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Abstract: We consider approximating the power functions of some tests for several

hypothesis testing problems in time series. The test statistics of interest are ratios

of quadratic forms in normal variables and their power is related to the distri-

butions of weighted sums of Chi-square random variables. Conventionally, power

functions are evaluated from these distributions at each alternative, numerically,

by Pearson’s moment approximation, Imhof’s procedure, Edgeworth-type expan-

sion or the Monte Carlo method. In this study, we propose analytic approximations

to the power functions when part of the weighted sum of Chi-square random vari-

ables can be well-approximated by a scaled Chi-square variable in distribution. In

applications, the proposed analytic approximation may be obtained easily by eval-

uating the power only at a few alternative values. Several illustrative examples are

presented and they show excellent agreement with the true power functions.

Key words and phrases: Hypothesis testing, locally best invariant test, moving

average unit root, power approximation.

1. Introduction

A large number of test statistics can be expressed as ratios of quadratic
forms in normal variables, say r = x′Fx/x′Bx where the vector x has a N(0,Σ)
distribution, F is a nonstochastic matrix, B is positive definite, and Σ is a non-
singular covariance matrix. Examples include the uniformly most powerful in-
variant (UMPI) test (King (1980)), the locally best invariant (LBI) test (King
(1980), Nabeya and Tanaka (1988), Leybourne and McCabe (1989), Saikkonen
and Luukkonen (1993)) and the Lagrange multiplier (LM) test (Tanaka (1990)
and Kwiatkowski, Phillips, Schmodt and Shin (1992)). If G1 ≥ · · · ≥ Gm−p >

0 > Gm−p+1 ≥ · · · ≥ Gm denote the non-zero characteristic roots of (cB − F )Σ
with rank m(≥ 2), then the power of the test statistic r is given by

P (r < c) = P (x′(cB − F )x > 0) = P (
m∑

i=1

GiWi > 0), (1.1)

where c is a critical value of the test and the W ′
is are independent Chi-square

random variables with one degree of freedom. From (1.1), the power of the test
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statistic can thus be obtained through the distribution of the weighted sum of
Chi-square random variables. For ease of notation, we set QW =

∑m
i=1 GiWi

throughout. Note that the G′
is typically depend on a parameter of interest (to

be denoted by λ) where λ = 0 corresponds to the null hypothesis. Treating
P (QW > 0) as a function of λ (i.e., the power function), we look for an analytic
approximation to it.

Although in most cases the exact distribution of QW is unknown, it can be
evaluated by numerical procedures such as those of Imhof (1961), Davies (1973)
and Shively, Ansley and Kohn (1990). Imhof and Davies used the characteris-
tic function inversion formula to evaluate the distribution of QW by numerical
integration. Shively et al. suggested a modification of the Kalman filter to
solve this problem more effectively. Since the distribution of QW under the al-
ternative hypothesis varies with the alternative value λ, to calculate the power
by these numerical procedures, we have to evaluate improper integrals at each
alternative value of λ. There are other approximation methods such as Pear-
son’s moment approximation, Edgeworth-type expansion or the Monte Carlo
method. Lugannani and Rice (1980) derived a saddle-point approximation (in-
direct Edgeworth expansion) which is superior to the Edgeworth expansion for
the distribution of a sum of independent random variables. Lieberman (1994)
applied their result to give a saddle-point approximation formula for weighted
sums of Chi-square variables. Although Lieberman’s saddle-point approximation
avoids numerical integration, nonlinear equations have to be solved for the sad-
dle points at each alternative value. Similarly Pearson’s moment approximation
and the Monte Carlo method require evaluation of the power function at each
alternative value, and are computationally intensive. In this study, we propose
a methodology which calculates the power at only a few alternative values to
obtain an accurate analytic approximation to the entire power function. One of
our main assumptions is that the power P (

∑m
i=1 GiWi > 0) can be approximated

by P (
∑m−p

i=1 GiWi + Ḡ
∑m

i=m−p+1 Wi > 0), where Ḡ = 1
p

∑m
i=m−p+1 Gi is the av-

erage of the negative weights. The proposed methodology provides an efficient
and accurate approximation. Several examples, such as the LBI test and Shiv-
ely’s (1988) special most powerful test for constancy of regression coefficient, are
presented. The results of our approximation show excellent agreement with the
exact power. Furthermore, the derived analytic power approximation can also
be applied to compute instantaneous rates of change of the power functions in
order to compare the local power of different tests.

The paper is organized as follows. In Section 2, we introduce several models
and test statistics that motivate this study. In Section 3, we derive some theorems
and propose approximate analytic forms of the power functions. In Section 4, we
present numerical results of the proposed methods for several examples.
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2. Models and Tests

In this section, we introduce the problem of testing for constancy of regression
coefficients and of testing for a moving average unit root.

(I) Constancy of Regression Coefficients

Consider the time series regression model:

yt = αt + ztβ + εt

αt = αt−1 + at, t = 1, . . . , n,
(2.1)

where the ε′ts are independent N(0, σ2), the a′ts are independent N(0, λσ2), εt

and as are independent for all t and s, zt is an independent regressor, αt is a
scalar variable and β is a scalar parameter. Without loss of generality, we assume
σ2 = 1 and α0 to be unknown. The following two cases are considered,

zt = 0, t = 1, . . . , n; (2.2)

zt = t, t = 1, . . . , n. (2.3)

Applications of the model as (2.1) can be found in Jazwiniski (1970), Nicholls
and Pagan (1985), Fama and Gibbons (1982), Brown, Kleidon and Marsh (1983)
and Trzcinka (1982). An important problem is to test whether αt really exhibits
variation, that is to test

H0 : λ = 0 v.s. H1 : λ > 0. (2.4)

A UMPI test does not exist for this problem. Thus Nabeya and Tanaka (1988)
proposed a LBI test which rejects H0 for large values of

Rn =
y′MV My

y′My
, (2.5)

where y = (y1, . . . , yn)′, M = In − (1, Z)((1, Z)′(1, Z))−1(1, Z)′, In is the n × n

identity matrix, 1 = (1, . . . , 1)′, Z = (z1, . . . , zn)′ and V = (vi,j) with vi.j =
min(i, j), 1 ≤ i, j ≤ n. If zt = 0 for t = 1, . . . , n, then M = In − 1(1′1)−11′.

Shively (1988) constructed an exact small-sample test for (2.4). It rejects
H0 for small values of

T (λ1) =
w′{P (In + λ1V )P ′}−1w

w′w
, (2.6)

where w = Py, P is an m × n matrix (m = n − 1 at (2.2) and m = n − 2 at
(2.3)) such that PP ′ = Im and P ′P = M in (2.5), and λ1 is chosen such that the
power of T (λ1) at λ1 is 0.5 at the level 0.05. Shively showed numerically that
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the test is approximately UMPI and has better power than the LBI test for (2.2)
when λ > 0.01. For brevity, we denote Shively’s test by SMP.

The power function of LBI test at λ with critical value c is

P (Rn > c) = P (
w′(PV P ′)w

w′w
> c) = P (

m∑
i=1

Li(λ)ξ2
i > 0), (2.7)

where w = Py ∼ N(0, Im+λPV P ′), Li(λ) = (1+λdi)(di−c), i = 1, . . . ,m, L1 >

· · · > Lm−p > 0 > Lm−p+1 > · · · > Lm, ξ′is are i.i.d. N(0, 1) variables and di
′s

are the eigenvalues of PV P ′. In Figure 1, we plot the eigenvalues Li
′s for (2.2)

with n = 31. From it observe the following three main characteristics of the
L′

is.
(a) The ratio (−L1/L̄) increases and becomes dominant as either n increases for

fixed λ (see Table 1) or as λ increases for fixed n, where L̄ = 1
p

∑m
i=m−p+1 Li,

the average of the negative weights.
(b) The number p of negative weights dominates the value of (−L1/L̄) and in-

creases faster than (−L1/L̄) as n increases (see Table 1).
(c) The negative L′

is are nearly equal with

s3

s2
� −L̄ and

s1s2

s3
� s3

2

s2
3

� p, where sk =
m∑

i=m−p+1

(−Li)k, k = 1, 2, 3.
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Figure 1. The eigenvalues Li of the LBI test for (2.2), n = 31; (1),(2),(3),
and (4) correspond to λ = 0.0, 0.1, 1.0 and 5.0, respectively.
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Similarly, the negative eigenvalues of the LBI test for (2.3) exhibit the charac-
teristics (a), (b) and (c), see Table 2 for the values of(−L1/L̄) and p. The power
of the SMP test at λ with critical value c is

P (
w′(Im + λ1PV P ′)−1w

w′w
< c) = P (

m∑
i=1

Oi(λ)ξ2
i > 0), (2.8)

where Oi(λ) = (1 + λdi)(c − 1
1+λ1di

), i = 1, . . . ,m, w, ξ′is and di’s are defined as
in (2.7). The negative eigenvalues Oi also possess characteristics (a)-(c) for (2.2)
and (2.3), see Table 1 and 2 for the values of p and (−O1/Ō).

Table 1. The maximum absolute errors of the power of the SMP and LBI
tests by three different approximations under (2.2).

SMP test n = 11 n = 31 n = 51 n = 101 n = 201
p 8 25 44 91 187

−O1/Ō at λ = 0 1.11 3.51 6.80 14.49 27.02
Monte-Carlo 0.0132 0.0196 0.0057 — —

(3.1) 0.0044 0.0016 0.0006 0.0002 0.0001
Fapp(λ)(3.3) 0.0017 0.0024 0.0050 0.0089 0.0106

LBI test n = 11 n = 31 n = 51 n = 101 n = 201
p 9 28 47 96 194

−L1/L̄ at λ = 0 1.59 6.41 10.75 23.26 45.45
Monte-Carlo 0.0084 0.0145 0.0001 — —

(3.1) 0.0003 0.0080 0.0001 7.38 ×10−5 2.47 ×10−5

Fapp(λ)(3.3) 0.0056 0.0027 0.0023 0.0056 0.0066

Table 2. The maximum absolute errors of the power of the SMP and LBI
tests by three different approximations under (2.3).

SMP test n = 11 n = 31 n = 51 n = 101 n = 201
p 7 23 41 87 180

−O1/Ō at λ = 0 0.86 2.80 4.98 10.42 18.87
Monte-Carlo 0.0200 0.0204 0.0132 — —

(3.1) 0.0068 0.0022 0.0013 0.0005 0.0002
Fapp(λ)(3.8) 0.0007 0.0053 0.0139 0.0127 0.0125

LBI test n = 11 n = 31 n = 51 n = 101 n = 201
p 8 26 45 92 189

−L1/L̄ at λ = 0 1.31 5.08 8.85 18.18 37.04
Monte-Carlo 0.0210 0.0200 0.0120 — —

(3.1) 0.0040 0.0008 0.0005 0.0002 6.92×10−5

Fapp(λ)(3.8) 0.0124 0.0010 0.0017 0.0050 0.0064
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(II) Moving Average Unit Root

We consider two models for the moving average unit root testing problem.
(i) Pure MA(1) model:

yt = εt − ρεt−1, t = 1, . . . , n, (2.9)

where |ρ| ≤ 1, and the εt
′s are independent N(0, σ2). The problem is to test

H0 : ρ = 1 v.s. H1 : |ρ| < 1. (2.10)

Tanaka (1990) suggested a score-type test which rejects H0 for large values of

Sn =
1
n

y′Σ−2
1 y

y′Σ−1
1 y

, (2.11)

where Σ1 is the covariance matrix of y = (y1, . . . , yn)′ under H0. Note that this
test is unbiased and LBI. Without loss of generality, we assume σ2 = 1. By
Corollary 1 of Tanaka, we have

Pρ(Sn > c) = P (
n∑

i=1

Qi(ρ)ξ2
i > 0), (2.12)

where {ξi} ∼ NID(0, 1) and Qi(ρ) = ((1 − ρ)2 + ρηi)( 1
nη2

i
− c

ηi
) with ηi =

4 sin2 iπ
2(n+1) . The negative eigenvalues Qi satisfy (a)-(c), see Table 3.

Table 3. The maximum absolute errors of the power of score-type test by
three different approximations under (2.9).

Score-type test n = 25 n = 50 n = 100
p 23 47 96

−Q1/Q̄ at λ = 0 5.20 10.87 22.37
Monte-Carlo 0.0100 0.0081 0.0103

(3.1) 0.0025 0.0001 0.0001
Fapp(λ)(3.8) 0.0048 0.0060 0.0138

(ii) ARIMA model:

y1 = µ + e1, ∆yi = ei − ρei−1, φ(B)ei = β(B)εi, i = 1, . . . , n,

where ∆ is the difference operator, µ and ρ are fixed parameters, εi ∼ NID(0, σ2),
φ(B) = 1 + α1B + · · · + αpB

p and β(B) = 1 + β1B + · · · + βqB
q are polyno-

mials in the backward shift operator B such that the zeros of φ(B) and β(B)
lie outside the unit circle. We assume that φ(B) and β(B) have no common
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zeros and either αp �= 0, or βq �= 0. The covariance matrix of the error vec-
tor e = (e1, . . . , en)′ is σ2Σ2, where Σ2 is a known function of the parameter
vector τ = (α1, . . . , αp, β1, . . . , βq)′, and Ω(ρ) denotes the covariance matrix of
y = (y1, . . . , yn)′. We wish to test H0 : ρ = 1 against H1 : |ρ| < 1. When the
value of µ is unknown, Saikkonen and Luukkonen (1993) derived a LBIU test
that rejects H0 for large values of the test statistic,

Un =
û′Σ−1

2 DΣ2D
′Σ−1

2 û

nû′Σ−1
2 û

, (2.13)

where û = (In − 1(1′Σ−1
2 1)1′Σ−1

2 )y is the generalized least squares residual
obtained under H0, and D = (dij) is a lower triangular matrix with dij = 1
for i ≥ j and 0 otherwise. Denote the eigenvalues of (In − 1(1′Σ−1

2 1)1′Σ−1
2 )

(Σ−1
2 DΣ2D

′Σ−1
2 − cnΣ−1

2 ) (In − 1(1′Σ−1
2 1)1′Σ−1

2 ) Ω(ρ) by SLi, i = 1, . . . , n,

where c is the critical value of Un. The negative eigenvalues of SLi satisfy (a)-
(c), see Table 4.

Table 4. The maximum absolute errors of the power of the LBIU tests by
different approximations under (4.1) and (4.2), for n=100, µ = 0 and σ2 = 1.

LBIU test Model (4.1) Model (4.2)
p 95 95

−SL1/S̄L at ρ = 1 21.72 22.60
(3.1) 0.019 0.0196

Fapp(λ)(3.8) 0.0043 0.0042

3. Theorems

In Section 2, we introduced several hypothesis testing problems with test
statistics that can be expressed as ratios of quadratic forms. To simplify notation,
we denote the parameter of interest by λ throughout this section. The power of
a test statistic at λ is given by P (QW > 0), where QW =

∑m
i=1 Gi(λ)Wi, the

Wi
′s are independent χ2(1) random variables and G1(λ) ≥ · · · ≥ Gm−p(λ) >

0 > Gm−p+1(λ) ≥ · · · ≥ Gm(λ). For simplicity, we write Gi for Gi(λ) hereafter.
Recall from the last section that the negative weights Gi satisfy (c). For the
extreme case, when all the negative G′

is equal Ḡ = 1
p

∑m
i=m−p+1 Gi, we have∑m

i=m−p+1 GiWi = ḠW , where W =
∑m

i=m−p+1 Wi ∼ χ2(p), so P (QW > 0) =
P (
∑m−p

i=1 GiWi + ḠW > 0). When the negative G′
is are nearly equal, it seems

reasonable to approximate P (QW > 0) by

P (
m−p∑
i=1

GiWi + ḠW > 0) (3.1)
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The accuracy of the approximation (3.1) is subject to an empirical investigation
in the following. We compute

max
λ∈A

|P (QW > 0) − P (G1(λ)W1 + · · · + Gm−p(λ)Wm−p > − ¯G(λ)W )|, (3.2)

by Imhof’s procedure, where A = (0, λmax) and λmax = inf{λ : limλ∗→∞
P (QW (λ∗) > 0) − P (QW (λ) > 0) < 0.01} for the LBI and SMP tests at (2.2)
and (2.3). For each model, the set A changes as the sample size changes, e.g. in
Table 1, A = (0, 5) for n = 31;A = (0, 1) for n = 51; A = (0, 0.2) for n = 101
and A = (0, 0.05) for n = 201 in the case of the LBI test. The maximum discrep-
ancy for the score test for (2.9) and the LBIU test for (4.1) and (4.2) are also
computed for λ ∈ A. The results are listed in Table 1, 2, 3 and 4, respectively.
As a benchmark, we regard the power computed by Imhof’s procedure as the
true values. The discrepancy between the computed values using Imhof’s pro-
cedure and using another approximation method is regarded as the error of the
latter method. Since all the maximum absolute errors of (3.1) are relative small
(compared with the Monte Carlo method), it seems reasonable to regard (3.1) as
an accurate approximation for these cases. We now turn to deriving an analytic
approximation for the probability P (G1W1 + · · ·+ Gm−pWm−p > −GW ), where
G1 ≥ G2 ≥ · · · ≥ Gm−p > 0 > G and W is a χ2(p) random variable independent
of the χ2(1) variables Wi, 1 ≤ i ≤ m − p.

Lemma 3.1. Let W1 ∼ χ2(1) and W ∼ χ2(p) be independent, p be a positive
integer. Let U1 = G1W1 + GW with G1 > 0 > G. Then

(i) P (U1 > 0) = 2
B(p

2
, 1
2
)

∫ θ1
0 sinp−1 θdθ, where B(p

2 , 1
2) = Γ(p

2 )Γ(1
2 )/Γ(p+1

2 ) and

θ1 = tan−1
√

G1
−G .

(ii) If p is even, then the p.d.f. of U1 is, for u1 < 0, fU1(u1) =
∑k

j=0 Aj ·
(−u1)k−je

u1
−2G , where Aj = Γ(j+ 1

2
)

j!(k−j)!
√

π
· cos θ1

(−2G)k−j+1 · sin2j θ1, and k = p
2 − 1.

Proof.
(i) Since W/p

W1
has a Fp,1 distribution,

P (U1 > 0) = Fp,1(
G1

−G · p) =
1

B(p
2 , 1

2 )

∫ G1
−G

0

x
p
2
−1

(1 + x)
p+1
2

dx.

The proof of (i) is completed by taking the transformation x = tan2 θ.
(ii) The joint p.d.f. of W1 and U1 is f(w1, u1) = 1

−G ·fW1(w1)·fW (G1w1−u1
−G ), where

fW1 and fW are the p.d.f.’s of χ2(1) and χ2(p) random variables, respectively.
Since W1 > max{0, U1

G1
}, the p.d.f. of U1 is, for u1 < 0,

fU1(u1) =
∫ ∞

0
f(w1, u1)dw1
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=
e

u1
−2G

(−2G)
p
2 Γ(p

2)
√

2π

∫ ∞

0
w

− 1
2

1 (G1w1 − u1)
p
2
−1e−

w1
2

(
G1−G
−G

)dw1.

By taking the binomial expansion of (G1w1 − u1)
p
2
−1, the integral equals

k∑
j=0

(
k

j

)
(−u1)k−jGj

1Γ(j +
1
2
)(

−2G
G1 − G

)j+
1
2 .

The result of (ii) is obtained by noticing sin θ1 =
√

G1
G1−G and cos θ1 =√

−G
G1−G .

Remark 3.1.
(i) If p = 1, then P (G1W1 + GW > 0) = 2

π tan−1
√

G1
−G .

(ii) If (−G1(λ)/G(λ)) is an increasing function of λ for λ ∈ A(c.f.(3.2)), then so
is θ1(λ) = tan−1

√
G1
−G , and the integral

∫ θ1(λ)
0 sinp−1 θdθ can be decomposed

as ∫ θ1(0)

0
sinp−1 θdθ +

∫ θ1(λ)

θ1(0)
sinp−1 θdθ.

In some applications, the function sinp−1(θ) can be well-approximated by a
linear function of θ (say, a1 + b1θ) for θ1(0) ≤ θ ≤ θ1(λmax), where λmax is
defined as in (3.2). Based on this linear approximation,

P (U1 > 0) � Fapp(λ) = P0 + a1[θ1(λ) − θ1(0)] + b1[θ1(λ) − θ1(0)]2, (3.3)

where a1 and b1 satisfy{
a1(θ1(λ1) − θ1(0)) + b1(θ1(λ1) − θ1(0))2 = Pλ1 − P0

a1(θ1(λmax) − θ1(0)) + b1(θ1(λmax) − θ1(0))2 = Pλmax − P0 ,

and λ1 is either given by the SMP test, or chosen to satisfy Pλ1 = 1
2Pλmax

for other tests. (Here Pλ denotes the power at λ.)
(iii) Notice that when u1 < 0, fU1(u1) can be viewed as a weighted sum of

Gamma densities.

Theorem 3.1. Let U1 = G1W1 + GW , and U2 = G1W1 + G2W2 + GW , where
W1 ∼ χ2(1),W2 ∼ χ2(1), and W ∼ χ2(p) are independent, G1 > G2 > 0 > G. If
p is a positive even integer, then

P (U2 > 0) = P (U1 > 0) + cos θ1 sinp−1 θ1

k∑
j=0

HjKj , (3.4)
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where

Kj =
2

B(p
2 − j, 1

2)

∫ θ2

0
(

sin θ

sin θ1
)p−2j−1dθ,

θi = tan−1
√

Gi
−G , i = 1, 2, Hj = Γ(j+ 1

2
)

j!
√

π
and k = p

2 − 1.

Proof. Note that P (U2 > 0) = P (U1 > 0) + P (U2 > 0 and U1 < 0). The first
term of the right hand side is given by Lemma 3.1 (i). The second term is∫ ∞

0
fW2(w2)

∫ 0

−G2w2

fU1(u1)du1dw2

=
k∑

j=0

Aj

∫ ∞

0
fW2(w2)

∫ 0

−G2w2

(−u1)k−je
u1

−2G du1dw2, (3.5)

using Lemma 3.1 (ii) with Aj defined in the same way. By letting y = u1
G , the

inner integral of (3.5) can be written as

∫ G2
−G

w2

0
(−G)k−j+1yk−je−

y
2 dy = Γ(k − j + 1)(−2G)k−j+1

∫ G2
−G

w2

0
fY (y)dy, (3.6)

where fY is the p.d.f. of χ2(2(k − j + 1)). Plugging (3.6) into (3.5), we have

∫ ∞

0
fW2(w2)

∫ G2
−G

w2

0
fY (y)dydw2 = P (G2W2 + GY > 0)

=
2

B(p
2 − j, 1

2)

∫ θ2

0
sin2(k−j)+1 θdθ, (3.7)

where Y ∼ χ2(2(k − j + 1)) independent of W2, and θ2 = tan−1
√

G2
−G . Finally,

the result is obtained by plugging (3.7) into (3.5).

Remark 3.2.
(i) As in Remark 3.1 (ii), if we use linear functions (say a∗j +b∗jθ) to approximate

(sin θ)p−2j−1 for j = 0, . . . , k and θ ∈ [θ2(0), θ2(λmax)], then (3.4) can be
approximated by

Fapp(λ) = P0 + a1[θ1(λ) − θ1(0)] + b1[θ1(λ) − θ1(0)]2

+ sinp−1(θ1(λ)) cos(θ1(λ)){a2[θ2(λ) − θ2(0)] + b2[θ2(λ) − θ2(0)]2},(3.8)

where a1, b1, a2 and b2 satisfy Fapp(λi) = Pλi
, i = 1, 2, 3,max, and where

(λ1, Pλ1) and (λmax, Pλmax) are chosen as suggested in Remark 3.1 (ii), with
λ2, λ3 chosen to satisfy Pλ2 = 1

4Pλmax and Pλ3 = 3
4Pλmax .

(ii) Although Fapp(λ) in (3.8) is derived for two positive G′
is, we have found in

some examples that (3.8) still provides good approximations when there are
more than two positive Gi’s.
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Lemma 3.2. Let Wi ∼ χ2(1), i = 1, . . . ,m− p, and W ∼ χ2(p) be independent,
where p is a positive even integer, and G1 ≥ · · · ≥ Gm−p > 0 > G. Let Um−p =∑m−p

i=1 GiWi + GW . Then the density of Um−p is, for um−p < 0,

fUm−p(um−p)=
k∑

jm−p=0

k−jm−p∑
jm−p−1=0

· · ·
k−jm−p−···−j2∑

j1=0

A∗
m−p(

1
−G

)(
um−p

−G
)k−jm−p−···−j1e

um−p
−2G ,

where

A∗
m−p = K∗

jm−p,...,j1

m−p∏
t=1

[(
−G

Gt − G
)

1
2 · ( Gt

Gt − G
)jt ], ∀ m − p ≥ 1 ,

ji = 0, ∀ i < 1, k = p
2 − 1 and K∗

jm−p,...,j1’s are constants (not depending on the
G′

is).

Proof. If m− p = 1, the result follows by Lemma 3.1 (ii). If the result holds for
m − p = q > 1, then the density of Uq+1 is, for uq+1 < 0,

fUq+1(uq+1) =
∫ ∞

0
fUq(uq+1 − Gq+1Wq+1) · fWq+1(wq+1)dwq+1

=
k∑

jq+1=0

k−jq+1∑
jq=0

· · ·
k−jq+1−···−j2∑

j1=0

A∗
q+1(

1
−G

)(
uq+1

−G
)k−jq+1−···−j1e

uq+1
−2G .

The result is obtained by induction.

Theorem 3.2. Adopting the notations of Lemma 3.2, we have P (Um−p > 0) =
P (Um−p−1 > 0) + P (Um−p > 0 and Um−p−1 < 0), where

P (Um−p > 0 and Um−p−1 < 0)

=
k∑

jm−p−1=0

k−jm−p−1∑
jm−p−2=0

· · ·
k−jm−p−1−···−j2∑

j1=0

A∗
m−p−1

·
∫ θm−p

0
(sin θ)2(k+1−jm−p−1−···−j1)−1dθ,

and θm−p = tan−1
√

−Gm−p

G .

Proof. Since Um−p+1 ≤ Um−p, we have P (Um−p > 0) = P (Um−p−1 > 0) +
P (Um−p > 0 and Um−p−1 < 0). By Lemma 3.2, notice that when um−p−1 < 0,
fUm−p−1(um−p−1) can be expressed as a weighted sum of Gamma densities. The
result can be obtained by the same arguments as in the proof of Theorem 3.1.

Remark 3.3. In the above theorems, in order to have the binomial expansion,
we assume that p (the degree of freedom of W ) is even. Simulation results in the
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next section show that (3.3) and (3.8) still provide good approximations when p

is odd.

4. Numerical Results

In this section, we present the simulation results for several examples. By
Remarks 3.1(ii) and 3.2 (i), we adopt the approximation (3.3) for p = m− 1 and
(3.8) for 0 < p < m − 1. In all cases, the critical value of a test was chosen
to correspond to the 5% level. We generated random variables and computed
integrals by the FORTRAN IMSL library on a UNIX workstation.

Example 1. Constancy of Regression coefficients
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Dots denote the power computed by Imhof’s method;
the solid line denotes the power computed by Fapp(λ).

Figure 2. The power function of the LBI test for (2.2), n = 31.

In Figure 2, the dots denote the power of the LBI test computed by Imhof’s
method when n = 31, and the solid line is the power computed by the proposed
approximation. The maximum absolute errors of the SMP and LBI tests with
n = 11, 31, 51, 101, and 201 are given in Table 1 for (2.2) and in Table 2 for (2.3),
in which the results of the Monte Carlo method (with number of replications
10,000 for each λ) and the method of (3.1) are also given. Obviously, (3.1)
and Fapp(λ) give more accurate approximations than the Monte Carlo method.
Although, as was expected, the precision of Fapp(λ) decreases as the number of
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positive eigenvalues increases, even in the worst case (when n = 201) its precision
is still kept to the second decimal place. The coefficients a1, b1, a2, b2 of Fapp(λ)
of each model are given in Table 5 and Table 6.

Table 5. The coefficients of Fapp(λ) for (2.2).

SMP test a1 b1 a2 b2

n = 11, p = 8 0.204 1.378 0.031 2.202
n = 31, p = 25 0.27 3.37 -0.06 15.80
n = 51, p = 44 0.36 6.10 0.26 31.72
n = 101, p = 91 0.9 10.1 -5.7 138.8
n = 201, p = 187 1.1 18.5 -11.8 406

LBI test a1 b1 a2 b2

n = 11, p = 9 0.205 1.905 NA NA
n = 31, p = 28 0.428 6.183 -1.009 1.626
n = 51, p = 47 0.593 9.735 -2.089 7.704
n = 101, p = 96 1.05 18.79 -5.16 35.06
n = 201, p = 194 1.4 36.6 -12.2 111.2

Table 6. The coefficients of Fapp(λ) for (2.3).

SMP test a1 b1 a2 b2

n = 11, p = 7 1.498 -0.838 -2.972 6.111
n = 31, p = 23 7.08 -10.21 -21.47 36.08
n = 51, p = 41 11.60 -23.21 -45.09 94.19
n = 101, p = 87 15.3 -42.8 -83.7 257.6
n = 201, p = 180 18.7 -68.3 -143.9 650.5

LBI test a1 b1 a2 b2

n = 11, p = 8 0.112 1.843 NA NA
n = 31, p = 26 0.54 4.53 -1.64 10.81
n = 51, p = 45 0.75 7.20 -2.87 29.04
n = 101, p = 92 1.3 11.8 -6.8 109.8
n = 201, p = 189 1.8 23.6 -11.7 312.9

We can also use FApp(λ) to approximate the local power (in a neighborhood
of λ = 0) of the SMP and LBI tests. When m− p = 1, the derivatives of Fapp(λ)
at λ = 0 are

dFapp(λ)
dλ

∣∣∣∣
λ=0

= a1
dθ1(λ)

dλ

∣∣∣∣
λ=0

+ a2
dθ2(λ)

dλ

∣∣∣∣
λ=0

· sinp−1(θ1(0)) cos(θ1(0)),

where θi(λ) = tan−1
√

Oi

−Ō
, i = 1, 2, for the SMP test and θi(λ) = tan−1

√
Li

−L̄
, i =

1, 2, for the LBI test (Li
′s and Oi

′s are defined at (2.7) and (2.8), respectively).
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When n = 31, the derivatives are 5.43 and 6.76, respectively. This result not only
confirms the fact that the power of the LBI test is superior to that of the SMP
test in a small neighborhood of the null hypothesis, it quantifies the difference.

Example 2. Moving Average Unit Root
The maximum absolute errors of the score-type test with n = 25, 50, 100 are

given in Table 3 and the coefficients of Fapp(λ) are in Table 7. Figure 3 plots the
(approximate) power function by Fapp(λ) and by Imhof’s method for n = 100.
The maximum absolute errors of LBIU tests of the ARIMA models when

ei + 0.8ei−1 = εi, (4.1)
ei = εi + 0.8εi−1, (4.2)

are given in Table 4 for n = 100, µ = 0 and σ2 = 1. Note that in this case,
the maximum absolute errors are computed for ρ in (−1, 1). We get similar
conclusions as in Example 1.

Table 7. The coefficients of Fapp(λ) for (2.9).

Score-type test a1 b1 a2 b2

n = 25, p = 23 0.395 5.121 -0.792 0.840
n = 50, p = 47 0.66 9.27 -2.13 10.45
n = 100, p = 96 1.09 17.29 -5.76 45.15
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Dots denote the power computed by Imhof’s method;
the solid line denotes the power computed by Fapp(λ).

Figure 3. The power function of score-type test for (2.9), n = 100.
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