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Abstract: Selection models are appropriate when the probability that a potential

datum enters the sample is a nondecreasing function of the numeric value of the

datum. It is rarely justifiable to model this function, called the weight function,

with a specific parametric form, but appealing to model it with a nonparametric

prior centered around a parametric form. The Bayesian analysis with a Dirichlet

process prior for the weight function is considered and it is proved that the posterior

is consistent under the weak topology.
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1. Introduction

Suppose X1, . . . ,XN are independent and identically distributed (i.i.d.) with
density f(x). In many situations a potential datum, Xi, enters the sample only
with some probability w(Xi), typically a nondecreasing function of the numerical
value of the datum; this function is called the weight function and will be assumed
to be nondecreasing throughout the paper.

Selection models arise naturally in many practical applications, such as oil
discovery (Meisner and Demirmen (1981), Nair and Wang (1989), West (1994,
1996)), aerial survey (Cook and Martin (1974), Patil and Rao (1977), Sun and
Woodroofe (1997), and Lee and Berger (1999)), meta-analysis (Iyengar and
Greenhouse (1988), Bayarri and DeGroot (1992), and Silliman (1997a, b)), econo-
metrics (Maddala (1977)), and astronomy (Sun and Woodroofe (1997)).

A nondecreasing weight function selects observations that overrepresent large
values and it is crucial to take the selection mechanism into consideration. In
most cases, the exact form of weight function is not known and a specific paramet-
ric form can rarely be justified. Hence a Bayesian approach with a nonparametric
prior centered around a parametric form of the weight function is appealing. Lee
and Berger (1999) developed such an approach, showing how it can be com-
putationally implemented via Markov chain Monte Carlo (MCMC). They also
observed an interesting phenomenon, termed practical nonidentifiability, wherein
the likelihood has two modes, one around the true parameter value and the other
representing a near constant weight function. While this complicates inference
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by frequentists and Bayesians, a solution has been proposed by Lee and Berger
(1999). Theoretically, however, this phenomenon increases concern as to whether
the posterior is consistent in selection models. As shown by Diaconis and Freed-
man (1986), in a nonparametric location problem with a Dirichlet process prior
on the error distribution, the posterior can be inconsistent. Subsequent papers
studying consistency include Diaconis and Freedman (1993), Cox (1993), Barron,
Schervish and Wasserman (1999), and Ghosal, Ghosh and Ramamoorthi (1999).

In this paper, we establish posterior consistency for selection models of the
type studied in Lee and Berger (1999). An important technical complication
arises because the observations in selection models are not i.i.d., while most of the
theorems (see Schwartz (1965), Barron (1988), Barron, Schervish and Wasserman
(1999), and Ghosal, Ghosh and Ramamoorthi (1999)) assume they are. We
resolve this issue by using a result from Barron (1988), with the observation that
the posterior arising from a selection model can be represented as one arising
from i.i.d. observations with varying priors. A second unusual aspect of the
problem is that the number of unobserved observations is unknown. In studying
consistency, we need to let this number go to infinity, so the prior distribution
must “allow” this to happen in a suitable sense.

2. Notation and Models

2.1. Introduction

Let X = {X1, . . . ,XN} be an i.i.d. sample from the density f(x|θ) with re-
spect to Lebesgue measure (or counting measure), with support X ⊂ R and θ

unknown in Θ, where Θ is a subset of an Euclidean space, and let 0 ≤ w(x) ≤ 1
be a nondecreasing weight function. Each Xi is observed (or selected) with prob-
ability w(Xi). The overall probability of selection is v(θ,w) =

∫
w(x)f(x|θ)dx.

Let O be the observed portion of X, written {xi1 , . . . , xin}, and M = X\O be the
portion of X that is not selected. Thus n is the number of selected observations.
The conditional density of Xi, given that it is selected, is

fw(x|θ) =
w(x)f(x|θ)

v(θ,w)
. (1)

Any bounded non-trivial w(x) can be renormalized so as to have supremum
equal to one, without affecting (1). We assume this has been done, so w(x) can
be viewed as an element of the space, W, of cumulative distribution functions
(cdfs) on X .

If both the weight function w and density f are modeled nonparametrically,
the model becomes unidentifiable. In this paper, w is modeled nonparametrically
and f is given parametric form. For more detailed discussion of identifiability,
see Lee and Berger (1999).
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2.2. Sampling plans

We consider two common mechanisms by which the data are generated, the
binomial and negative binomial sampling plans. Under the binomial sampling
plan, N is fixed beforehand (though possibly unknown), X1, . . . ,XN are drawn
from a density f(x|θ), and each Xi enters the sample with probability w(Xi).
The density of O = {xi1 , . . . , xin} and n is then

p(O,n|N,w, θ) =

(
N

n

)
v(θ,w)n(1 − v(θ,w))N−n

n∏
j=1

f(xij |θ)w(xij )
v(θ,w)

.

Under the negative binomial sampling plan, n is fixed beforehand, X1,X2, . . .

are sampled from the population until n of them are selected in the sample, and
the density of O and N is

p(O,N |n,w, θ) =

(
N − 1
n − 1

)
v(θ,w)n(1 − v(θ,w))N−n

n∏
j=1

f(xij |θ)w(xij )
v(θ,w)

.

Note that, under both plans, n is known to the statistician after sampling,
but N could be either known or unknown. If N is known, the sampling plans are
equivalent for Bayesian analysis because their likelihoods are proportional. If N

is unknown, however, the likelihoods are different. Under the negative binomial
N is a part of the sampling plan and hence a prior on N is not necessary, while
under the binomial with unknown N a prior on N is necessary. Interestingly, in
the latter situation, the improper prior π(N) ∝ N−1 results in the same posterior
as obtained under negative binomial sampling (Bayarri and DeGroot (1990)).

2.3. The prior distribution

Prior distributions need to be specified for θ, the unknown parameter in
the density f(·|θ), for the unknown w, and for the unknown N in the binomial
sampling plan. A proper prior is considered for θ.

The prior we consider for the weight function, w, is based on the Dirichlet
process (Ferguson (1973)) Dα, with parameter α, where α is a nonnull finite
measure on X . This is a prior on the space of probability measures on X such
that, for every Borel measurable partition (B1, . . . , Bk), the random element P

from the process satisfies

(P (B1), . . . , P (Bk)) ∼ D(α(B1), . . . , α(Bk)),

where D(α1, . . . , αk) denotes the Dirichlet distribution with parameters, α1, . . .,
αk. The parameter (or base measure) of the Dirichlet process is chosen to be of
the form α(·|η). The mean of this Dirichlet process is α(·|η)/α(X|η), which we
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thus choose to be the subjective guess as to the parametric form of the weight
function, with η representing a possibly unknown parameter from this parametric
form. The parameter η, of the centering parametric form, will be assigned a
proper prior density µ(η).

As discussed in Section 2.2, a prior on N is necessary if N is unknown under
the binomial sampling plan. In the unknown N case, much of the uncertainty of
the posterior comes from that of N ; hence in practice, use of a proper subjective
prior for N is to be encouraged. For investigating consistency, however, many
proper priors on N are unsuitable, since consistency must be studied as N → ∞;
clearly, for instance, a prior on N with bounded support could not be used.
Similarly priors on N that have too sharp tails cannot sensibly accommodate
N → ∞. We thus consider priors with a polynomial tail, i.e.,

π1(N) ∝
{

1
Nγ , if N ≥ 1,
0, otherwise,

where, γ ≥ 1. Finally, θ, w and N are taken to be independent.

3. Main Results

Suppose the parametric family of cdfs F (·|θ), θ ∈ Θ (an open subset of an
Euclidean space), has the same support X (either (a,∞) with −∞ ≤ a < ∞, the
continuous case, or {a, a+1, . . .} with a an integer, the discrete case). Denote by
f(·|θ) the density of F (·|θ) with respect to a measure ν (either Lebesgue measure,
the continuous case, or the counting measure, the discrete case). Let W be the
space of all distribution functions on X and define P = {fw(·|θ) : θ ∈ Θ, w ∈ W}.
Let w0 and θ0 be the true weight function and parameter value, and let inf X = a.

Definition 1. The posterior π(·|O,n) is said to be consistent at P0 = fw0(·|θ0) ∈
P if π(U |O,n) → 1, P0 − a.s, for any weak neighborhood U of P0. The limit is
taken as n → ∞ under the negative binomial sampling plan, and as N0 → ∞
under the binomial sampling plan.

Remark. The weak neighborhoods are open neighborhoods defined by the weak
topology on the space of probability measures induced by weak convergence.

General Assumptions

G1 : The base measure of the Dirichlet process, α, has support X . With a slight
notational abuse, α(t) denotes α(inf X , t].

G2 : The prior π(θ) on Θ assigns a positive mass to every nonempty open subset
of Θ.
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G3 : The two maps from Θ to R,

θ →
∫
X

f(x|θ0)| log f(x|θ0)
f(x|θ)

|dν(x)

θ →
∫
X
|f(x|θ0) − f(x|θ)|dν(x)

are continuous at θ = θ0.

Additional Assumptions for X = (a,∞)
C1 : w0(·) is continuous on X .
C2 :

∫
X f(x|θ0)| log w0(x)|dx < ∞.

C3 : limt→inf X F (t|θ0)| log w0(t)| = 0.
C4 :

∫
X f(x|θ0)/α2(x)dx < ∞.

Note that C2 and the assumption that X is the support of f(·|θ) for all θ imply
that w0(x) > 0 for all x ∈ X .

Additional Assumption for X = {a, a + 1, . . .}
D1 : w0(a) > 0.

Theorem 1. If X = (a,∞), the posterior is consistent at P0 under assumptions
G1 − G3 and C1 − C4.

Theorem 2. If X = {a, a + 1, . . .}, the posterior is consistent at P0 under
assumptions G1 − G3 and D1.

Theorems 1 and 2 are for the case in which the Dirichlet process prior has a
specified base measure α. The following theorem deals with the case of a mixture
Dirichlet process, centered on a parametric family.

Theorem 3. Let w ∼ Dα(·|η) and η ∼ µ(·), where µ is a proper prior on the
hyperparameter η. Then the conclusions of Theorem 1 and 2 remain valid if their
assumptions are true with positive µ probability.

Normal Example. The underlying density is N(µ, σ2) and the priors on
the parameters are as follows: w ∼ DA·N(a,b2), µ|σ2 ∼ N(µm, σ2/km), σ−2 ∼
Gamma(αm, βm), N ∼ π1, where µm ∈ R and A, km, αm, βm > 0.

Suppose C1-C3 hold for θ0 = (µ0, σ
2
0) and w0. It is straightforward to verify

G1-G3. Assumption C4 holds only when b2 > 2σ2
0 , hence, Theorem 1 does not

guarantee the consistency for all normal base measures of Dirichlet process priors.
However with a hyperprior a|b2 ∼ N(µw, b2/kw), b−2 ∼ Gamma(αw, βw), where
µw ∈ R and kw, αw, βw > 0, the posterior is consistent by Theorem 3, because
the set {b2 ∈ R : b2 > 2σ2

0} has positive prior probability.

Poisson Example. Suppose X has a Poisson distribution with mean λ and the
priors on the parameters are as follows: w ∼ DA·Geometric(p), λ ∼ Gamma(α, β),
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N ∼ π1, where A,α, β are positive constants. Assumptions G1-G3 are easy to
verify. Under assumption D1, the posterior is consistent. By Theorem 3, with a
hyperprior p ∼ Beta(a, b) with a, b > 0, the posterior is still consistent.

It should be noted that, even though the posterior is consistent on P, the
theorems do not say that the posterior is consistent on the parameter space
Θ × W. If the inverse of the map T from Θ × W to P, T : (θ,w) −→ fw(·|θ),
is continuous at fw0(·|θ0), the posterior would be consistent on the parameter
space Θ ×W by the continous mapping theorem. This is not usually the case.

4. Proofs of Results

We utilize the result of Schwartz (1965), as discussed by Barron (1986),
for the case of a negative binomial sampling scheme. For the binomial sampling
scheme, Schwartz’s theorem cannot be applied because observations are not i.i.d.,
so we utilize a result due to Barron (1988). The exact form of Barron’s theorem
cited here does not appear in his paper, but is a consequence of his Theorem 5
and Lemma 8. Schwartz’s theorem is a corollary of Barron’s theorem.

Theorem 4. (Barron) Let U1, U2, . . . be i.i.d. random variables with common
distribution Q. Suppose Q belongs to P, a family of probability measures dom-
inated by a σ-finite measure ν. Suppose a sequence of priors {πn} puts posi-
tive mass on every Kullback-Leibler ball Kδ around Q which is not exponentially
small, i.e., for every δ, r > 0, there exists an n0 such that for all n > n0,
πn{P : I(Q,P ) < δ} > e−nr, where I(Q,P ) =

∫
q log(q/p)dν and q and p are the

densities of Q and P with respect to ν. Then the posterior is consistent at Q.

Theorem 5. (Schwartz) The posterior is consistent at Q under the assumptions
of Barron’s theorem with the sequence of priors {πn} replaced by a fixed prior π

which puts positive mass on every Kullback-Leibler ball around Q.

We begin with a series of technical Lemmas. The first lemma is from Sethuraman
(1983). For a finite measure µ on X and a measurable set A in X , let µ|A(B) =
µ(A ∩ B)/µ(A), for all measurable sets B in X .

Lemma 1. (Projection Lemma) Suppose P ∼ Dα and A is a measurable set.
Then P |A, P |Ac and P (A) are independent and their distributions are Dα(A)·α|A ,
Dα(Ac)·α|Ac and Beta(α(A), α(Ac)), respectively.

Lemma 2. Suppose X = {a, a + 1, . . .} and G1 holds. Then, for any ε > 0,
Dα{w : supx∈X |w0(x) − w(x)| < ε} > 0.

Proof. Let ε > 0 be given. Take b ∈ X so that w0(b) > 1−ε/4. Since (w(a), w(a+
1) − w(a), . . . , w(b) − w(b − 1), 1 − w(b)) follows a finite-dimensional Dirichlet
distribution with parameters (α(a), α(a + 1)−α(a), . . ., α(b)−α(b− 1), α(X )−
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α(b)), Dα(A) > 0, where A = {w : |w(x) − w0(x)| < ε/4, x = a, a + 1, . . . , b}. If
w ∈ A then w(b) > 1− ε/2, since w0(b) > 1− ε/4 and |w(b)−w0(b)| < ε/4. This
implies, for x = b, b + 1, . . . , that

|w(x) − w0(x)| ≤ |1 − w(x)| + |1 − w0(x)| < ε/2 + ε/2 = ε.

Hence 0 < Dα(A) ≤ Dα{w : |w(x) − w0(x)| < ε, for x ∈ X}.
Lemma 3. Suppose X ∼ Beta(α, β) with α, β > 0. Then

E[− log X] ≤ Γ(α + β)
Γ(α)Γ(β)

2
α2

+ log 2.

Lemma 4. For 0 < β < 1, 1/(eβ) ≤ Γ(β) ≤ 1/β + 1/e.

Lemma 5. For 0 < c < a < 1, Γ(a)/(Γ(c)Γ(a − c)) ≤ e2/2.

The proofs of Lemmas 3-5 are relegated to the appendix.

Lemma 6. Suppose w ∼ Dα. For t with α(t) < 1,

E[
∫ t

inf X
f(x|θ0)(− log

w(x)
w(t)

)dν(x)] ≤ e2
∫ t

inf X
f(x|θ0)
α2(x)

dν(x) + F (t|θ0) log 2.

Proof. Since w(x)/w(t) ∼ Beta(α(x), α(t) − α(x)) for x < t, Lemmas 3 and 5
yield

E[− log
w(x)
w(t)

] ≤ Γ(α(t))
Γ(α(x))Γ(α(t) − α(x))

2
α2(x)

+ log 2 ≤ e2

α2(x)
+ log 2.

Hence,

E[
∫ t

inf X
f(x|θ0)(− log

w(x)
w(t)

)dν(x)] =
∫ t

inf X
f(x|θ0)E[− log

w(x)
w(t)

]dν(x)

≤ e2
∫ t

inf X
f(x|θ0)
α2(x)

dν(x) + F (t|θ0) log 2.

To simplify the notation, define the following sets. For all t ∈ X , ε > 0 and
a vector vt = (t0, . . . , tk+1) where t0 = t < t1 < · · · < tk < tk+1 = ∞, define

A1(t, ε) = {w : sup
x≥t

|w0(x) − w(x)| ≤ ε},

A2(t, ε) = {w :
∫ t

inf X
f(x|θ0)| log w(x)|dν(x) < ε},

B1(t, ε, vt) = {w : |w(ti) − w(ti−1)
1 − w(t)

− w0(ti) − w0(ti−1)
1 − w0(t)

| < ε, i = 1, . . . , k + 1},
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B2(t, ε) = {w :
∫ t

inf X
f(x|θ0)| log w(x)

w(t)
|dν(x) < ε},

B3(t, ε) = {w : |w(t) − w0(t)| < ε},
Kε = {(θ,w) : I(fw0(·|θ0), fw(·|θ)) < ε}.

Lemma 7. Suppose C1 holds and X = (a,∞). Then for all δ > 0 and t ∈ X
with w0(t) < 1/2, there exist an η > 0 and a vector vt = (t0, . . . , tk+1) with
t = t0 < t1 < · · · < tk < tk+1 = ∞ such that B1(t, η, vt) ∩ B3(t, η) ⊂ A1(t, δ).

Proof. The proof involves only standard arguments using the continuity of w0

and monotonicity of w. The details are omitted.

Lemma 8. Under G3 and for each ε > 0, there exists δ > 0 s.t. supx |w0(x) −
w(x)| < δ and |θ0 − θ| < δ imply |v(θ0, w0) − v(θ,w)| < ε.

Proof. Suppose ε > 0 is given. By G3, we can choose 0 < δ < ε
2 such that

|θ0 − θ| < δ implies
∫ |f(x|θ) − f(x|θ0)|dν(x) < ε

2 . Suppose (θ,w) is such that
|θ − θ0| < δ and supx |w(x) − w0(x)| < δ. Then,

|v(θ,w) − v(θ0, w0)|
≤
∫

|w(x) − w0(x)|f(x|θ)dν(x) +
∫

w0(x)|f(x|θ) − f(x|θ0)|dν(x)

≤ sup
x

|w0(x) − w(x)| +
∫

|f(x|θ) − f(x|θ0)|dν(x) <
ε

2
+

ε

2
= ε,

completing the proof.

Lemma 9. Under G3, the map θ → ∫
X fw0(x|θ0)| log f(x|θ0)

f(x|θ) |dν(x) is continuous
at θ0.

Proof. Since w0(x) ≤ 1 for all x, we have
∫

fw0(x|θ0)| log f(x|θ0)
f(x|θ)

|dν(x) ≤ 1
v(θ0, w0)

∫
f(x|θ0)| log f(x|θ0)

f(x|θ)
|dν(x).

The conclusion follows from the assumption that the map θ → ∫
f(x|θ0)| log

f(x|θ0)
f(x|θ) | dν(x) is continuous at θ0.

Lemma 10. Suppose X = (a,∞). Under assumptions G1 − G3 and C1 − C4,
(π × Dα)(Kε) > 0, for all ε > 0.

Proof. We first fix ε’s and δ’s and then sketch the plan for the proof. Suppose
ε > 0 is given. By Lemma 8 and the continuity of log, there exists δ1 > 0
such that, for all w and θ satisfying supx |w0(x) − w(x)| < δ1 and |θ0 − θ| < δ1,
| log v(θ,w)−log v(θ0, w0)| < ε. Now choose t ∈ X so that w0(t) < min{1/2, δ1/2},
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α(t) < 1 and ∫ t

inf X
f(x|θ0)| log w0(x)|dx < ε/3 (2)∫ t

inf X
f(x|θ0)
α2(x)

dx <
ε

12e2
(3)

F (t|θ0)| log w0(t)| < ε/12 (4)

F (t|θ0) <
ε

12
. (5)

Since log is uniformly continuous on every compact interval away from 0 and
w0(t) > 0 by C2, we can take δ < w0(t)/2 (hence δ < δ1/4) so that | log x−log y| <
ε/3, for all x, y ∈ [w0(t)/2, 1] with |x− y| < δ. By Lemma 9, there exists δ2 < δ1

such that, for θ with |θ − θ0| < δ2,∫
fw0(x|θ0)| log f(x|θ0)

f(x|θ)
|dx < ε.

Note that dν(x) = dx since ν is Lebesgue measure. Let A1 = A1(t, δ) and
A2 = A2(t, ε/3), and let M = 2+1/v(θ0, w0). Finally, by Lemma 7, we can choose
0 < η < δ and a vector vt = (t0, . . . , tk+1) with t = t0 < t1 < · · · < tk < tk+1

so that B1(t, η, vt) ∩ B3(t, η) ⊂ A1. Let B1 = B1(t, η, vt), B2 = B2(t, ε/6), and
B3 = B3(t, η).

We now sketch the proof in three steps.

Step 1. {(θ,w) : w ∈ A1 ∩ A2, |θ − θ0| < δ2} ⊂ KMε.
After Step 1 is shown, to complete the proof, it suffices to show Dα(A1∩A2) >

0, because the prior π(θ) puts positive mass on every open neighborhood of θ0.
This is not easy to show directly, so we show
Step 2. B1 ∩ B2 ∩ B3 ⊂ A1 ∩ A2.

Since B1, B2, and B3 depend only on w|(t,∞), w|(inf X ,t], and w(t), respec-
tively, these three sets are independent under Dα by the projection lemma. By
the property of Dirichlet distributions, B1 and B3 have positive Dα probability.
Finally, we show
Step 3. Dα(B2) > 0.

Combining Steps 2-3, we have

Dα(A1 ∩ A2) ≥ Dα(B1 ∩ B2 ∩ B3) = Dα(B1)Dα(B2)Dα(B3) > 0.

We complete the proof by showing Steps 1 — 3.

Proof of Step 1. We first show two facts.
a. supx |w(x) − w0(x)| < δ1, for all w ∈ A1.
Because w and w0 are both nondecreasing positive functions,

sup
x≤t

|w0(x) − w(x)| ≤ max{w0(t), w(t)} ≤ w0(t) + δ.
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Finally, because both w0(t) and δ are smaller than δ1/2, the result follows.

b. If w ∈ A1 ∩ A2, then
∫
X f(x|θ0)| log w(x) − log w0(x)|dx < ε.

The integral breaks into three pieces, which can be bounded by∫
f(x|θ0)| log w(x) − log w0(x)|dx ≤

∫ t

inf X
f(x|θ0)| log w0(x)|dx

+
∫ t

inf X
f(x|θ0)| log w(x)|dx +

∫ ∞

t
f(x|θ0)| log w(x) − log w0(x)|dx.

By (2), the first term is less than ε/3 and the second is less than ε/3 because
w ∈ A2. For w ∈ A1 and x ≥ t, | log w(x) − log w0(x)| < ε/3, because δ was so
chosen. Hence, the integral in part b is less than ε.

Suppose w ∈ A1∩A2 and |θ0−θ| < δ2. Then, since supx |w0(x)−w(x)| < δ1

and |θ0 − θ| < δ1, we have | log v(θ0, w0) − log v(θ,w)| < ε. Furthermore,∫
fw0(x|θ0)| log w0(x)

w(x)
|dx ≤ 1

v(θ0, w0)

∫
f(x|θ0)| log w0(x)

w(x)
|dx <

ε

v(θ0, w0)
.

The first inequality holds because w0(x) ≤ 1 for all x ∈ X , and the second
inequality holds because of b. Combining these inequalities, we have, for w ∈
A1 ∩ A2 and |θ0 − θ| < δ2,

I(fw0(·|θ0), fw(·|θ)) =
∫

fw0(x|θ0) log
fw0(·|θ0)
fw(·|θ)

dx

≤
∫

fw0(x|θ0)(| log w0(x)
w(x)

|+| log f(x|θ0)
f(x|θ)

|+| log v(θ,w)
v(θ0, w0)

|)dx

<
ε

v(θ0, w0)
+ ε + ε = Mε.

This completes the proof of Step 1.

Proof of Step 2. Since B1 and B3 are chosen so than B1 ∩ B3 ⊂ A1, it
suffices to show B2 ∩ B3 ⊂ A2. We need to show, for w ∈ B2 ∩ B3, that∫ t
inf X f(x|θ0)| log w(x)|dx < ε/3. First, observe that
∫ t

inf X
f(x|θ0)| log w(x)|dx ≤

∫ t

inf X
f(x|θ0)| log w(x)

w(t)
|dx+

∫ t

inf X
f(x|θ0)| log w(t)|dx

< ε/6 + | log w(t)|F (t|θ0)

≤ ε/6+| log w0(t)|F (t|θ0)+| log w0(t)−log w(t)|F (t|θ0)

<
ε

6
+

ε

12
+

ε

3
ε

12
<

ε

3
.

The second inequality holds because w ∈ B2; (4) yields the second term in the
fourth inequality; (5) together with the definition of δ and the fact that η < δ
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yields the third term in the fourth inequality. This completes the proof of Step
2.

Proof of Step 3.

Dα(Bc
2) = Dα{w :

∫ t

inf X
f(x|θ0)| log w(x)

w(t)
|dx ≥ ε

6
}

≤ 6
ε
E[
∫ t

inf X
f(x|θ0)| log w(x)

w(t)
|dx]

≤ 6
ε
[e2
∫ t

inf X
f(x|θ0)
α2(x)

dx + F (t|θ0) log 2]

<
6
ε
[

ε

12
+

ε

12
] = 1.

The first inequality follows from the Markov inequality, the second from Lemma
6, and the last from (3) and (5). This completes the proof of the lemma.

Lemma 11. Suppose X = {a, a + 1, . . .}. Under assumptions G1 −G3 and D1,
(π × Dα)(Kε) > 0 for all ε > 0.

Proof. Let δ > 0 be given. The Kullback-Leibler divergence can be bounded as
follows:

I(fw0(·|θ0), fw(·|θ))=
∞∑

x=a

fw0(x|θ0) log
fw0(x|θ0)
fw(x|θ)

≤
∞∑

x=a

fw0(x|θ0)(| log w0(x)
w(x)

|+| log f(x|θ0)
f(x|θ)

|+| log v(θ,w)
v(θ0, w0)

|).

We can choose ε > 0 such that, for (θ,w) ∈ A = {(θ,w) : supx∈cX |w(x) −
w0(x)| < ε, |θ − θ0| < ε},

| log w0(x)
w(x)

| < δ/3 for all x ∈ X , (6)

∞∑
x=a

fw0(x|θ0)| log f(x|θ0)
f(x|θ)

| < δ/3, (7)

| log v(θ,w)
v(θ0, w0)

| < δ/3. (8)

The inequality (6) is due to D1 and the fact that log is uniformly continuous on
every compact interval away from 0; (7) is due to Lemma 9; and (8) is due to
Lemma 8. Hence I(fw0(·|θ0), fw(·|θ)) < δ for (θ,w) ∈ A. By G2, Dα(A) > 0 for
all ε.

Under the negative binomial sampling scheme, Lemmas 10 and 11 are enough
to establish consistency utilizing Schwartz’s theorem because, by summing out N
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from the likelihood, the posterior is the same as that arising from an i.i.d. sample,
i.e., for A ⊂ Θ ×W,

p(A|O,n) =
∫
A

∏
i∈O fw(xi|θ)(π × Dα)(dθ, dw)∫ ∏
i∈O fw(xi|θ)(π × Dα)(dθ, dw)

.

Under the binomial sampling, the i.i.d. structure does not hold and Schwartz’s
theorem cannot be applied. However, a closer look at the likelihood suggests that
the posterior can be written as one arising from an i.i.d. sample with priors that
vary with n, and that Barron’s theorem can be applied to establish the consis-
tency of the posterior. Let λ be a prior defined on Θ × W, either (π × Dα) or∫
(π × Dα(·|η))µ(dη) where µ is a prior on η, and let N0 be the true value of N .

Define

m(n|θ,w) =
∞∑

N=n

π1(N)

(
N

n

)
v(θ,w)n(1 − v(θ,w))N−n

m(n) =
∫

m(n|θ,w)λ(dθ, dw)

p(n) =

(
N0

n

)
v(θ0, w0)n(1 − v(θ0, w0))N0−n

λn(dθ, dw) =
m(n|θ,w)λ(dθ, dw)

m(n)
. (9)

Then the posterior can be written as, for A ⊂ Θ ×W,

p(A|O,n)=

∫
A

∑∞
N=n π1(N)

(N
n

)
v(θ,w)n(1−v(θ,w))N−n∏n

j=1 fw(xij |θ)λ(dθ, dw)∫ ∑∞
N=n π1(N)

(N
n

)
v(θ,w)n(1−v(θ,w))N−n

∏n
j=1 fw(xij |θ)λ(dθ, dw)

=

∫
A

∏n
j=1 fw(xij |θ)λn(dθ, dw)∫ ∏n
j=1 fw(xij |θ)λn(dθ, dw)

.

Using Barron’s theorem, it suffices to show that, for all ε, r > 0, and for all
sufficiently large n, λn(Kε) > e−nr. To prove this, we need the following lemma.

Lemma 12. For the prior π1(N) = N−γ with γ ≥ 1,

ν(θ,w)k+1

n(n − 1) . . . (n − k − 1)
≤ m(n|θ,w) ≤ ν(θ,w)k−1

n(n − 1) · · · (n − k + 1)
,

for all sufficiently large n, where k is the integral part of γ.

Proof. We show the second inequality first. Since k ≤ γ ≤ k + 1,

m(n|θ,w) =
∞∑

N=n

1
Nγ

(
N

n

)
ν(θ,w)n(1 − ν(θ,w))N−n
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≤
∞∑

N=n

1
N(N − 1) · · · (N − k + 1)

N !
n!(N − n)!

ν(θ,w)n(1 − ν(θ,w))N−n

=
ν(θ,w)k−1

n(n−1)· · ·(n−k+1)

∞∑
N=n

(N−k)!
(n−k)!(N−n)!

ν(θ,w)n−k+1(1−ν(θ,w))N−n

=
ν(θ,w)k−1

n(n − 1) · · · (n − k + 1)
.

Since for all sufficiently large n, Nk+1 ≤ N(N −1) · · · (N −k−1), for all N ≥ n,
we have

m(n|θ,w)≥
∞∑

N=n

1
N(N − 1) · · · (N − k − 1)

N !
n!(N − n)!

ν(θ,w)n(1 − ν(θ,w))N−n

=
ν(θ,w)k+1

n(n−1)· · ·(n−k−1)

∞∑
N=n

(N−k−2)!
(n−k−2)!(N−n)!

ν(θ,w)n−k−1(1−ν(θ,w))N−n

=
ν(θ,w)k+1

n(n − 1) · · · (n − k − 1)
.

Proof of Theorems 1 and 2. In both theorems, it suffices to show that, for
all ε, r > 0 and for all sufficiently large n, λn(Kε) ≥ e−nr, where λn is given by
(9) with λ = π × Dα. Using Lemma 12,

λn(Kε) =

∫
Kε

m(n|θ,w)λ(dθ, dw)∫
m(n|θ,w)λ(dθ, dw)

≥
∫
Kε

ν(θ,w)k+1/n(n − 1) · · · (n − k − 1)λ(dθ, dw)∫
ν(θ,w)k−1/n(n − 1) · · · (n − k + 1)λ(dθ, dw)

=
1

(n − k)(n − k − 1)

∫
Kε

ν(θ,w)k+1λ(dθ, dw)∫
ν(θ,w)k−1λ(dθ, dw)

,

where k is the integral part of γ. Because the first factor 1/[(n − k)(n − k − 1)]
decreases at a polynomial rate and the second factor is a positive quantity (due
to Lemmas 10 and 11) and independent of n, we are done.

Proof of Theorem 3. The proof is the same as that of Theorems 1 and 2,
except that λ =

∫
(π × Dα(·|η))µ(dη).
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Appendix

Proof of Lemma 3. The expectation, without the normalizing constant, breaks
into ∫ 1

0
(− log x)xα−1(1 − x)β−1dx =

∫ 1/2

0
(− log x)xα−1(1 − x)β−1dx

+
∫ 1

1/2
(− log x)xα−1(1 − x)β−1dx.

The first integral can be bounded using the fact that (1− x)β−1 ≤ 2 for x < 1/2
and β > 0;

∫ 1/2

0
(− log x)xα−1(1 − x)β−1dx ≤ 2

∫ 1/2

0
(− log x)xα−1dx ≤ 2

α2
.

The second integral can be bounded similarly, using the inequality − log x ≤ log 2
for 1/2 ≤ x ≤ 1:
∫ 1

1/2
(− log x)xα−1(1 − x)β−1dx ≤ log 2

∫ 1

1/2
xα−1(1 − x)β−1dx = log 2

Γ(α)Γ(β)
Γ(α + β)

.

The above two inequalities yield the result.

Proof of Lemma 4. Write

Γ(β) =
∫ ∞

0
xβ−1e−xdx =

∫ 1

0
xβ−1e−xdx +

∫ ∞

1
xβ−1e−xdx.

Note that

1
eβ

=
∫ 1

0
xβ−1e−1dx ≤

∫ 1

0
xβ−1e−xdx ≤

∫ 1

0
xβ−1e−0dx =

1
β

and, for 0 < β < 1, ∫ ∞

1
xβ−1e−xdx ≤

∫ ∞

1
1β−1e−xdx =

1
e
.

Combining the above inequalities, we get the result.

Proof of Lemma 5. Using Lemma 4 and the fact that 1/a > 1/e, we have

Γ(a)
Γ(c)Γ(a − c)

≤
1
a + 1

e
1
ec

1
e(a−c)

≤ e2c(a − c)
2
a
≤ 2e2 c

a
(1 − c

a
).

Finally, because p(1 − p) ≤ 1/4 for all 0 ≤ p ≤ 1, we get the conclusion.
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