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Abstract: Let (Xj , Yj)
n
j=1 be a realization of a bivariate jointly strictly station-

ary process. We consider a robust estimator of the regression function m(x) =

E(Y |X = x) by using local polynomial regression techniques. The estimator is a

local M-estimator weighted by a kernel function. Under mixing conditions satisfied

by many time series models, together with other appropriate conditions, consistency

and asymptotic normality results are established. One-step local M-estimators are

introduced to reduce computational burden. In addition, we give a data-driven

choice for minimizing the scale factor involving the ψ-function in the asymptotic

covariance expression, by drawing a parallel with the class of Huber’s ψ-functions.

The method is illustrated via two examples.
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1. Introduction

Consider a bivariate sequence of jointly strictly stationary random vectors
{(Xj , Yj), j = 1, . . . , n}. Let m(x) = E(Y |X = x) denote the regression function
of Y on X, assumed to exist. When the sequence is i.i.d., the nonparametric
estimation of m(x) was first introduced independently by Nadaraya (1964) and
Watson (1964): for a sample of size n,

m̂(x) =
n∑
j=1

wn(x,Xj)Yj , (1.1)

where

wn(x,Xj) = K(
Xj − x

hn
)/

n∑
i=1

K(
Xi − x

hn
). (1.2)

The kernel function K(·) is typically a symmetric density function, and the se-
quence of positive real numbers hn, bandwidths, control the amount of smooth-
ing. For the present discussion, we label (1.1) with weights (1.2) the Nadaraya-
Watson, or N-W estimator. More generally, the N-W estimator can be thought
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of as the solution of the following optimization problem:

m̂(x) = arg min
α

n∑
j=1

ζ(Yj − α)K(
Xj − x

hn
), (1.3)

where, for the N-W estimator, ζ(v) = v2, suggesting the least squares criterion.
Other choices of ζ are possible, for example in the context of robustness (see
Hampel, Ronchetti, Rousseeaus and Stahl (1986) and Huber (1981)), leading
to the local M-type regression estimators (see Cleveland (1979), Härdle (1990),
Boente and Fraiman (1989), for example). For the purpose of this discussion,
we label the solution of (1.3) under general ζ the local constant kernel regression
estimator (LOCKRE).

When the data exhibit dependence a structural assumption, widely adopted
in the study of nonparametric regression estimation, is the notion of strong-
mixing (or α-mixing). Introduced by Rosenblatt (1956), strong mixing is a prop-
erty shared by many time series models, including “generally” the autoregressive
linear processes (see Athreya and Pantala (1986), Boente and Fraiman (1990).)
Among a variety of mixing conditions, strong mixing is a mild restriction toward
achieving asymptotic normality (see Bradley (1986), Doukhan (1994)). Under
appropriate assumptions on the mixing rates, it was demonstrated that the per-
formance of LOCKREs under mixing is essentially the same as under the i.i.d.
assumption in terms of convergence rates, asymptotic normality and choice of
data-dependent bandwidths. In particular, LOCKREs under strong mixing ex-
hibit the same bias and boundary problems as the i.i.d. case (see Baek and We
-hyly (1993) and Boente and Fraiman (1995)).

In the i.i.d. setting, Fan (1993) showed that local polynomial regression esti-
mators have advantages over LOCKREs in terms of design adaptation and high
asymptotic efficiency. The local polynomial regression estimators are constructed
according to the following criterion: find ak’s so as to minimize

n∑
j=1

[Yj −
p∑
k=0

ak(Xj − x)k]2K(
Xj − x

hn
). (1.4)

Then m(x) is estimated by the solution, â0, of a0 from (1.4). Similarly, m(j)(x),
the j-th derivative of m at x, is estimated by j!âj . We label the regression estima-
tors so constructed as local polynomial kernel regression estimators (LOPKREs).
Obviously, the class of LOPKREs includes LOCKREs, but for the case p = 0 the
advantages of reducing bias and boundary adjustment are lost. So for LOPKREs
we will assume p > 0. For a detailed account of LOPKREs in the i.i.d. case, see
Fan and Gijbels (1996). For mixing processes, Masry and Fan (1997) showed
that LOPKREs share essentially the same asymptotic behavior as in i.i.d. cases.
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As in LOCKREs, LOPKREs can be robustified by using a general ζ function
instead of quadratic loss in (1.4) to form local M-type regression estimators. We
will continue to call such estimators LOPKREs. Fan, Hu and Truong (1994),
Fan and Jiang (2000), and Welsh (1996) pointed out that, for i.i.d. cases, such
LOPKREs cope well with edge effects and are effective methods for derivative
estimation. It is interesting to point out that the concept of robust local poly-
nomial regression was previously introduced by Cleveland (1979), leading to the
so-called LOWESS or Locally Weighted Smoothing Scatterplots. Theoretical
endorsement of Cleveland’s LOWESS was given in Fan and Jiang (2000).

For the present investigation, we present asymptotic results on LOPKREs
under certain mixing conditions. This not only extends the results of Fan and
Jiang (2000) to non-i.i.d. cases, but overcomes the lack of robustness for the
estimators in Masry and Fan (1997). Pointwise asymptotic normality of our esti-
mators enables one to find the asymptotically optimal variable bandwidth choice,
and thereafter allows one to develop data-driven optimal variable bandwidth by
using the idea of Fan and Gijbels (1995). To reduce computational burden, we
study one-step local M-estimators which share the same asymptotic behavior as
fully iterative M-estimators. A data-driven method for choosing the ψ-function
(derivative function of ζ) is proposed. Our assumptions on the ψ-function are
considerably weaker than in earlier works, and we do not require the symmetry
of the conditional distribution of the error given X (see details in Section 2).
The dependence structures assumed in this study are similar to the ρ-mixing
and α-mixing conditions in Masry and Fan (1997).

The outline of this paper is as follows. In Section 2, we introduce the no-
tation and assumptions used throughout the paper. Section 3 concentrates on
the asymptotic properties of the proposed estimators, including pointwise consis-
tency and joint asymptotic normality. In Section 4, one-step local M-estimators
are studied and shown to have the same asymptotic behavior as their correspond-
ing M-estimators. Section 5 includes the data-driven method for choosing the
ψ-function within the class of Huber’s ψ-functions to minimize the asymptotic
variance, hence the asymptotic mean squared error, since asymptotic bias does
not depend on the ψ-function. The idea is illustrated by examples in Section 6.
Technical proofs are given in the Appendix.

2. Notations and Assumptions

As mentioned earlier, regression estimators constructed according to (1.4)
are generally not robust. To overcome this shortcoming, we employ an outlier-
resistant function ζ and propose to find aj ’s to minimize

n∑
i=1

ζ(Yi −
p∑
j=0

aj(Xi − x)j)K(
Xi − x

hn
). (2.1)
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Equivalently, when ζ is differentiable with derivative ψ, we find aj ’s that satisfy
the local estimation equations:

Ψnk(a(x)) :=
n∑
i=1

ψ(Yi −
p∑
j=0

aj(Xi − x)j)
1
hn
K(

Xi − x

hn
)(Xj − x)k = 0, (2.2)

for k = 0, . . . , p. Define Ψn(a(x)) := (Ψn0(a(x)), . . . ,Ψnp(a(x)))T .
The local M-type estimator of a(x) ≡ (m(x), . . ., m(p)(x)/p!)T is the solution

to (2.2). We denote it by â(x) = (â0(x), . . . , âp(x))T .
For a given point x0 in the interior of the support of the marginal density

fX(x), the following notation and assumptions are needed.

(A1) The kernel function K is a continuous probability density function with
bounded support [−1, 1], say. Let s� =

∫ 1
−1K(u)u�du, v� =

∫ 1
−1 u

�K2(u)du,
for � ≥ 0.

(A2) The regression function m(·) has a continuous (p + 1)th derivative at the
point x0.

(A3) The sequence of bandwidths hn tends to zero and nhn → +∞ as n→ +∞.
(A4) E[ψ(ε)|X = x0] = 0 with ε = Y −m(X).
(A5) The marginal density fX(·) ofXi is continuous at the point x0 and fX(x0)>

0.
(A6) The function ψ(·) is continuous and has a derivative ψ′(·) almost ev-

erywhere. Further, assume that Γ1(x) = E[ψ′(ε)|X = x] and Γ2(x) =
E[ψ2(ε)|X = x] are positive and continuous at x0, and there exists γ > 0
such that E[|ψ2+γ(ε)| |X = x] is bounded in a neighborhood of x0.

(A7) The function ψ′(·) satisfies that E[sup|z|≤δ |ψ′(ε+z)−ψ′(ε)| |X = x] = o(1)
and E[sup|z|≤δ |ψ(ε+z)−ψ(ε)−ψ′(ε)z| |X = x] = o(δ), as δ → 0, uniformly
in x in a neighborhood of x0.

(B1) Either the process {(Xj , Yj)} is ρ-mixing with
∑
� ρ(�) < +∞, or is strongly

mixing with
∑
� �
a[α(�)]b < +∞, for some 0 < b < 1 and a > b, where ρ(�),

α(�), and the definitions of ρ-mixing and strongly mixing are the same as
in Masry and Fan (1997).

(B2) f(u, v; �) ≤M1 < +∞, E{ψ2(ε1)+ψ2(ε�) | X1 = u, X� = v} ≤M2 < +∞,
∀� ≥ 1, for u and v in a neighbourhood of x0, where f(u, v; �) is the joint
density of X1 and X�+1.

(B3) For ρ-mixing and strongly mixing processes, we assume there exists a se-
quence of positive integers satisfying sn → +∞ and sn = o(

√
nhn) such

that
√
n/hnρ(sn) → 0 and

√
n/hnα(sn) → 0, as n→ +∞.

(B4) The conditional distribution of ε given X = x is continuous at the point
x = x0.
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The above conditions are satisfied in many applications. Conditions (A1)-
A(7) were proposed by Fan and Jiang (2000), where monotonicity and bound-
edness of ψ(x) are not required. Condition (A7) is weaker than the Lipschitz
continuity of the function ψ′(x). It appears to be a minimal smoothness assump-
tion on ψ(x). In particular, Huber’s ψ(x) function satisfies this requirement.
The bounded support restriction on K(·) is not essential, it is imposed to avoid
technicalities of proofs and can be removed if we put restriction on the tail of
K(·). We do not need the convexity of ζ(·) required in Fan, Hu and Truong
(1994). Also, we do not need the symmetry of the conditional distribution of ε
given X. That is required by Härdle and Tsybakov (1988). The conditions (B1),
(B3) and (B4) are the same as those in Masry and Fan (1997). Condition (B2) is
a natural modification of the condition 2(ii) in Masry and Fan (1997). It is worth
pointing out that the conditions we employ on the ψ-function are considerably
weaker than those of Bianco and Boente (1998).

3. Asymptotic Properties

In this section, we establish the consistency and joint asymptotic normality
of LOPKREs. Let H = diag(1, hn, . . . , hpn), cp = (sp+1, . . . , s2p+1)T , S = (si+j−2)
and S∗ = (vi+j−2), (1 ≤ i ≤ p+ 1; 1 ≤ j ≤ p+ 1) be (p+ 1) × (p+ 1) matrices.

Theorem 3.1. Under (A1)-(A7) and (B1)-(B2), there exist solutions, denoted
by â(x0), to (2.2) such that H(â(x0) − a(x0))

P−→ 0, as n → ∞. If in addition
(B3) and (B4) hold, then

√
nhn {H(â(x0) − a(x0) − m(p+1)(x0)hp+1

n

(p+ 1)!
S−1cp(1 + op(1))}

L−→ N (0, σ2(x0)S−1S∗S−1/fX(x0)), (3.1)

where σ2(x0) = Γ2(x0)/Γ2
1(x0).

Remark 3.1. Assume the design density has the bounded support [0, 1]. Con-
sider the local polynomial fitting at the point x0 = dhn in the left boundary
region for some positive constant 1 ≤ d ≤ 0. Then (3.1) continues to hold with
slight modifications on the definition of moments:

si =
∫ 1

−d
uiK(u)du, and vi =

∫ 1

−d
uiK2(u)du. (3.2)

A similar result holds for right boundary points. This property implies that the
local polynomial M-estimation shares a similar boundary adaptation with least-
squares local polynomial fitting (see Ruppert and Wand (1994)). (3.1) implies
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that the optimal bandwidth for estimating m(k)(x0), in the sense of minimizing
the mean squared error of the asymptotic distribution, is

hk,opt = n
− 1

2p+3 { [(p+ 1)!]2Vkσ2(x0)/fX(x0)
2(p + 1 − k)[m(p+1)(x0)]2B2

k

}1/(2p+3), (3.3)

where Bk and Vk are, respectively, the kth element of S−1cp and the kth diagonal
element of S−1S∗S−1.

4. One-Step Local M-estimators

The previous section establishes asymptotic properties of LOPKREs under
certain conditions. It is clear that these properties reflect those mentioned in
Fan and Jiang (2000) for i.i.d. data.

In practice, the computation of the estimator â(x0) is a data issue. We use
Newton’s method as in Fan and Jiang (2000), with initial value 0a(x0) given by
the local least squares estimator as in Masry and Fan (1997). Then the first
iteration has the form

1a(x0) = 0a(x0) − W−1
n Ψn(0a(x0)), (4.1)

where Wn = (w�m) is a (p + 1) × (p + 1) matrix with w�m = ∂
∂am

Ψn�(0a(x0)),
for � = 0, . . . , p and m = 0, . . . , p. We label 1a(x0) in (4.1) the one-step local
M-estimator.

One-step local estimators have the same computational expediency as local
least squares estimators. We now show that one-step local M-estimators have the
same asymptotic performance as local M-estimators â(x0), as long as the initial
estimators are good enough (i.e., 0a(x0) satisfies the assumption in Theorem 4.1
below.) In other words, one-step local M-estimators reduce computational cost
without downgrading performance.

Theorem 4.1. Assume 0a(x0) satisfies H[0a(x0) − a(x0)] = Op(hp+1
n + 1√

nhn
).

Then, under conditions (A1)-(A7) and (B1)-(B4), the normalized one-step local
M-estimators satisfy

√
nhn {H(1a(x0) − a(x0) − m(p+1)(x0)hp+1

n

(p + 1)!
S−1cp(1 + op(1))}

L−→ N (0, σ2(x0)S−1S∗S−1/fX(x0)), (4.2)

where σ2(x0) is the same as that in Theorem 3.1.

Remark 4.1. The condition on the initial estimators in Theorem 4.1 is mild.
Most commonly used nonparametric regression estimators satisfy the condition
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(see, e.g., Boente and Fraiman (1995), Masry and Fan (1997)). Especially, the
local median estimator is a sensible and robust choice for the initial estimator.

5. Choice of ψ-function

In this section, we consider a minimax choice of the ψ-function with respect
to Huber’s ψk-class (see Huber (1964)). We indicate a data-driven selection of
the parameter k.

Let F be the distribution function of ε, C be the set of all symmetric con-
taminated normal distributions F = (1 − t)Φ + tH, where 0 ≤ t ≤ 1 is fixed
and H varies over all symmetric distributions. By Theorem 3.2, we define an
estimator of ψ to be the ψ∗ which minimaxes the asymptotic variance parameter
σ2(ψ, x0, F ) = Γ2(x0)/Γ2

1(x0) = E(ψ2(ε)|X = x0)/[E(ψ′(ε)|X = x0)]2, that is

sup
F∈C

σ2(ψ∗, x0, F ) = inf
ψ∈“nice”

sup
F∈C

σ2(ψ, x0, F ), (5.1)

where ψ ∈ “nice” means that the ψ-function satisfies all conditions related to
ψ(x) in Section 2.

For fixed x0, since the asymptotic variance parameter is similar to Huber’s
σ2(T, F ) for the location model (see Huber (1964)), it can be shown that ψ∗

corresponds to the Huber’s ψ-functions: ψk(u) = max{−k,min(k, u)}, where k is
a parameter. Here we consider the following data-driven choice for the parameter
k in Huber’s ψk-function. Theoretically, one should choose kopt to minimize
σ2(ψk, x0, F ). Unfortunately, σ2(ψk, x0, F ) includes the unknown distribution of
the error. However, σ2(ψk, x0, F )/s0fX(x0) can be consistently estimated by

σ̂2(ψk, x0, F ) =
n−1h−1

n

∑n
j=1 ψ

2
k(ε̂j)K((Xj − x0)/hn)

[n−1h−1
n

∑n
j=1 ψ

′
k(ε̂j)K((Xj − x0)/hn)]2

, (5.2)

where ε̂j = Yj − m̂(x0), and m̂(x0) is any consistent estimator of m(x0), such as
the initial estimator in (4.1). Therefore, one viable choice for k is to find k̂ to
minimize σ̂2(ψk, x0, F ). Certainly, one may study the optimal choice of ψ, in the
minimax sense, for the robust local polynomial regression under other contami-
nation distributions classes, such as the asymmetric contamination considered in
Jaeckel (1971), by using the same idea. On the other hand, the regression case
considered in this article is much more complicated, and we will not pursue it
here.

6. Numerical Illustrations

In this section, we present two examples for the case p = 1. The objective is
to illustrate our method rather than giving a completely data-driven recipe.
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Example 1. The first example is based on a Monte Carlo experiment. We
generated 400 samples, each of size n = 200 from the model:

Yt = 0.3 exp{−4(Xt + 1)2} + 0.7 exp{−16(Xt − 1)2} + εt, (6.1)

where Xt = −0.4Xt−1 + ut, ut
iid∼ N (0, 0.82) for all t = 1, . . . , 200, and the

error process εt is independent of Xt, generated according to the contaminated
Gaussian model εt

iid∼ 0.1N (0, 25τ2) + 0.9N (0, τ2). We chose τ = 0.075 so that
V ar(εt) = 0.2482. The model was used in Fan and Gijbels (1995) except that
Xt ∼ Uniform(−2, 2) and εt

iid∼ N (0, 0.12).
For each sample, we use the optimal bandwidth hopt as described in (3.3) and

the standard Gaussian kernel. For robust implementation, Huber’s ψk- function
was employed with k̂ selected according to (5.2) for each sample. We obtained
the one-step local M-estimator by using the estimator of Masry and Fan (1997) as
the initial value. Then the one-step local M-estimator was used as initial value to
get the two-step local M-estimator, which was shown to be nearly as efficient as
the fully iterative M-estimator in Fan and Jiang (2000). Our experience shows
that, when the data is contaminated with thick-tailed noise and a commonly
used nonparametric estimator, for instance that in Masry and Fan (1997), is
employed as the initial estimator of a(x0), the one-step local M-estimator is not
good, but the two-step local M-estimator performs well. For comparison, we ran
a local linear least squares regression with the same kernel. The entire procedure
was repeated 400 times. For each sample, we measured the performance of the
estimators according to the mean absolute deviation error (MADE) criterion:

MADE(m̂) = N−1
N∑
j=1

|m̂(xj) −m(xj)|,

where xj, j = 1, . . . , N (N = 60) are grid points. The typical sample chosen is
the one with which the local linear least squares estimator of Masry and Fan
(1997) has its median performance, in terms of MADE, among 400 simulations.

We display in Figure 1(a) the “typical” sample out of the 400 samples gener-
ated as above, together with the true function (6.1), and the two regression fits.
The estimated k̂ according to (5.2) is 0.219 for this sample.

Figure 1(b) includes plots of the true function, the median curves (i.e., the
median of the estimators among 400 simulations) for the local linear least squares
fit as well as the two-step local M-estimator fit. Figure 2 shows the median curves
with envelopes formed via pointwise 2.5% and 97.5% sample percentiles for the
two fits. It is evident that our robust estimator is the better one.
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Example 2. We analyze an economic data set from the United Kingdom. The
Y -variable of this bivariate data set is the rate of change of money wages, and the
X-variable is the corresponding unemployment rate, for the period 1861-1913.
This data set has been studied in Phillips (1958) and gave rise to the famous,
perhaps controversial, Phillips curve. The sources of our data are Phillips (1958),
Lipsey (1960), and the British Ministry of Labour Gazette.
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Figure 1. Simulation results for Example 1. Typical estimated curves among
400 simulations are presented in (a); the median curves (out of 400 simu-
lations) and the true curve are shown in (b). Solid curve: true regression
function, dash: local linear least squares estimator, dotted: two-step local
M-estimator.
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Median curve and its envelope
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Figure 2. The median curves (out of 400 simulations) with envelopes formed
via pointwise 2.5% and 97.5% sample percentiles for Example 1. (a)– two-
step local M-estimator fit; (b) – local linear least squares fit. Solid curve:
ture curves; dash: median curves ; dotted: envelopes.

A nonlinear model for the data from 1861 – 1913 was obtained by some
unconventional fitting techniques in Phillips (1958). A simplified version of this
model has the form

y = a+ bx−c, (6.2)

with well-accepted parameter values a = −0.9223, b = 8.9679, c = 1.3506. We
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call (6.2), with the given parameter values, our reference model for the discussion
of the second example.

For nonparametric regression estimation, we again employed the standard
Gaussian kernel, the bandwidth was based on the optimal one in (3.3), σ2(x) was
assumed to be constant and estimated by the trimmed mean (with 5% trimming)
of the squared residuals from the reference model (6.2), m′′(x) was also calculated
using the reference model (6.2) and fX(x) was estimated using a consistent kernel
estimator f̂X(x) from the X-data.

A local linear least squares regression, as in Masry and Fan (1997), as well
as the robust procedure suggested in the present study, were implemented. For
the robust approach, the value of k in Huber’s ψk function was determined from
the data (k = 3.4995) as described in Section 5. The two nonparametric fits plus
the Phillips curve were plotted on the same scales in Figure 3 together with the
raw data points. It can be seen that the local linear least squares fit is influenced
by the large negative Y -data values toward the right tail.

EX2: Estimated Curves
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Figure 3. Numerical results for Example 2. Solid curve: Phillips curve; dash:
local least squares; dotted: local two-step.
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7. Appendix

In this section, we give proofs of Theorems 3.1 and 4.1. Even though our tech-
nical devices are analogous to those in Fan and Jiang (2000), for general polyno-
mial fitting (solving (2.2) for arbitrary p) under mixing conditions, the derivation
of the asymptotic distributions of the resulting estimators is considerably more in-
volved. The following notations and lemmas will be used for our technical proofs.
Let Kh(Xj) = 1

hn
K(Xj−x0

hn
), and let R(Xj) = m(Xj)−∑p

�=0
1
�!m

(�)(x0)(Xj−x0)�,
ã(x) = Ha(x), xj = (1,Xj − x0, . . . , (Xj − x0)p)T , X = (x1, . . . ,xn)T , X̃ ≡
(x̃1, . . . , x̃n)T = H−1X.

Lemma 7.1. Assume (A1)-(A7) and (B1)-(B2) hold. Let Γ3(x)=E[(ψ′(ε))2|X=

x], Zi� = ψ′(εi)Kh(Xi)
(
Xi−x0
hn

)�
, and Qn� = n−1 ∑n

j=1 Zi�. Then
(1) hnV ar(Z1�) = Γ3(x0)fX(x0)v2�(1 + o(1));
(2) hn

∑n
j=1 |cov(Z1�, Z(j+1)�)| = o(1);

(3) nhnV ar(Qn�) = Γ3(x0)fX(x)v2�(1 + o(1)).

Proof. The results hold by using the argument of Theorem 2 in Masry and Fan
(1997).

Lemma 7.2. Assume (A1)-(A7) and (B1)-(B2) hold. For any random sequence
{ηj}nj=1, if max1≤j≤n |ηj | = op(1) we have

n−1
n∑
j=1

ψ′(εj + ηj)Kh(Xj)(
Xj − x0

hn
)� = Γ1(x0)fX(x0)s�(1 + op(1)),

n−1
n∑
j=1

ψ′(εj + ηj)R(Xj)Kh(Xj)(
Xj − x0

hn
)�

=
1

(p+ 1)!
hp+1
n Γ1(x0)m(p+1)(x0)fX(x0)s�+p+1(1 + op(1)).

Proof. We give the proof of the first conclusion, the second can be shown by
the same arguments. It is obvious that

n−1
n∑
j=1

ψ′(εj + ηj)Kh(Xj)(
Xj − x0

hn
)�

= n−1
n∑
j=1

ψ′(εj)Kh(Xj)(
Xj−x0

hn
)�+

n∑
j=1

[ψ′(εj+ηj) − ψ′(εj)]Kh(Xj)(
Xj − x0

hn
)�

≡ Tn,1 + Tn,2.

By taking iterative expectation, we get

ETn,1 = n−1E[
n∑
j=1

Kh(Xj)(
Xj − x0

hn
)�E(ψ′(εj)|Xj)] = Γ1(x0)fX(x0)s�(1 + o(1)).
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By Lemma 7.1, we know V ar(Tn,1) = V ar(Qn�) = O( 1
nhn

). It follows that
Tn,1 = Γ1(x0)fX(x0)s�(1 + op(1)), so it suffices to show that Tn,2 = op(1). For
any given η > 0, let ∆n = (δ1, . . . , δn)T , Dη = {∆n : |δj | ≤ η,∀j ≤ n}, and

V (∆n) = n−1
n∑
j=1

[ψ′(εj + δj) − ψ′(εj)]Kh(Xj)(
Xj − x0

hn
)�.

Then

sup
Dη

|V (∆n)| ≤ n−1
n∑
j=1

sup
Dη

|ψ′(εj) − ψ′(εj + δj)|Kh(Xj)|Xj − x0

hn
|�.

By (A7), noticing that |Xj − x0| ≤ hn in the above expression, we have

E[sup
Dη

|V (∆n)|] ≤ aηn
−1E[

n∑
j=1

Kh(Xj)|Xj − x0

hn
|�]

where aη and bη are two sequences of positive numbers, tending to zero as η → 0.
Since sup1≤j≤n |ηj | = op(1), it follows that V (∆̂n) = op(1) with ∆̂n = (η1, . . .,
ηn)T . The conclusion follows from the fact Tn,2 = V (∆̂n) = op(1).

Lemma 7.3. Assume (A1)-(A7) and (B1)-(B4) hold. Let

Jn ≡



J(0)

...
J(p)


 ≡



n−1 ∑n

j=1 ψ(εj)Kh(Xj)
...
n−1 ∑n

j=1 ψ(εj)Kh(Xj)(Xj − x0)p/hpn


 .

Then
√
nhnJn is asymptotically normal with mean zero and covariance matrix

D = Γ2(x0)fX(x0)S∗.

Proof. For any linear combination of J(0), . . . , J(p): Qn =
∑p
�=0 c�J(�) =

n−1 ∑n
i=1 ξi, where ξi = ψ(εi)

∑p
�=0 c�Kh(Xi)(Xi−x0

hn
)�. By the argument of The-

orem 3 in Masry and Fan (1997), we get
√
nhnQn

L−→ N(0, θ2(x0)), where
θ2(x0) = Γ2(x0)fX(x0)

∫ 1
−1(

∑p
�=0 c�u

�K(u))2du. That is,
√
nhnJn is asymptoti-

cally normal. By computing the variance-covariance matrix of
√
nhnJn, we get

the result of the lemma.

Proof of Theorem 3.1. Note that (2.1) can be written as �n(ã) =
∑
ζ(Yj −

x̃Tj ã)K(Xj−x0

hn
). Let Sδ = {ã : ||ã− ã(x0)|| ≤ δ}. Denote by rj = (ã− ã(x0))T x̃j.

Then Yj − x̃Tj ã = εj +R(Xj) − rj .
We show that, for any sufficiently small δ,

lim
n→∞P{ inf

ã∈Sδ

�n(ã) ≥ �n(ã(x0))} = 1. (7.1)
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In fact, by integration, we have

n−1[�n(ã) − �n(ã(x0))] (7.2)

= n−1
n∑
j=1

[Kh(Xj)
∫ εj+R(Xj )−rj

εj+R(Xj )
ψ(t) dt]

= n−1
n∑
j=1

Kh(Xj)
∫ εj+R(Xj )−rj

εj+R(Xj )
[ψ(εj) + ψ′(εj)(t− εj) + (ψ(t) − ψ(εj)

−ψ′(εj)(t− εj))] dt
≡Kn1 +Kn2 +Kn3. (7.3)

By the argument of Theorem 2(c) in Masry and Fan (1997), we have

Kn1 = −(ã − ã(x0))Tn−1
n∑
j=1

Kh(Xj)ψ(εj)x̃j

= op(1)δ. (7.4)

By the Mean Value Theorem for integration, we have

Kn3 = −(ã − ã(x0))Tn−1
n∑
j=1

Kh(Xj)[ψ(εj + zj) − ψ(εj) − ψ′(εj)zj ]x̃j,

where zj lies between R(Xj) and R(Xj) − rj , for j = 1, . . . , n. Note that for
|Xj − x0| ≤ hn, we have maxj |zj | ≤ maxj |R(Xj)|+ 2δ. Then by condition (A7),
we obtain

Kn3 = op(1)δ2. (7.5)

Note that by simple integration Kn2 = 1
2n

∑n
j=1Kh(Xj)ψ′(εj) [(ã − ã(x0))T

x̃j x̃Tj (ã− ã(x0)) − 2R(Xj)rj ] ≡ Mn1 + Mn2. It is obvious from Lemma 7.2
that Mn1 = 1

2Γ1(x0)fX(x0)(ã − ã(x0))TS(ã − ã(x0))(1 + op(1)) and Mn2 =
−(ã − ã(x0))Tn−1 ∑n

j=1Kh(Xj)ψ′(εj)R(Xj)x̃j = Op(hp+1
n )δ. Therefore Kn2 =

1
2Γ1(x0)fX(x0)(ã − ã(x0))TS(ã − ã(x0))(1 + op(1)) + Op(hp+1

n )δ. Let a be the
largest eigenvalue of the positive definite matrix S. Then, for any ã ∈ Sδ, we have
for sufficiently small δ that limn→∞ P{inf ã∈Sδ

Kn2 > −1
2afX(x0)Γ1(x0)δ2} = 1.

This together with (7.3), (7.4) and (7.5) establish (7.1).
By (7.1), �n(ã) has a local minimum in the interior of Sδ. Since at a local

minimum, (2.2) must be satisfied. Let ã∗(x0) be the closest root to ã(x0), and
â(x0) = H−1ã∗(x0). Then limn→∞ P{||H(â(x0) − a(x0))|| ≤ δ2} = 1. This
implies the weak consistency part of Theorem 3.1.
For the asymptotic distribution part, let η̂j = R(Xj)−xjT (â(x0)− a(x0)). Then
Yj − xjT â(x0) = εj + η̂j . It follows from (2.2) that

n∑
j=1

{ψ(εj) + ψ′(εj)η̂j + [ψ(εj + η̂j) − ψ(εj) − ψ′(εj)η̂j ]}Kh(Xj)x̃j = 0. (7.6)
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Note that the second term in the left hand side of (7.6) is

n∑
j=1

ψ′(εj)R(Xj)Kh(Xj)x̃j−
n∑
j=1

ψ′(εj)Kh(Xj)x̃jx̃Tj H(â(x0)−a(x0)) ≡ Ln1 +Ln2.

Applying Lemma 7.2, we obtain Ln1 = nhp+1
n

Γ1(x0)
(p+1)! fX(x0)m(p+1)(x0)cp(1+op(1))

and Ln2 = −Γ1(x0)fX(x0)nSH(â(x0)− a(x0))(1 + op(1)). Note that by the con-
sistency of Hâ(x0)

sup
j:|Xj−x0|≤hn

|η̂j | ≤ sup
j:|Xj−x0|≤hn

(|R(Xj)| + ||H(â(x0) − a(x0))||)

= Op(hp+1
n + ||H(â(x0) − a(x0))||).

Then by (A7) and the argument in Lemma 5.2, the third term on the left hand
side of (7.6) is given by op(n)[hp+1

n + ||H(â(x0) − a(x0))||] = op(Ln1 + Ln2). Let

Bn = m(p+1)(x0)h
p+1
n

(p+1)! S−1cp(1 + op(1)). Then, it follows from (7.6) that

H(â(x0) − a(x0)) = Bn + Γ−1
1 (x0)f−1

X (x0)S−1Jn(1 + op(1)), (7.7)

where Jn is given in Lemma 7.3. The conclusion follows from (7.7), Lemma 7.3
and Slutsky’s Theorem.

Proof of Theorem 4.1. Let δ̂j = R(Xj) − (0a(x0) − a(x0))Txj . Then

max
j:|Xj−x0|≤hn

|δ̂j | ≤ max
j:|Xj−x0|≤hn

(|R(Xj)| + ||H(0a(x0) − a(x0)||)

= Op(hp+1
n +||H(0a(x0)−a(x0))||)=Op(hp+1

n +
1√
nhn

). (7.8)

By the definitions of Ψn(a(x0)) and Lemma 7.2, we have

w�m = −
n∑
j=1

ψ′(Yj − 0a(x0)Txj)Kh(Xj)(Xj − x0)�+m

= −
n∑
j=1

ψ′(εj + δ̂j)Kh(Xj)(Xj − x0)�+m

= −nh�+mn Γ1(x0)fX(x0)s�+m(1 + op(1)).

Therefore Wn = −HSHnΓ1(x0)fX(x0)(1 + op(1)) and Wn
−1 = −H−1S−1H−1

(nΓ1(x0)fX(x0))−1(1+op(1)). In addition, by the definitions of δ̂j and Ψn�(a(x0)),
we have

Ψn(0a(x0))=
n∑
j=1

ψ(εj + δ̂j)Kh(Xj)(Xj − x0)�
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=
n∑
j=1

ψ(εj)Kh(Xj)(Xj − x0)� +
n∑
j=1

ψ′(εj)δ̂jKh(Xj)(Xj − x0)�

+
n∑
j=1

[ψ(εj+δ̂j)−ψ(εj)−ψ′(εj)δ̂j ]Kh(Xj)(Xj−x0)�≡In1+In2+In3.

Further, Lemma 7.2 with ηj = 0 yields

In2=−nΓ1(x0)fX(x0)(0a(x0) − a(x0))TH(s�, . . . , s�+p)Th�n

+
Γ1(x0)
(p+ 1)!

nh�+p+1
n s�+p+1m

(p+1)(x0)fX(x0)(1 + op(1)).

By (7.8), (A7) and the argument in Lemma 7.2, we obtain In3 = op(nh�+p+1
n ) +

op(n)[H(0a(x0) − a(x0))]. Substituting the expressions of In1, In2 and In3, we
get

Ψn�(0a(x0))

=
n∑
j=1

ψ(εj)Kh(Xj)(Xj−x0)�+
Γ1(x0)
(p+1)!

nh�+p+1
n s�+p+1m

(p+1)(x0)fX(x0)(1+op(1))

−nΓ1(x0)fX(x0)[H(0a(x0) − a(x0))]T




s�
...

s�+p


h�n(1 + op(1)). (7.9)

Therefore

Ψn(0a(x0)) =
Γ1(x0)
(p+ 1)!

nhp+1
n fX(x0)Hcp(1 + op(1)) +

n∑
j=1

ψ(εj)Kh(Xj)xj

−nΓ1(x0)fX(x0)HSH(0a(x0) − a(x0))(1 + op(1)). (7.10)

It follows from Lemma 7.3 that

HWn
−1Ψn(0a(x0)) = − hp+1

n

(p+ 1)!
m(p+1)(x0)S−1cp + H(0a(x0) − a(x0))

+ (Γ1(x0)fX(x0))−1S−1Jn + op(hp+1
n +

1√
nhn

).(7.11)

Hence, by (4.1) and (7.11), we get

H(1a(x0) − a(x0)) = (Γ1(x0)fX(x0))−1S−1Jn +
hp+1
n

(p + 1)!
m(p+1)(x0)S−1cp

+op(hp+1
n +

1√
nhn

). (7.12)

The conclusion follows from (7.12), Lemma 7.3 and Slutsky’s Theorem.
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