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Abstract: Cumulative sum (CUSUM) charts for controlling the covariance matrix

are proposed via the projection pursuit method. Unlike traditional charts for covari-

ance, the proposed charts can be used in a low-volume or short-run environment.

It is shown that the proposed procedures are more effective than various exist-

ing ones. Their applications to monitoring a process with paired measurements are

demonstrated. The CUSUM chart based on the likelihood ratio is also investigated.

The performances of the two new kinds of CUSUM charts are similar. However,

the likelihood ratio-based CUSUM chart requires that the size of each subgroup is

larger than the dimension of the quality characteristics.
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1. Introduction

There are many situations in which the overall quality of a product is deter-
mined by several correlated quality characteristics. Alt (1985) effectively illus-
trated the need for multivariate control charts in such situations. Mason, Champ,
Tracy, Wierda and Young (1997) discussed implementation and interpretation is-
sues. Various types of multivariate charts for a process mean have been suggested
(see, for example, Alt (1985, 1988); Jackson (1991); Lowry, Woodall, Champ and
Rigdon (1992); Lowry and Montgomery (1995); Chan and Li (1994); Ngai and
Zhang (1994); Flury, Nel and Piennar (1995); Wierda (1994)) in the past decade.
A brief introduction to the multivariate control problem can be found in Mont-
gomery (1996, pp.322-330) and Ryan (1989, pp.215-227). Like the process mean,
the process variability, usually summarized by a covariance matrix, is important
for judging whether the process is in control. Two kinds of charts for covariance
were suggested by Alt (1985). However, neither the problem of efficiently con-
trolling the process covariance nor the comparison of these charts has been well
studied.

The charts for covariance surveyed in Alt and Smith (1988) are of Shewhart
type, i.e., each plotted point is based only on an independent sample (also called
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subgroup). The charts are easy to implement but, using only the information in
an individual sample, they are insensitive to small or moderate changes of the
covariance matrix. Another disadvantage is that these charts can be constructed
only when each sample size is larger than the dimension of the quality charac-
teristics. This is not always possible or practical. For example, as Ryan (1989,
Chapter 6) points out, items coming off an assembly line may be produced at
such a low rate that the process might have already gone out of control when
a subgroup of sufficiently large size is formed. In the short-run environment, a
large or moderate sample size is usually not feasible because of low-volume man-
ufacturing. A comprehensive discussion on statistical process monitoring and
control is given in a series of articles appearing in the April 1997 issue of Journal
of Quality Technology.

To overcome the disadvantages mentioned, CUSUM-type charts based on
the projection pursuit technique (Huber (1985)) are developed in this paper. In
many cases the new charts can detect a change of covariance more than twice
as fast (i.e., half of the average run length) as some existing Shewhart charts.
The CUSUM chart based on the likelihood ratio (LRC) is also investigated.
Like the Shewhart charts, the condition that each sample size is larger than
the dimension of the quality characteristics is required in constructing the LRC.
Our study shows that the projection pursuit-based CUSUM chart with reference
values 1.5 and 0.5 performs better than the LRC in detecting an upward change
of covariance. However, the conclusion is reversed when a certain degree of
downward changes is presented in the covariance. We also show that we can
adjust the reference values so that the projection pursuit-based CUSUM chart has
performances similar to LRC in detecting both upward and downward changes.

The proposed charts can be used for quality control of a paired measurement
system. In some situations, the precision of process measurements depends on
product variability as well as measurement error. Paired measurements on each
single specimen from two or more laboratories are made to account for these two
sources of variation. Control charts for such a process have been investigated
recently (for example, Jackson (1991) and Tracy, Youn and MaMason (1995)).
The new charts can simultaneously monitor both sources of variation.

2. The New Charts

Consider a p-dimensional random vector X, which represents p quality char-
acteristics, normally distributed with mean µ and covariance (matrix) Σ. A
sample of size n, n ≥ 1, is taken from the process over each time period. The
ith sample is denoted by xik, k = 1, . . . , n. The aim of a multivariate control
chart is to detect the possible deviations of process mean and covariance from the
nominal values (µ0,Σ0), assumed to be known in advance, while it gives as few
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“false alarms” as possible. In terms of the run length (RL) of the chart, a chart
should ideally have a long RL when the process is in-control and a short RL when
the process is out-of-control. The run length is defined as the number of samples
to be taken before receiving an out-of-control signal. Here we speak of in-control
RL and out-of-control RL, depending on whether the process is actually in- or
out-of-control.

2.1. PP approach

The projection pursuit (PP) method is a powerful tool for developing this
kind of multivariate chart for the mean (see Huber (1985) and Ngai and Zhang
(1994)). The PP approach to control chart for covariance is based on the following
(see Appendix I for proofs).

(i) Σ = Σ0 if and only if a�maxΣ
−1/2
0 X and a�minΣ

−1/2
0 X have unit variance,

where amax and amin are the eigenvectors that correspond, respectively, to the
largest and smallest eigenvalues of the matrix Σ−1/2

0 ΣΣ−1/2
0 , where Σ−1/2

0 denotes
the inverse of the square root of Σ0 and a� is the transpose of a.

(ii) amax and amin give the maximum and the minimum (signed) differences
between the variance of a�Σ−1/2

0 X and 1, respectively.
From (i), to test whether the covariance matrix of X deviates from the nom-

inal Σ0, it suffices to make univariate tests of the null hypotheses Hmax0: “the
variance of a�maxΣ

−1/2
0 X is equal to 1” and Hmin0 : “the variance of a�minΣ

−1/2
0 X is

equal to 1”, respectively, via the projected and transformed samples a�maxΣ
−1/2
0 xik

and a�minΣ
−1/2
0 xik, 1 ≤ k ≤ n, i = 1, 2, . . . . In practice amax and amin depend on

Σ, are unknown, and have to be estimated. For each a, let Ti(a) be a univariate
statistic for testing Hmax0, such that larger values of Ti(a) give stronger evidence
against Hmax 0. Then (ii) suggests that if an estimator âmax gives the maximum
value of Ti(a), it is a natural estimator of amax in the ith time period. Conse-
quently, Ti(âmax) is a natural test statistic for Hmax 0 in the ith period. Similarly,
we can define âmin and test Hmin0 by Ti(âmin).

In summary, the PP approach contains two key steps: (1) selecting a uni-
variate control chart for variance with a test statistic Ti; (2) estimating amax and
amin iteratively over each time period i, and calculating the values of Ti(âmax)
and Ti(âmin).

There are several well-developed univariate control charts for variance. The
well-known and relatively efficient ones are the CUSUM chart of Johnson and
Leone (1962), and the exponentially weighted moving average (EWMA) chart of
Chang and Gan (1995). We choose the Johnson-Leone CUSUM chart here (the
PP extensions of the EWMA procedure is similar in principle). The remaining
step is to calculate âmax, âmin, Ti(âmax) and Ti(âmin) for the Johnson-Leone chart.
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Case 1. Using individual observations
The Johnson-Leone chart for variance is derived from the sequential test.

Let xi be the observation of a univariate process at the ith time period. The
nominal value σ0 = 1. Assume the process mean is zero and in-control. Let
kl < ku be two reference values. For example, we frequently use values ku = 1.5
and kl = 0.5. Set SU0 = SL0 = 0 and

SUi = max{0, SUi−1 + x2
i − ku}, SLi = min{0, SLi−1 + x2

i − kl}, i ≥ 1.

SUi and SLi are called the ith CUSUM values. The Johnson-Leone chart gives
an out-of-control message as soon as SUi > hu or SLi < hl, where hu and hl

are the respective upper and lower control limits. For simplicity, we let hu =
h = −hl > 0. However, it is possible to improve the performance of the CUSUM
chart by choosing some non-symmetric (hl, hu).

Let xi be the observation of a p-dimensional process at the ith time period.
For simplicity, assume µ0 = 0 and Σ0 = Ip (p by p unit matrix). We also assume
that the process mean is stable. In light of the above, to estimate amax and amin,
we first define the CUSUM values for each direction a: SUa

0 = SLa
0 = 0 and

SUa
i =max{0, SUa

i−1+(a�xi)2−ku}, SLa
i =min{0, SLa

i−1+(a�xi)2−kl}, i ≥ 1.

According to Johnson and Leone (1962), when a�xi is normally distributed,
{SUa

i } and {SLa
i } are the likelihood ratio statistics for testing the hypotheses,

Hmax0 and Hmin0. Even if a�xi is not normally distributed, SUa
i and SLa

i can
be still used because it can be shown that, when i is large, Ti(a) = SUa

i is
approximately proportional to the difference between the variance of a�X and
the nominal value 1 when the difference exceeds ku − 1 (see Appendix II); a
similar conclusion holds for SLa

i when the difference is less than kl − 1. As
already mentioned, it is natural to estimate amax and amin by âimax and âimin in
which SUa

i and SLa
i attain the maximum and minimum, respectively.

To simplify the notation, denote SU â
i and SLâ

i by SUi and SLi, respectively.
Let λu

ij and λl
ij be the largest and the smallest eigenvalues of the sample matrix

xix
�
i + · · · + xjx

�
j , 1 ≤ j ≤ i, respectively. Define SUij = λu

ij − (i − j + 1)ku,
SLij = λl

ij − (i − j + 1)kl, 1 ≤ j ≤ i. Then it can be shown that

SUi = max
||a||=1

SUa
i = max{0, SUi1, . . . , SUii},

(2.1)
SLi = min

||a||=1
SLa

i = min{0, SLi1, . . . , SLii}.

Moreover, if u(i) and l(i) are such that SUiu(i) = SUi and SLil(i) = SLi, then
âimax and âimin are the eigenvectors corresponding to the largest eigenvalue of
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xix
�
i + · · · + xu(i)x

�
u(i) and the smallest eigenvalue of xix

�
i + · · · + xl(i)x

�
l(i), re-

spectively.
Now the CUSUM chart for covariance, to be denoted by MCD1(0) where

the subscript means sample size is 1, can be defined to indicate an out-of-control
message when SUi > hu or SLi < hl. The CUSUM values {SUi} and {SLi} can
be separately used to detect an upward change (an inflation) and a downward
change (a shrinkage) of covariance, that is, there is a direction in which the
variance of the projected process increases or decreases.

A simulation study indicates that MCD1(0) is sensitive to the process mean
shift (the details are omitted here but are available from the authors). Hence
we can use this chart to check whether the process mean and covariance are
in-control simultaneously. The major drawback is that when MCD1(0) gives a
signal, it is difficult to distinguish a mean shift from a covariance change. To
control the process mean and covariance separately, a commonly used method is
to form a subgroup of observations at each time period to reduce the effects of the
process mean shift on the chart of covariance. The major difference between our
chart and the traditional ones is that we allow small samples while maintaining
the speed of covariance change detection.

Case 2. Using subgroups
Let xik, 1 ≤ k ≤ n, be a subgroup of observations in the ith time period.

Assume xik, 1 ≤ k ≤ n, i ≥ 1, are i.i.d. p-dimensional normal with mean µi and
covariance Σ. Let Σ0 be the nominal value of Σ estimated from previous samples.
In this case, the principle for constructing a CUSUM control chart is the same
as in Case 1, and we omit the details. This chart is denoted by MCDn(0).

2.2. Likelihood ratio approach

Roy’s statistic can be used to construct a Shewhart chart, namely SR (see
Appendix III for the definition). The commonly adopted method to improve
the performance of a Shewhart chart is to apply the CUSUM procedure to the
statistics used in that chart (for example, Roy’s statistics in the SR chart). Espe-
cially, a CUSUM version of the SR chart is obtained in this way. The PP-based
CUSUM chart for covariance turns out to be a procedure based on Roy’s statis-
tics of cumulative sample covariance matrices. The important difference between
the above two CUSUM charts lies in the order of applying the CUSUM and
Roy procedures. In the PP-based CUSUM chart we first calculate the cumula-
tive sample covariance matrices and then apply Roy’s procedure, while in the
CUSUM version of the SR chart we first apply Roy’s procedure. The principles
mentioned in the last subsection support this choice. It is natural to apply the
likelihood ratio procedure SA, instead of SR, to these cumulative sample covari-
ance matrices (see Appendix III for the definition of the SA procedure). That is,
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for n > p and 1 ≤ j < i, let Sij = (i− j + 1)(n− 1)(−p− log(det(Vij)) + tr(Vij))
where Vij is defined by

{(yj1y
�
j1 + · · ·+ yjny�jn)/(n− 1)+ · · ·+ (yi1y

�
i1 + · · ·+ yiny�in)/(n− 1)}/(i− j + 1),

and det(·) and tr(·) denote the determinant and trace of a square matrix. Let
Si = max{0, Si1, . . . , Sii}. Then a new CUSUM chart, LRCn, can be defined to
indicate an out-of-control message when Si > h, where h is the control limit.

Note that, according to the likelihood ratio procedure, the factor n − 1 in
Sij and Vij above should be n. The corresponding procedure is called LCR′

n.
LCR′

n is a biased procedure in the sense that some out-of-control ARLs may
be larger than the in-control ARL. So it is not surprising that the simulation in
Table 2.1 of Chan and Zhang (2000; an extended version of this paper) indicates
that LCRn is significantly better than LCR′

n. We recommend using the LCRn.

Table 2.1. Comparisons of ARL and SRL of SA, SA′, LCR′
n and LCRn (with

ku = 1.5, kl = 0.5) charts for n = 5, p = 2, 3, where λ = λ(Σ−1/2
o ΣΣ−1/2

o ).

p = 2, µ = 0
SA′ SA LCR′

5 LCR5

h = 20.7 h = 16 h = 60. h = 18.6
λ ARL SRL ARL SRL ARL SRL ARL SRL

(1, 1) 203 205 203 202 233 67 248 241
B2 103 105 74.1 72.2 34.0 7.98 13.0 6.28
C2 177 179 115 115 99.2 26.1 45.2 27.5
D2 214 216 118 114 424 133 32.8 20.6
E2 7.72 7.03 4.36 3.76 10.2 4.24 3.17 1.84
F2 220 222 74.5 73.2 582 189 29.8 18.2
G2 232 233 185 184 1232 356 102 73.7
H2 204 206 184 179 220 61.6 97.1 70.9
J2 7.34 6.87 5.41 4.92 6.47 1.27 2.57 0.91
K2 9.81 9.24 4.44 3.88 11.5 4.38 3.06 1.66

p = 3, µ = 0
SA′ SA LCR′

5 LCR5

h = 36 h = 28.25 h = 110 h = 30.

λ ARL SRL ARL SRL ARL SRL ARL SRL
(1, 1, 1) 180 181 194 193 212 45.5 210 198

B3 193 192 153 150 408 86.7 79.7 52.4
C3 198 197 171 168 585 127 94.5 62.7
D3 10.3 9.57 13.6 12.9 12.9 4.0 2.84 1.45
E3 8.36 7.68 3.99 3.42 7.33 0.96 2.77 0.81
F3 13.8 13.0 12.1 11.7 9.38 1.43 3.07 1.07
G3 117 117 120 120 48.7 8.57 16.1 7.2
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3. Procedure of Constructing the New Charts

First we consider the case that the nominal value Σ0 is known, or can be
estimated by the previous in-control samples. The other cases will be discussed
in the next section. The procedure MCD1(0) involves the following steps.

Step 1. Determine the parameters in MCD1(0). Choose ku and kl (for example,
kl = 0.5 and ku = 1.5). The parameters hl = −h and hu = h are determined by
the values of in-control ARL (average run length) and SRL (standard deviation
of run length), specified in advance (see Tables 5.1, 5.2). Alternatively, h is
specified first and the ARL and SRL values are then determined.

Step 2. For each i, calculate the sample average x̄i of xik, 1 ≤ k ≤ n, and make
the following transformation: yik = Σ−1/2

0 (xik − x̄i) for n > 1, yi1 = Σ−1/2
0 (xi1 −

µ0) for n = 1.

Step 3. Calculate SUi and SLi. For each i and 1 ≤ j ≤ i, first calculate the
maximum and the minimum eigenvalues and the corresponding eigenvectors of

(yj1y
�
j1 + · · · + yjny�jn)/(n − 1) + · · · + (yi1y

�
i1 + · · · + yiny�in)/(n − 1), for n > 1

yj1y
�
j1 + · · · + yi1y

�
i1, for n = 1.

These are denoted λu
ij , eu

ij and λl
ij, el

ij, respectively. Then we calculate SUij =
λu

ij − (i− j + 1)ku, SLij = λl
ij − (i− j + 1)kl followed by SUi = max{0, SUi1, . . .,

SUii}, SLi = min{0, SLi1, . . . , SLii}. Let u(i) and l(i) be such that SUiu(i) =
SUi and SLil(i) = SLi.

Step 4. Check whether SUi is above hu and whether SLi is below hl. If SUi > hu,
then a upward change signal of Σ in direction eu

iu(i) is indicated. If SLi < hl,
then a downward change signal of Σ in direction el

il(i) is indicated.

As in the CUSUM chart for the process mean (see, for example, Hawkins and
Olwell (1998, pp.20-21)), we can give an estimate of when change occurs when
SUi or SLi falls outside the control limits. We look backward from the period i

to check the subgroups: xjk, 1 ≤ k ≤ n, 1 ≤ j ≤ i. Similar to the CUSUM chart
for the process mean, if SUij falls outside the control limits, then we predict that
the change occured at a period not later than j. SUij shows the magnitude of
such shift (see Appendix II). There may be several such j. It is natural to choose
the most significant one, namely u(i), in the sense that SUiu(i) = max{0, SUij ,
1 ≤ j ≤ i}.

4. Enhancements of the New Charts
4.1. FIR CUSUM
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The fast initial response (FIR) feature is useful when there are start-up
problems or ineffective control actions after the previous out-of-control signal
(see, Lucas and Saccucci (1990)). The aim of FIR is to reduce the RL for mean
shifts that one wishes to detect without significantly reducing the in-control RL.
A direct way of achieving this aim is to narrow the control limits. But simulations
show that a more efficient way to improve the FIR feature of MCDn(0) is to add
some time-varying constants to the CUSUM values (details are available from
the authors). Here we present a method used by Ngai and Zhang (1994). Take
MCDn(0) as an example. The new CUSUM values are of the forms {SUi +
ru(i)+1hu} and {SLi + rl(i)+1hl}, where 0 ≤ r < 1 and u(i) and v(i) are defined
in Section 2.1. Using the same control limits of MCDn(0) and the new sequences
of the CUSUM values, we can define an FIR CUSUM chart, denoted MCDn(r).
For simplicity of notation, the new sequences of the CUSUM values are still
denoted {SUi} and {SLi}.

The spirit of this improvement can be illustrated as follows. When the
process is in-control, most CUSUM values should be around zero and relatively
far away from the control limits. Hence, if we add a small value to each CUSUM
value, the new sequences of CUSUM values will be still within the control limits.
On the contrary, when the process is out-of-control, the CUSUM sequence will
tend to the control limits and then fall outside the control limits. If we add a
small value to each CUSUM value, the new sequence of CUSUM values will fall
outside the control limits more quickly. As a result, a shorter out-of-control RL
is obtained. The reason why we choose ru(i)+1hu and rl(i)+1hl as the values to be
put in the ith CUSUM values is the following. Note that SUi ≤ hu is equivalent
to SUij ≤ hu, 1 ≤ j ≤ i. This implies that for fixed i, the upper control limit
for SUij, 1 ≤ j ≤ i is a constant. Motivated by sequential theory (for example,
Siegmund (1986)), we can improve the performance of the chart by replacing the
constant control limit by some exponential control limit (1−rj+1)hu, which varies
in j. Now the corresponding upper control limit for SUiu(i) is (1−ru(i)+1)hu. For
simplicity, we check only whether SUiu(i) > (1 − ru(i)+1)hu (which is equivalent
to SUiu(i) + ru(i)+1hu > hu).

4.2. No previous in-control samples

In some situations, the nominal values of (µ0,Σ0) are unknown at the begin-
ning. We modify MCD1(r) by the following method: during the ith period, use
the sample average and covariance µ̂i−1,0 and Σ̂i−1,0 of the first i− 1 samples to
estimate µ0 and Σ0 if no signal appears at the first i − 1 periods. For a singular
sample covariance Σ̂i−1,0, Σ̂−1/2

i−1,0 is defined as the generalized inverse of Σ̂1/2
i−1,0.

5. RL Performances and Designs of the New Charts
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5.1. RL performances

The performance of a control chart to detect process change when it is out-
of-control is evaluated by its RL. The RLs of MCDn(r), LCR′

n and LRCn have
two properties (see Appendix IV for proofs).

(i) The distribution of RL depends only on the solutions of the equation
det(Σ− λΣ0) = 0, where Σ0 is the nominal value of the process covariance when
it is in-control and Σ is the real value of the process covariance.

(ii) The distributions of the RLs of MCD1(r) and MCD2(r) are the same
provided they have the same parameters ku, kl, p, hu and hl, and the underlying
process is normally distributed.

Property (i) also holds for the Shewhart charts SA, SA’, SR and SV defined
in Appendix III.

Let Σ1 and Σ2 be two covariance matrices such that Σ−1/2
0 Σ1Σ

−1/2
0 is diag-

onal with the same eigenvalues as Σ−1/2
0 Σ2Σ

−1/2
0 . Observe that the equations,

det(Σ1 − λΣ0) = 0 and det(Σ2 − λΣ0) = 0, have the same solution in this set-
ting. Then, by Property (i), the distributions of the RLs with Σ1 and Σ2 are
the same. Thus, when we examine the out-of-control performance, we need only
consider the situation when Σ−1/2

0 ΣΣ−1/2
0 is diagonal with the ith elements be-

ing the eigenvalues of Σ−1/2
o ΣΣ−1/2

o . This makes the performance evaluation of
MCDn(r), SA′, SA, SR, SV, LCR′

n and LRCn easier.
Although the RL distribution of MCD1(r) and MCD2(r) are the same, the

assumptions behind MCD1(r) and MCD2(r) are different. In the former we
assume µ = µo is known and sample size is 1. In the latter we do not assume µ

is known. So the process mean can be either in-control or out-of-control. But we
assume the sample size is 2 in each time period. Added information is used for
estimating µ.

5.2. Designs of the FIR parameter

Traditionally, we use the average RL (ARL) to summarize the main fea-
ture of an RL. However, in some situations, it may be misleading. For instance,
most authors have adopted the following strategy in designing a control chart:
choose the parameters in the chart so that the out-of-control ARL’s are as small
as possible, subject to the in-control ARL being larger than or equal to some
specified number. Unfortunately, for the exponentially weighted moving average
chart (EWMA) with time-varying control limits (see Lowery, Woodall, Champ
and Rigdon (1992)) or MCDn(r) discussed in this paper, we can choose the pa-
rameters so that the out-of-control ARL’s are extremely small (near 1) while the
in-control ARL is still larger than that specified number. However, the variances
of in-control RL are tending to infinity. This will result in many extremely small
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RL observations even if the process is in-control (see Chan and Zhang (1997) for
details). So, when we evaluate the performance of a chart, we need to calculate
ARL as well as the standard deviation of RL (SRL). Furthermore, when we select
the parameter r we must put some constraints on the coefficient of variation of
the RL.

Recently, Chan and Zhang (1997) suggested as a constraint that the coef-
ficient of variation of RL should be designed to be smaller than or close to 1.
We use the Shewhart-type chart to illustrate the suggestion. For the Shewhart-
type chart, when a process is in-control ARL = 1/P and SRL = ARL

√
1 − P

(see Ryan (1989, p.144)), where P is the probability that the test statistic used
in that chart will fall outside the control limits. So the coefficient of variation
SRL/ARL =

√
1 − P ≤ 1. We use this constraint when we design the parameter

r of MCDn(r).
There is another problem in evaluating the performance of the proposed

charts. Ideally, we should calculate all of the out-of-control ARL and SRL when
we evaluate the performance of MCDn(r) and LRCn. However, it is impossible
to carry out this task using the Monte Carlo simulation, as there are many out-of-
control cases. A commonly used approach is to select some typical out-of-control
matrices. Recall in Subsection 5.1 that for MCDn(r) and LRCn with the nominal
Σ0, we need only to select some typical out-of-control matrices from all the Σ
with Σ−1/2

0 ΣΣ−1/2
0 being diagonal. For each p = 2 we select nine typical out-

of-control matrices: Σ = Σ1/2
0 TΣ1/2

0 , λ(T ) = B2, C2,D2, E2, F2, G2,H2, J2,K2,
where λ(T ) stands for the vector of the eigenvalues of T and

B2 = (1.5, 0.5), C2 = (1.25, 0.75), D2 = (1.5, 1.1),

E2 = (4.3, 1.), F2 = (1.5, 1.2), G2 = (1.1, 1.2),

H2 = (0.9, 1.2), J2 = (0.1, 2.5), and K2 = (2.5, 3.5).

B2, D2, F2, C2, G2, and H2 represent some typical moderate or small changes;
E2, J2 and K2 are the examples of large changes. Similarly, for p = 3, we select
the typical out-of-control matrices Σ with Σ−1/2

0 ΣΣ−1/2
0 having the vectors of the

eigenvalues B3, C3, D3, E3, F3, and G3, respectively, where

B3 = (1.5, 1., 1.), C3 = (1.2, 1.3, 1.), D3 = (4.5, 3., 2.),

E3 = (0.1, 0.2, 0.5), F3 = (0.1, 2.5, 0.5), and G3 = (0.5, 1.5, 1.).

For each typical case, the out-of-control ARL and SRL are calculated by
Monte Carlo simulation. The replicate number in all of these Monte Carlo sim-
ulations is 6, 000 or 12, 000.

In the following cases, shown in Table 5.1, we first select FIR parameter r

for MCDn(r). Then h is calculated by some pre-determined in-control ARL and
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SRL (corresponding to Σ0). The out-of-control ARL and SRL are then simulated
(corresponding to B2, C2, D2, and E2). For illustration purposes, the in-control
ARL and SRL are chosen to cover various r and h values within certain ranges.

Table 5.1. ARL and SDR values of MCDn(r) with ku = 1.5, kl = 0.5, p = 2
and µ = 0 when the process is in-control (Σ0) and out-of-control (Σ), where

λ = λ(Σ−1/2
o ΣΣ−1/2

o ).

n = 1 or n = 2
(r, h) (0.0, 11.8) (0.3, 11.85) (0.6, 12) (0.8, 12.68)

λ ARL SRL ARL SRL ARL SRL ARL SRL
(1, 1) 129 121 130 123 130 128 130 152
B2 44.8 38.1 44.4 38.1 40.9 37.7 32.5 37.7
C2 86.7 80.9 87.0 81.8 85.7 85.9 78.5 92.4
D2 35.1 31.1 34.7 31.3 32.3 31.8 26.8 33.0
E2 5.82 4.19 5.61 4.13 4.84 3.98 3.74 3.51

n = 5
(r, h) (0.0, 3.5) (0.4, 3.52) (0.5, 3.53) (0.6, 3.54)

λ ARL SRL ARL SRL ARL SRL ARL SRL
(1, 1) 104 99 105 101 104 102 102 104
B2 18.7 15.6 17.8 15.4 17.1 15.3 15.8 14.9
C2 49.5 46.7 48.9 47.3 48.2 47.7 46.7 48.1
D2 15.7 13.3 14.9 13.2 14.3 13.2 13.3 13.2
E2 2.18 1.25 2.01 1.19 1.92 1.14 1.79 1.07

n = 10
(r, h) (0.0, 1.7) (0.3, 1.72) (0.45, 1.73) (0.6, 1.9)

λ ARL SRL ARL SRL ARL SRL ARL SRL
(1, 1) 124 122 131 129 132 132 192 202
B2 11.8 9.50 11.6 9.60 11.0 9.6 11.1 10.5
C2 40.1 38.0 40.6 39.1 40.4 39.8 48.6 50.2
D2 10.4 8.80 10.2 8.90 9.80 8.90 10.0 10.0
E2 1.36 0.61 1.32 0.58 1.27 0.53 1.22 0.50

Case 1. n = 1 or n = 2.
For p = 2, ku = 1.5 and kl = 0.5, the ARL and SRL of MCD1(r) with

r = 0, 0.3, 0.6, 0.8 are shown in Table 5.1. It suggests that for p = 2, r = 0.6
has a better ability to detect the process covariance change among MCD1(r),
0 ≤ r < 1, subject to the condition that the coefficient of variation of the RL is
close to 1. If we prefer a chart with a small coefficient of variation, r = 0 is a
good choice. Note that, as pointed out in Subsection 5.1 (ii), the above result
also holds for n = 2.

Case 2. n = 5.
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For p = 2, ku = 1.5 and kl = 0.5, the ARL and SRL of MCD5(r) with r =
0.0, 0.4, 0.5, 0.6 are given in Table 5.1. Making a comparison of these numerical
results, we suggest that any value between 0.4 and 0.6 is a reasonable choice
for r.

Case 3. n = 10.
For p = 2, ku = 1.5 and kl = 0.5 the ARL and SRL of MCD10(r) with

r = 0.0, 0.3, 0.45 and 0.6 are shown in Table 5.1. Any value between 0.3 and
0.45 seems a reasonable choice for r.

For p = 3 and 4, the results are similar and are not shown here.

Table 5.2. The in-control ARL and SRL of MCD1(0.6), MCD2(0.6), MCD1(0),
MCD2(0), MCD5(0) and MCD10(0) with ku = 1.5, kl = 0.5 for p = 2, 3, 4
and various control limits h.

p = 2 p = 3 p = 4
MCD1(0.6) or MCD2(0.6)

h ARL SRL h ARL SRL h ARL SRL
10∗ 45 26 13∗ 42 26 15∗ 37 26
12 130 128 15 109 109 20 156 159
15 298 289 18 231 229 22 242 242
17 506 489 20 385 382 23 308 306
18 642 566 22 590 538 25 476 456

MCD1(0) or MCD2(0)
h ARL SRL h ARL SRL h ARL SRL

12 139 133 18 246 232 22 262 249
15 309 303 20 397 370 23 326 306
17 521 479 22 610 535 25 498 452

MCD5(0)
h ARL SRL h ARL SRL h ARL SRL

3.0∗ 43 25 4.0∗ 47 25 5.0∗ 45 24
3.5 106 104 4.5 131 129 5.5 105 100
4.0 182 178 5.3 302 301 6.0 164 162
4.3 249 244 5.5 373 365 6.5 257 251
4.5 308 300 6.0 599 535 7.0 411 386

MCD10(0)
h ARL SRL h ARL SRL h ARL SRL

1.2∗ 32 24 1.7∗ 34 24 2.3∗ 42 25
1.7 123 121 2.2 122 121 2.5 89 87
2.0 250 252 2.5 239 237 3.0 252 248
2.2 404 389 2.7 374 370 3.2 381 371
2.5 760 626 3.0 684 585 3.3 465 441

Note: ′∗′—the underlying RL has been truncated by 71.
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In summary, for fixed n, p and control limits, as r tends to 1, the ARL of
the chart decreases while the SRL of the chart increases. For fixed n and p, it is
possible to adjust 0 ≤ r < 1 and control limits so that the in-control ARL is not
less than some specified level, the out-of-control ARL is as small as possible and
the coefficient of variation of RL is below or close to 1.

In-control ARL and SRL are two important quantities in selecting a chart.
The in-control ARL and SRL of MCD1(0.6), MCD1(0), MCD2(0), MCD2(0.6),
MCD5(0) and MCD10(0) under various control limits h are listed in Tables 5.2.
A similar table for LRC5 and LRC10 is Table 5.3 of Chan and Zhang (2000).

Table 5.3. The in-control ARL and SRL of LRCn for (p, n) = (2, 5), (3, 5),
(4, 5) and (2, 10), and for various control limits h.

(p, n) = (2, 5) (p, n) = (2, 10) (p, n) = (3, 5) (p, n) = (4, 5)
h ARL SRL h ARL SRL h ARL SRL h ARL SRL

16.8 133 126 16.0 157 151 28.8 184 180 55.8 175 174
17.6 174 165 16.8 210 205 29.6 225 217 56.6 194 192
18.4 234 229 17.6 284 280 30.4 280 275 57.4 217 213
18.6 252 244 18.4 379 365 30.8 313 307 60.0 293 282
19.2 308 301 19.2 507 469 31.2 347 340
20.0 415 391 20.0 679 574 32.0 419 399

6. Applications to Paired Measurements

Grubbs’s model is used for assessing bias and precision of paired measure-
ment systems (see Blackwood and Bradley (1991)). We employ this model to
account for the bias and variation of observed measurements of a process. For
simplicity, we consider only the systems with two devices being used to measure
a process. Then Grubbs’s model is of the form

xi1 = µ + di + α1 + εi1, xi2 = µ + di + α2 + εi2, i ≥ 1, (6.1)

where xij is the observed measurement when the ith specimen is measured with
the jth device, j = 1, 2, µ is the hidden (or true) process mean, di is the true
random deviation of the process from µ for the ith specimen, αj is the bias for
device j, and εij is the random error for the ith specimen when measured by
device j. In practice the variation observed from a process is due to the hidden
process variability and the error of the measurement device. If we use only a
single device to measure a process, it is impossible to account for the sources
when an out-of-control signal appears. We show that if two devices are used, a
synthetic chart can be plotted for the variations of two devices as well as for the
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process variance. A similar chart can also be plotted for the relative precision—
the ratio between the hidden process variance and the total observed variance.
To this end, we first formulate the above model in terms of the multivariate
statistical analysis. Let µi = (µ + α1, µ + α2)�, εi = (εi1, εi2)�, ddi = (di, di)�

and xi = (xi1, xi2)�. Then model (6.1) is equivalent to

xi = µi + ddi + εi, i ≥ 1.

Assume that, given ddi, the expectations of εi and εi1εi2 are zero. Let σ2
d, σ2

ε1 and
σ2

ε2 are the variances of the process and the devices. Under these assumptions,
the covariance matrix of xi is(

σ2
d + σ2

ε1 σ2
d

σ2
d σ2

d + σ2
ε2

)

and the relative precision of the process is σ2
d/
√

(σ2
d + σ2

e1
)(σ2

d + σ2
e2

).
The covariance of xi changes if the process variance or one of device variances

changes. Hence, to control the process variance or the measurement variance of
the devices, it is sufficient to control the covariance of the multivariate variable
xi. Similarly, to control the relative precision, it suffices to control the correlation
of paired measurements.

Example 6.1. This example involves a data set used by Tracy, Young and
Mason (1995, p.374). The data set contains 19 paired measurements from a
petrochemical industry. The first 15 observations are taken from a stable process
and used to estimate the in-control µ0 and Σ0. The results are

µ̂0 = (7.09, 7.113) and Σ̂0 =

(
0.1498 0.0334
0.0334 0.0241

)
.

Tracy, Young and Mason (1995) applied the partial T 2-Shewhart control chart
for the process mean to this data set and demonstrated that observations 18 and
19 indicate that the process mean is out-of-control (the referee pointed out that
the partial T 2 statistics are not independent and F -distributed as Tracy, Young
and Mason claimed). They showed that obervations 18 and 19 are located at
opposite regions (see Figure 3 in Tracy, Young and Mason (1995)). In our opinion
the locations of observations 18 and 19 imply that the process covariance, not
the process mean, is changed. For, if the process mean is changed and the
covariance is in-control, consecutive observations should be not far from each
other. Here we use MCD2(0.6) to support our view. Paired measurements 16
through 19 are used to check whether the hidden process variance and the device
variances are in control. To reduce the effect of the process mean, these four
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paired measurements are grouped into two samples. Then these two samples are
monitored by MCD2(0.6). From Table 5.2, with ku = 1.5, kl = 0.5 and h = 12,
the in-control (ARL, SRL) is (130, 128). The CUSUM values are SU1 = 6.88,
SL1 = −4.83, SU2 = 107.4 and SL2 = −4.95. SU2 falls outside the upper control
limit. Therefore, an out-of-control signal appears at the second subgroup. The
other CUSUM values are within the control limits. Thus both the hidden process
variance and the variances of measurement system are taken as in-control at the
first subgroup.

7. Illustrative Examples

The following two examples show that MCD1(r) can be used when both µ0

and Σ0 are known or can be estimated from the previous samples. MCD1(r)
can detect both changes in the process mean and covariance. However, when we
obtain an out-of-control signal, it is difficult to determine whether the signal is
due to change of the process covariance or the process mean.

Example 7.1. We begin with 28 samples of size 1 (see Table 7.1 of Chan and
Zhang (2000)). The first two samples are drawn from a three-dimensional normal
N(0, I3), while the remains of samples are drawn from a three-dimensional normal
N(0, G) with

G =


 1.5 −0.5 −0.5
−0.5 1.5 −0.5
−0.5 −0.5 1.5


 .

We use MCD1(0) and the FIR chart MCD1(r) to detect covariance change in
this data set.

First, we use MCD1(0).

Step 1. Select suitable parameters for MCD1(0). We choose ku = 1.5, kl =
0.5 and h = 15. The in-control (ARL,SRL) is then (118, 109), obtained by
simulation.

Step 2. Calculate yi by multiplying each sample by Σ−1/2
0 . In this example

xi = yi.

Step 3. Calculate the CUSUM values, SUi and SLi, and u(i) and l(i).

Step 4. Check whether SUi or SLi falls outside the control limits. The CUSUM
values are plotted on the chart in Figure 7.1. They show that MCD1(0) gives an
out-of-control signal at the 6th sample. Note that u(6) can be used to estimate
when the covariance change occurs.

Now we use MCD1(r) to monitor the same data set. Using ku = 1.5,
kl = 0.5, p = 3, n = 1, r = 0.6 and h = 15 in Table 5.2, the in-control
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(ARL,SRL) is (109, 109). MCD1(0.6) gives an inflated out-of-control signal at
the 3rd sample. So, compared with MCD1(0), MCD1(0.6) has a faster response
to an initial change.
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Figure 7.1. Control Chart for Example 7.1.

In the short-run production environment, to detect possible covariance
change before the end of the production process, we use the maximum number
of observations to truncate the RL of MCDn(r). Example 7.2 illustrates such
a situation. It shows that, unlike other charts, the proposed chart can be used
even where the sample size is smaller than the dimension of process distribution
and the process mean varies between samples.

Table 7.1. Simulated data used in Example 7.1.

x1 x2 x3 x4 x5 x6 x7

−2.90552 0.17469 2.17416 −0.46873 1.50455 2.84555 −0.06947
0.51099 −0.92729 −1.74290 −1.29043 1.29883 −0.57591 1.15380
0.27008 −1.48665 −0.61098 2.35554 −0.85250 1.01441 −2.02818

x8 x9 x10 x11 x12 x13 x14

−1.34906 −1.70090 0.02583 1.72567 1.66900 −0.76182 −0.05649
0.36748 2.47792 1.17191 −0.95384 −0.60798 0.13484 −1.81073

−1.15512 −0.88689 −1.02823 0.50284 −0.91250 1.11752 0.97035

x15 x16 x17 x18 x19 x20 x21

−1.64530 −1.30068 −1.69236 −1.33948 −0.91634 −0.85476 0.48865
0.96462 −0.81295 9.26316 −3.10570 0.06917 0.74236 −0.50608
3.08148 −0.91224 1.10580 2.75213 0.54215 −0.50952 0.01627

x22 x23 x24 x25 x26 x27 x28

−1.24435 −1.32192 1.67164 0.57368 −0.85195 1.13292 −0.13808
0.29925 0.18265 0.80070 −1.49815 −1.98915 1.68993 0.64309

−0.18781 0.32869 −0.45742 0.25999 2.56061 −1.36947 −1.09751
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Example 7.2. Suppose the maximum number of samples is 71. The first two
samples are from a three-dimensional normal N(0, I3) and the rest are from a
three-dimensional normal with mean (1,−2,−3)� and covariance

C =


 2.00 −0.25 −0.25
−0.25 1.00 −0.25
−0.25 −0.25 2.00


 .

We use MCD3(0.6) truncated by 71 to check whether a change has occurred in
the process covariance. Let ku = 1.5, kl = 0.5, and h = 13. According to Table
5.2, the in-control ARL is 42 (< 71). Calculate and plot the CUSUM values on
the chart. An inflated out-of-control signal appears at the 4 sample. In practice
we may not want to stop the process immediately when an out-of-control signal
appears in order to obtain some additional samples to estimate the magnitude of
the change. As an example, here we stop the process after we obtain 10 addtional
out-of-control samples.

8. Comparison with Other Charts

In this section, using Monte Carlo simulation, the performance of the pro-
posed charts is compared with that of others. Definitions of alternative charts
are given in Appendix III. The replicate number in this study is 6, 000 or 12, 000,
as before.

1. SR chart—the Shewhart chart based on Roy’s maximum and minimum
eigenvalues of sample variances (see Anderson (1984, p.328)).

2. SA chart—the Shewhart chart based on Anderson’s test of covariance (see
Alt (1988, p.344)).

3. SV chart—the Shewhart chart based the square root of Hotelling’s gen-
eralized variance (see Alt (1988, p.349)).

Note that the sample size n > p is required in all cases. We take n = 5 and
p = 2, 3 in this study.

Table 8.1 shows the results of the comparison of these charts with MCD5(0)
(with ku = 1.5 and kl = 0.5) and LRC5 for p = 2, 3 when n = 5. It is clear
from these comparisons that the SA and SR charts are more effective than the
SV chart in detecting process covariance change. Compared with the SA, SR
and SV charts, in many cases MCD5(0) and LRC5 can detect moderate or small
covariance change more than twice as fast. The SR chart is slightly better than
MCD5(0) and LRC5 in detecting the relatively larger covariance change E2. It is
found that MCD5(0) with ku = 1.5 and kl = 0.5 can perform better than LRC5

when only upward changes exist (for example, F2 and K2), and worse than LRC5

when a certain amount of downward change happens (for example, B2 and J2).
It is clear that, by adjusting the reference values, we can make MCDn more
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sensitive to some pre-specified changes at the cost of effectiveness for detecting
some other changes.

Table 8.1. Comparisons of ARL and SRL of MCDn(0), LRCn, SR, SA and
SV (with ku = 1.5, kl = 0.5) charts for n = 5, p = 2, 3, where

λ = λ(Σ−1/2
o ΣΣ−1/2

o ).

p = 2, µ = 0
MCD5(0) SR SA SV LRC
h = 4.3 h = 3.11 h = 16 h = 3.66 h = 18.6

λ ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL
(1, 1) 247 244 205 204 203 202 211 212 248 241
B2 26.1 21.3 55.1 55.0 74.0 73.6 651 565 13.0 6.28
C2 81.9 78.1 121 121 153 153 269 265 45.2 27.5
D2 20.0 16.9 31.8 30.9 116 115 41.5 40.8 32.8 20.6
E2 2.40 1.36 2.44 1.90 4.35 3.78 5.82 5.36 3.17 1.84
F2 17.8 14.9 27.5 26.6 110 109 32.9 32.2 29.8 18.2
G2 59.0 55.2 74.4 73.2 181 181 80.5 79.8 102 73.7
H2 93.9 90.2 119 117 181 180 158 158 97.1 70.9
J2 5.26 2.89 8.44 7.89 5.41 4.87 >211 2.57 0.91
K2 2.32 1.25 2.21 1.64 4.41 3.90 2.56 2.04 3.06 1.66

p = 3, µ = 0
MCD5(0) SR SA SV LRC
h = 4.95 h = 3.73 h = 28.7 h = 4.05 h = 29.8

λ ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL
(1, 1) 209 206 206 206 205 205 197 196 203 189
B3 32.5 29.3 53.6 52.9 181 181 75.0 74.4 78.3 51.6
C3 35.9 32.4 58.6 58.0 187 187 69.0 68.2 90.7 59.9
D3 1.87 0.94 1.69 1.08 4.81 4.31 2.34 1.77 2.80 1.44
E3 12.4 0.60 > 206 12.9 12.6 > 197 2.75 0.82
F3 5.77 3.16 11.4 11.0 11.5 10.9 >197 3.06 1.07
G3 24.1 17.7 62.7 62.4 117 117 423 409 16.0 7.07

As pointed out in Hawkins and Olwell (1997, pp.87, 144-145), in one dimen-
sional cases the sample variance of each subgroup has a χ2 distribution (which
belongs to the gamma family). By applying the likelihood ratio procedure to
the gamma distribution, they showed that if the Johnson-Leone CUSUM chart
is used to monitor for a change in variance from the in-control standardized vari-
ance 1 to a larger variance σ2

u, or to a smaller variance σ2
l , the optimal reference

values should be ku = σ2
u log(σ2

u)/(σ2
u−1), kl = σ2

l log(σ2
l )/(σ

2
l −1). For example,

if σ2
u = 1.5 and σ2

l = 0.5, we recover the frequently used reference values ku = 1.5
and kl = 0.5 approximately. However, in multivariate cases, neither the largest
nor the smallest eigenvalues of the sample covariance matrix of each subgroup
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follows the χ2 distribution (see Muirhead (1982, pp.420-425)). This suggests that
it may be possible to improve the performance of MCDn(0) and SR by choosing
suitable ku and kl or pair values of (hl, hu). Unfortunately it is time-consuming
if we try to directly optimize MCDn(0) with respect to ku and kl. Here we find
a relatively fast way to adjust the reference values to substantially improve the
performance of MCD5(0) in detecting downward changes. Although MCD5(0)
with ku = 1.5 and kl = 0.5 is very fast for detecting the upward changes, it is very
slow when some downward changes happen. For example, out-of-control ARLs
for some downward changes can be larger than the in-control ARL. This means
that, like LCR′

5, MCD5(0) with ku = 1.5 and kl = 0.5 is biased. The simulation
in Table 8.2 of Chan and Zhang (2000) shows that we can choose the reference
values so the resulting MCD5(0) is unbiased, that is, the out-of-control ARLs
are less than the in-control ARL. First, we set ku = 1.5, kl = 0.5 and h = ho.
Then we choose co > 0 such that ARL(co) = maxc>0 ARL(c), where ARL(c)
is the out-of-control ARL when Σ = cΣo. Now if ku = 1.5/co, kl = 0.5/co and
h = ho/co, then the corresponding ARL(c) for the new MCDn(0) attains its
maximum at c = 1. Table 8.2 of Chan and Zhang (2000) shows that the perfor-
mance of MCD5(0), with the adjusted reference values, is now very similar to
that of LCR5(0) and can detect upward changes as well as downward changes.

Table 8.2. Comparisons of ARL and SRL of MCDn(0), LRCn, SR, SA and
SV charts for n = 5, p = 2, 3, where λ = λ(Σ−1/2

o ΣΣ−1/2
o ).

p = 2, µ = 0

MCD5(0) SR SA SV LRC5

h = 2.34/0.72 hu = 3.2 h = 16.2 h = 3.66 h = 18.6

ku = 1.5/0.72 hl = 0.493

kl = 0.5/0.72

λ ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL

(1.0, 1.0) 247 244 219 209 219 219 211 211 248 240

(0.2, 0.2) 6.47 0.57 23.9 23.2 10.5 10.0 >2000 2.91 0.91

(0.4, 0.8) 10.9 2.83 96.1 95.1 90.2 89.7 >1981 11.0 4.70

(0.8, 0.6) 22.2 11.5 140 139 141 141 > 1731 24.5 12.7

(1.0, 0.6) 24.2 13.3 156 154 153 154 > 1269 28.8 15.1

(1.6, 0.6) 18.1 11.6 85.0 83.7 78.9 78.3 246 244 15.3 8.16

(2.0, 0.6) 11.2 8.04 36.2 35.6 36.8 36.4 110 110 9.76 5.36

(1.0, 0.8) 99.9 88.3 199 193 201 198 506 471 93.3 65.2

(1.4, 1.2) 45.2 43.9 115 113 139 139 39.6 38.7 39.1 24.5

(2.0, 1.2) 11.0 9.79 30.0 29.6 42.7 41.6 16.5 16.1 12.3 7.19

(1.6, 1.6) 13.9 12.7 40.8 40.3 60.6 59.4 14.4 14.0 14.6 8.33

(1.8, 1.6) 10.5 9.22 29.1 28.4 44.5 43.6 11.4 11.0 11.6 6.63

(2.0, 1.6) 8.06 6.85 21.2 20.9 32.3 31.6 9.35 8.97 9.51 5.40

(1.8, 1.8) 8.29 7.18 22.4 21.7 33.9 33.1 9.16 8.72 9.69 5.43

(2.0, 1.8) 6.83 5.62 17.2 16.8 26.1 25.4 7.68 7.22 8.22 4.61

(2.0, 2.0) 5.74 4.62 13.8 13.5 20.9 20.2 6.49 6.01 7.16 4.00
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Table 8.2. (continued)

p = 3, µ = 0

MCD5(0) SR SA SV LRC5

h = 2.34/0.75 hu = 4.4 h = 28.7 h = 4.05 h = 29.8

ku = 1.5/0.75 hl = 0.49944

kl = 0.5/0.75

λ ARL SRL ARL SRL ARL SRL ARL SRL ARL SRL

(1.0, 1.0, 1.0) 209 206 213 205 205 205 197 196 203 189

(0.2, 0.2, 0.2) 7.74 0.54 45.9 45.8 12.4 12.0 >2000 2.74 0.84

(0.2, 0.6, 1.4) 8.19 1.19 83.8 83.5 52.6 52.5 >1988 5.77 1.93

(0.2, 1.4, 2.0) 6.40 2.53 49.7 48.8 32.8 32.4 893 673 5.04 1.88

(0.4, 0.8, 0.8) 12.3 2.68 132 32 115 115 >1905 13.1 5.15

(0.4, 0.8, 1.2) 12.2 2.90 139 138 115 114 > 1560 13.2 5.24

(0.6, 1.8, 2.0) 7.29 5.29 43.1 42.2 50.2 49.3 36.2 35.9 9.02 4.38

(0.6, 2.0, 2.0) 6.21 4.52 34.0 33.5 41.7 40.9 29.7 28.7 8.00 3.91

(0.8, 0.8, 2.0) 12.9 10.9 78.1 76.3 82.7 82.0 107 107 15.0 7.89

(0.8, 1.0, 1.4) 45.6 39.0 189 184 165 167 147 147 42.1 23.2

(1.2, 1.6, 1.8) 9.81 8.40 64.1 63.3 89.9 89.7 16.5 15.9 16.2 8.53

(1.2, 1.8, 2.0) 6.60 5.39 37.2 36.5 59.6 59.0 12.3 11.8 11.4 5.97

(1.4, 1.8, 1.8) 7.39 6.08 44.1 43.4 71.0 70.3 11.3 10.7 12.8 6.72

(1.6, 1.6, 1.6) 9.51 8.24 63.2 62.6 94.3 92.5 13.1 12.6 16.7 8.73

(1.6, 1.8, 2.0) 5.68 4.43 29.6 28.9 53.0 52.8 8.46 7.96 10.1 5.24

(1.8, 1.8, 2.0) 5.16 3.95 25.5 25.2 47.1 47.0 7.38 6.88 9.29 4.75

(1.8, 2.0, 2.0) 4.61 3.41 21.1 20.8 39.8 39.0 6.54 6.04 8.28 4.21

9. Conclusions

We have proposed CUSUM charts MCDn(r) and LRCn for monitoring the
change of the covariance matrix of a multivariate normal process using projection
pursuit and the likelihood ratio, respectively. MCDn(r) is a natural extension
of the CUSUM chart of Johnson and Leone (1962) for variance, while LRCn is
not.

The distribution of the run lengths of the control charts MCDn(r) and LRCn

depend on the nominal value Σ0 and the actual Σ of the process only, specifically
through the eigenvalues of the equation det(Σ − λΣ0) = 0.

Unlike the Shewhart-type or likelihood ratio-based charts, where the sub-
group size n must be at least equal to the dimension p, the PP based CUSUM
charts can be used for any size n ≥ 1. In Table 9.1 of Chan and Zhang (2000),
some out-of-control ARLs of MCD2(0) with p = 3 show that MCD2(0) still
has a good performance when the sample size is less than the dimension of the
quality charateristics.

Simulation studies on the ARL and SRL show that a considerable improve-
ment on the other three charts, in terms of faster detection of the covariance
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change, can be achieved if MCDn(r) (or LRCn) is used. Calculation is, how-
ever, more complicated.

Table 9.1. The out-of-control ARL and SRL of MCD2(0) with p = 3, µ = 0,
h = 10/0.74, ku = 1.5/0.74,kl = 0.5/0.74 and the in-control (ARL,SRL)=
(170, 161) where λ = λ(Σ−1/2

o ΣΣ−1/2
o ).

λ ARL SRL λ ARL SRL λ ARL SRL

(0.2, 0.2, 0.2) 24.9 1.49 (0.2, 0.8, 1.4) 26.0 5.89 (0.4, 0.4, 1.4) 33.4 9.44

(0.2, 0.4, 0.6) 27.3 2.58 (0.2, 1.2, 1.4) 24.7 7.05 (0.4, 0.6, 2.0) 25.7 14.4

(0.2, 0.4, 1.4) 26.1 5.18 (0.2, 1.4, 1.4) 23.4 7.95 (0.4, 0.8, 1.4) 37.7 14.0

(0.2, 0.4, 2.0) 21.2 8.42 (0.2, 1.4, 2.0) 18.0 9.32 (0.4, 0.8, 2.0) 25.4 14.8

(0.2, 0.6, 0.6) 27.6 2.80 (0.2, 1.6, 1.6) 20.1 9.06 (0.4, 1.0, 1.0) 41.7 12.3

(0.2, 0.6, 1.6) 24.7 6.94 (0.2, 2.0, 2.0) 13.9 8.81 (0.4, 1.0, 2.0) 24.4 14.9

(0.2, 0.6, 2.0) 21.0 8.67 (0.4, 0.4, 0.6) 35.0 6.14 (0.4, 1.2, 1.4) 34.7 15.3

(0.2, 0.8, 0.8) 27.7 3.03 (0.4, 0.4, 0.8) 35.7 6.48 (0.4, 1.2, 1.6) 30.6 15.7

(0.2, 0.8, 1.2) 27.1 4.34 (0.4, 0.4, 1.2) 35.1 7.92 (0.4, 1.2, 2.0) 22.9 14.6

(0.6, 0.6, 0.8) 59.2 22.9 (0.6, 1.6, 2.0) 19.6 16.0 (0.8, 2.0, 2.0) 14.2 11.9

(0.6, 0.6, 1.6) 43.7 25.1 (0.8, 0.8, 0.8) 126 87.0 (1.0, 1.0, 1.8) 34.1 31.0

(0.6, 0.6, 1.8) 35.8 22.6 (0.8, 0.8, 1.0) 146 111 (1.0, 1.0, 2.0) 26.0 22.9

(0.6, 0.8, 1.0) 78.0 42.2 (0.8.0.8, 1.6) 57.2 47.8 (1.0, 1.2, 1.6) 40.0 37.7

(0.6, 0.8, 1.4) 60.6 37.9 (0.8, 0.8, 2.0) 30.2 25.6 (1.0, 1.2, 2.0) 23.3 20.6

(0.6, 1.0, 2.0) 28.0 21.7 (0.8, 1.2, 1.6) 44.6 40.3 (1.0, 1.8, 2.0) 15.3 13.0

(1.6, 1.6, 1.8) 14.8 12.5 (1.2, 1.2, 1.4) 45.3 42.3 (1.6, 1.6, 2.0) 13.0 10.7

(1.2, 1.2, 1.6) 33.7 30.9 (1.6, 1.8, 1.8) 13.1 11.0 (1.2, 1.2, 1.8) 26.1 23.2

(1.8, 1.8, 2.0) 10.7 8.61 (1.2, 1.4, 1.8) 22.6 20.0 (1.8, 2.0, 2.0) 9.76 7.75

(1.4, 1.4, 1.6) 23.7 21.2 (1.4, 1.4, 1.8) 19.5 16.9 (1.4, 1.4, 2.0) 16.4 13.9
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Appendix I
Proofs of (i) and (ii) in Section 2

To prove (i), we note that the variances of a�maxΣ
−1/2
0 X and a�minΣ

−1/2
0 X are

a�maxΣ
−1/2
0 ΣΣ−1/2

0 amax = max
||a||=1

a�Σ−1/2
0 ΣΣ−1/2

0 a

and
a�minΣ

−1/2
0 ΣΣ−1/2

0 amin = min
||a||=1

a�Σ−1/2
0 ΣΣ−1/2

0 a,
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respectively. Hence, the variances of a�maxΣ
−1/2
0 X and a�minΣ

−1/2
0 X are equal to

1 if and only if max||a||=1 a�Σ−1/2
0 ΣΣ−1/2

0 a = min||a||=1 a�Σ−1/2
0 ΣΣ−1/2

0 a = 1,

which holds if and only if Σ−1/2
0 ΣΣ−1/2

0 is an identity matrix, that is, Σ0 = Σ.
The proof of (ii) is similar.

Appendix II

Consider SUa
i . We want to prove that as v → ∞, SUa

v /v → E(a�X)2 −
ku in probability when E(a�X)2 > ku. In fact, if we define w0 = 0, wm =∑m

j=1((a
�xj)2−ku), m ≥ 1, then SUa

m = max{0, wm−wm−1, wm−wm−2, . . . , w1−
w0}. Suppose E(a�xi)2 = 1, i = 1, . . . ,m0, and E(a�xi)2 = σ2

a, i = m0 + 1, . . .,
with σ2

a > ku. Then wi =
∑i

j=m0+1((a�xj)2 − ku) +
∑m0

j=1((a
�xj)2 − ku). As

v → ∞, we have wi/v = (σ2
a −ku)i/v+op(1) where op(1) is uniform for 1 ≤ i ≤ v

(see Pollard (1984, p.106)). Hence for large v, SUa
v /v = max{0, (σ2

a − ku)(1 −
1/v), . . . , (σ2

a − ku)(1− v/v)}+ op(1) = σ2
a − ku + op(1) when σ2

a > ku. The proof
is completed.

Appendix III

Here we give the definitions of the SR, SA and SV charts. As in Section
3, we first make a transformation of each xij into yij by multiplying by Σ−1/2

0 ,
1 ≤ j ≤ i. Let s2(yi) =

∑n
j=1(yij−yi)(yij−yi)�/(n−1) be the sample covariance

of the ith transformed sample, where yi =
∑n

j=1 yij/n.
SR Chart. Let SRui and SRli denote the maximum and minimum eigenval-

ues of s2(yi), Cur and Clr be the upper and lower control limits, and ku and kl be
the upper and lower reference values. We choose ku = 1.5 and kl = 0.5 as we did
for MCD5(0). Then, the SR chart is defined to indicate an out-of-control signal
when SRui − ku > Cur or SRli − kl < Clr. Here, we choose Cur = −Clr = h, and
h is a positive constant.

SA Chart. Suppose n > p. Let

SAi = (n − 1)(−p − log(det(s2(yi))) + tr(s2(yi))),

SA′
i = n(−p − log(det((n − 1)s2(yi)/n)) + tr((n − 1)s2(yi)/n)),

where det(·) and tr(·) denote the determinant and trace of a square matrix. Then
the SA chart is defined to give an out-of-control signal when SAi > h. Here,
without confusion, h denotes the upper control limit of the SA chart. Similarly,
the SA′ chart is defined by using SA′

i.
SV Chart. Suppose n > p. Let

SVi = (
√

det(s2(yi)) − b3)/
√

b1 − b2
3,
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where b1 = (n − 1)−p∏p
k=1(n − k), b3 = (2/(n − 1))p/2Γ(n/2)/Γ((n − p)/2), and

Γ(·) is the Gamma function. Then, the SV chart is defined to indicate an out-of-
control signal when SVi falls outside the upper and lower control limits Cur and
Clr. Usually we choose Cur = −Clr = h, where h is a positive constant.

Appendix IV

Property (i) directly follows from the definitions of MCDn(r) and LRCn.
To prove Property (ii), we first let n = 2 and y∗k = (xk1 − xk2)/

√
2, k =

1, 2, . . .. Then,

(yj1y
�
j1+· · ·+yjny�jn)/(n−1)+· · ·+(yi1y

�
i1+· · ·+yiny�in)/(n−1)=y∗j y

∗�
j +· · ·+y∗i y

∗�
i .

Note that, under the i.i.d. and normal assumption, {y∗k, k ≥ 1} has the same
distributions as {xk1−µo, k ≥ 1}. So the distributions of the statistics SUi and
SLi are invariant when we replace xk1 − µo by ykn. Thus, the RL distributions
of MCD1(0) and MCD2(0) are the same.
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