
on problems involving the circular scan statistic (but even for this restricted class
of problems we cannot prove that A3 will always work). It should be possible
to modify A1 to include additional ways to use (16). If these new methods
of applying (16) are used only when they lead to a decrease in the value of
T (A), the argument given in this paper will continue to hold and guarantee that
the algorithm leads to a solution. Changing A1 in this way might increase its
efficiency, at least for special classes of problems. We plan to investigate these
possibilities.

Acknowledgements

We thank the two referees and an associate editor for suggestions which have
improved our paper.

References

Barr, D. R. and Davidson, T. (1973). A Kolmogorov-Smirnov test for censored samples. Tech-

nometrics 15, 739-757.

Birnbaum, Z. W. (1952). Numerical tabulation of the distribution of Kolmogorov’s statistic for
finite sample size. J. Amer. Statist. Assoc. 47, 425-441.

Brunk, H. D. (1962). On the range of the difference between hypothetical distribution function

and Pyke’s modified empirical distribution function. Ann. Math. Statist. 33, 525-532.

Choudhuri, N. (1998). Bayesian bootstrap credible sets for multidimensional mean functional.

Ann. Statist. 26, 2104-2127.

Drew, J. H., Glen, A. G. and Leemis, L. M. (2000). Computing the cumulative distribution

function of the Kolmogorov-Smirnov statistic. Comput. Statist. Data Anal. 34, 1-15.

Duff, I. S. (1977). Permutations to block triangular form. J. Inst. Math. Appl. 19, 339-342.

Gasparini, M. (1995). Exact multivariate Bayesian bootstrap distributions of moments. Ann.

Statist. 23, 762-768.

Glaz, J. and Balakrishnan, N. (1999). Introduction to scan statistics. In Scan Statistics and

Applications (Edited by J. Glaz and N. Balakrishnan), 3-24. Birkhäuser, Boston.

Huffer, F. W. (1988). Divided differences and the joint distribution of linear combinations of

spacings. J. Appl. Probab. 25, 346-354.

Huffer, F. W. and Lin, C. T. (1997a). Computing the exact distribution of the extremes of

sums of consecutive spacings. Comput. Statist. Data Anal. 26, 117-132.

Huffer, F. W. and Lin, C. T. (1997b). Approximating the distribution of the scan statistic using

moments of the number of clumps. J. Amer. Statist. Assoc. 92, 1466-1475.

Huffer, F. W. and Lin, C. T. (1999a). An approach to computations involving spacings with

applications to the scan statistic. In Scan Statistics and Applications (Edited by J. Glaz

and N. Balakrishnan), 141-163. Birkhäuser, Boston.

Huffer, F. W. and Lin, C. T. (1999b). Using moments to approximate the distribution of the

scan statistic. In Scan Statistics and Applications (Edited by J. Glaz and N. Balakrishnan),

165-190. Birkhäuser, Boston.

COMPUTING THE JOINT DISTRIBUTION 1157

Lin, C. T. (1993). The computation of probabilities which involve spacings, with applications

to the scan statistic. Ph.D. Thesis, Florida State University, Tallahassee.

Priestley, M. B. (1981). Spectral Analysis and Time Series. Academic Press, London.

Pyke, R. (1959). The supremum and infimum of the Poisson process. Ann. Math. Statist. 30,

569-576.

Takács, L. (1996). On a test for uniformity of a circular distribution. Math. Methods Statist.

5, 77-98.

Weinberg, C. R. (1980). A test for clustering on the circle. Ph.D. Thesis, University of Wash-

ington, Seattle.

Department of Statistics, Florida State University, Tallahassee, FL 32306, U.S.A.

E-mail: huffer@stat.fsu.edu

Department of Mathematics, Tamkang University, Tamsui 251, Taiwan.

E-mail: chien@math.tku.edu.tw

(Received February 2000; accepted March 2001)

