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Abstract: A natural multivariate extension of the two-sided cumulative sum chart

is proposed via projection pursuit. A modification is given for improving its perfor-

mance for the special situation in which the process mean is already shifted at the

time the charting begins. Simulation studies show that the new charts have slightly

better performance than the competing charts (MC1, MEWMA1 and MEWMA2)

in terms of the average delayed run length and standard deviation of the delayed

run length, while performing a little worse in terms of the average run length. A

distinctive advantage of the proposed charts is that they are more effective than

the MC1, MEWMA1, MEWMA2, the combined χ2-MEWMA1 and the combined

χ2-MEWMA2 charts against the inertia in reacting to mean shifts.
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1. Introduction

In many quality control problems, several related process characteristics are
of interest. Monitoring these characteristics independently can be very mislead-
ing (see, for example, Alt (1988); Montgomery (1991, pp.322-324)). Thus, mul-
tivariate quality control is necessary and in the past decade, several kinds of
multivariate control charts for the process mean have appeared. Most of them
are generalizations of the corresponding univariate procedures.

Among the univariate procedures, Shewhart’s x̄ chart supplemented with run
rules has been widely used (see Nelson (1984)). Two very effective alternatives
to the x̄ chart may be used when detection of small sustained shifts is impor-
tant (see Montgomery (1991, p.279)): the two-sided cumulative sum (CUSUM)
chart and the exponentially weighted moving average (EWMA) chart. As a
multivariate counterpart of the x̄ chart, the χ2−chart was first suggested and
used by Hotelling (1947) in the testing of bombsights. It is well-known that
the χ2−chart is relatively insensitive to small mean shifts. This disadvantage
raises the problem of how to obtain multivariate extensions of run rules, the
two-sided CUSUM, and EWMA charts. Woodall and Ncube (1985) suggested
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a multiple CUSUM chart by using a series of the CUSUM control charts on
original characteristics or on principal component axes depending on the type of
shift in the mean that is considered to be important to detect. Pignatiello and
Runger (1990) showed that the Woodall-Ncube multiple CUSUM chart does not
have good average run length (ARL) properties when the process mean shifts
in several characteristics simultaneously. To lessen the sensitivity of the multi-
ple univariate CUSUM chart to directions, they recommended using univariate
CUSUM charts aimed at several uniformly selected directions. Obviously the
more directions, the less the sensitivity. But, at the same time, they found that
the resulting control chart is hard to manage when there are three or more char-
acteristics. Hawkins (1993) indicated that under some circumstances separate
controls on the regression-adjusted variables by the CUSUM charts can both im-
prove the speed of detection and make the chart signal more easily interpretable.
Chan and Li (1995) proposed some run rules for bivariate data patterns.

The above problem also motivates attempts to extend the univariate CUSUM
and EWMA statistics to multivariate data. One difficulty encountered with gen-
eralizing CUSUM statistics is that there are two cumulative sums for each vari-
able (see Crosier (1986, 1988)) and Pignatiello and Runger (1990) proposed some
two-sided methods which require only one cumulative sum, then they general-
ized these new statistics to higher dimensions. As a result, they obtained two
multivariate CUSUM charts: the MCUSUM and MC1 charts. Note that neither
of these two charts is a natural multivariate extension of the univariate CUSUM
chart. In contrast, the multivariate extension of the EWMA (MEWMA) chart
is natural and straightforward, see Lowry, Woodall, Champ and Rigdon (1992).
These authors showed that the MCUSUM, MC1 and MEWMA charts preserve
the shorter ARLs of the corresponding univariate procedures for detecting small
mean shifts while some of these charts can build up an arbitrarily large amount
of inertia. For example, if the MEWMA statistic is on one side of the central
line when a shift in the other direction occurs, there may be a delayed detection
of the shift.

In this article, we develop a natural multivariate extension of the CUSUM
chart, namely PPCUSUM, via projection pursuit. These charts are restricted to
multivariate normal observations. We prove that the PPCUSUM chart can be
viewed as the limit of the Pignatiello-Runger multiple CUSUM chart (see Pig-
natiello and Runger (1990, pp.183-184)) as the number of the uniformly selected
directions is increasing to infinity. We point out that the PPCUSUM chart can
perform better than the Pignatiello-Runger multiple CUSUM chart and that it
is relatively easy to implement, Section 3. The PPCUSUM chart has two advan-
tages over the competing charts (MC1 and MEWMA). First, it is more effective
in coping with the inertia problems, Section 6, and with the shifts which occur
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when the process mean has already been in-control for some time, Section 5.
Second, the shift-time (the time in which the shift occurs) is often relatively easy
to detect by plotting some univariate CUSUM chart, Section 2.

The article is organized as follows. The basis for the PPCUSUM chart is
given in Section 2. A method of improving its speed of the PPCUSUM chart
in detecting a mean shift, which occurs at the time the charting begins, is also
proposed in Section 2. The basic properties of the new charts, including the
empirical approximate formulae of the in-control ARLs, are developed in Section
3. The procedure for operating the PPCUSUM chart is given in Section 4.
An extensive comparison of the new charts with the other existing multivariate
control charts is presented in Sections 5 and 6. In Section 5 some illustrative
examples are presented. Conclusions are presented in Section 7.

2. An Alternative Multivariate CUSUM Chart

Suppose that the p−quality characteristics of a process, denoted by X, are
normally distributed with mean µ0 and covariance matrix Σ0 when the process
is in-control. The aim of a multivariate control chart is to detect any shift in the
process mean from µ0 by taking successive independent samples of size n from
the process. The performance of a multivariate control chart is often measured
by the average run length (ARL) and the standard deviation of the run length
(SRL). For convenience we consider, in what follows, the standardized version
ȳi =

√
nΣ−1/2

0 (x̄i − µ0), where x̄i is the sample mean of the ith sample of size n.
So the ȳi are independent and normally distributed with mean 0 and covariance
matix Ip×p as long as the process is in-control. Let µ be the mean of X when
the process is out-of-control. Then the mean of the out-of-control ȳi will be√

nΣ−1/2
0 (µ − µ0). For simplicity, we assume that the covariance matrix of yi

remains Ip×p when the process is out-of-control. In the following let || · || denote
the Euclidean norm of a vector. Let k be the reference value of the CUSUM chart
with respect to the standardized version ȳi. For a direction a with ||a|| = 1, define
the CUSUM statistics: Ca

0 = 0, Ca
i = max{0, Ca

i−1 + aT ȳi − k}, 1 ≤ i < +∞.

Healy (1987) pointed out that if the process mean shifts along a direction b0,
the CUSUM chart (with any control limit, say ho) for the projections {bT

0 Σ−1
0 x̄i,

i = 1, 2, . . .} (or {aT
0 ȳi, i = 1, 2, . . .} with a0 = Σ−1/2

0 b0), will give the optimal
ARL performance. The definitions of such optimality can be found, for example,
in Pollak (1985) and Moustakides (1986). Note that by definition, the above
CUSUM chart is equivalent to the CUSUM chart (with the control limit h1 =
h0/(bT

0 Σ−1/2
0 b0)1/2) for the projections {aT

1 ȳi, i = 1, 2, . . .} with a1 = Σ−1/2
0 b1

and b1 = b0/(bT
0 Σ−1

0 b0)1/2. This implies there exists a direction a1 with ||a1|| = 1
such that the CUSUM chart for the projections of {ȳi, i = 1, 2, . . .} along the
direction a1 also has the optimal ARL performance. For simplicity of notation,
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we concentrate on the case ||a0|| = 1 in the following. For the case ||a0|| �= 1,
the argument is the same if we replace a0 by a1. Note that a control chart can
be viewed as repeated significance tests (see Alt (1988)). Hence, Healy’s result
implies that when the first i samples are obtained, one should use the statistic
Ca0

i to test whether there is a shift along the direction a0. In practice a0 is
unknown and, therefore, such test cannot be applied directly.

The projection pursuit method is a powerful tool for constructing an estimate
of a0. It often views a0 as the most interesting direction in terms of some unknown
index (objective function) and is implemented by the following steps (see, for
example, Huber (1985)). The first step is to select a sample index (projection
pursuit index) which is approximately proportional to the unknown index, and
quantitatively measures how interesting a direction is. The second step is to
obtain the most interesting direction in terms of the index just selected, and
draw a further inference from the projected data in that direction.

In the following paragraph, we first use the projection pursuit method to
derive an estimate, say â0, of a0 when the first i samples are obtained, and ap-
proximate Ca0

i by C â0
i . Then, we obtain a control chart by plotting C â0

i against
the sample number i. This chart, called PPCUSUM, is a projection pursuit ap-
proximation of Healy’s optimal CUSUM chart when the underlying direction of
shift is unknown.

Note that Σ−1/2
0 (µ − µ0) = a0||Σ−1/2

0 (µ − µ0)|| by the definition of a0. The
method of estimating a0 is based on the fact that, as a function of a, the deviation
between aT Σ−1/2

0 µ and aT Σ−1/2
0 µ0 attains the maximum at a0. That is, a0 is the

most interesting direction if we take such a deviation as our index. However
that deviation function depends on the unknown parameter µ and, thus, should
be replaced by some sample index. We choose Ca

i as a sample index because,
by standard arguments, we can show that Ca

i is approximately proportional
to |aT µ − aT µ0| almost surely when |aT µ − aT µ0| > k, and i is large. Then
we estimate a0 by the direction which gives the maximum value of Ca

i . The
CUSUM Ca0

i can be estimated by C â0
i = max||a||=1 Ca

i . Thus the PPCUSUM
chart is equivalent to a control chart which indicates an out-of-control signal as
soon as max||a||=1 Ca

i > h, where h is the upper control limit.
Note that the estimate â0 is automatically adjusted with respect to successive

samples. So the above idea of using Healy’s result to contruct a multivariate
control chart is different from those in the literature where the CUSUM charts
are often used along several predetermined directions simultaneously (see, for
example, Hawkins (1993)).

Note that it may be possible to use the normal model based likelihood
method to address the multivariate quality control problem under consideration.
The main motivation of using the projection pursuit method is that we show
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(i) our procedure is essentially an extension of both the Pignatiello-Runger and
Healy charts; (ii) the procedure can be easily extended to the other settings (for
instance, monitoring multivariate covariance and using some robust or nonpara-
metric quality indices) because the projection pursuit does not require a normal
model (see Liu and Singh (1993) and Chan and Zhang (1996) for more details).

For each i, let Cij = ||ȳj + · · · + ȳi|| − (i − j + 1)k =
√

n{(x̄j − µ0 + · · · +
x̄i − µ0)T Σ−1

0 (x̄j − µ0 + · · · + x̄i − µ0)}1/2 −(i − j + 1)k, 1 ≤ j ≤ i, Ci =
max{0, Cii, . . . , Ci1}. In the following we show that max||a||=1 Ca

i = Ci, i =
1, 2, . . . . This makes the calculation of max||a||=1 Ca

i simple.
For each i, Ca

i = max{0, aT ȳi−k, aT (ȳi−1+ ȳi)−2k, . . . , aT (ȳ1+· · ·+ ȳi)−ik}
by induction. Then, it is obvious that for each fixed i and 0 ≤ j ≤ i − 1,
max||a||=1 Ca

i ≥ max||a||=1{aT (ȳi−j + · · ·+ ȳi)− (j + 1)k}, = ||ȳi−j + · · ·+ ȳi|| −
(j+1)k which implies max||a||=1 Ca

i ≥ Ci. On the other hand, for each a, ||a|| = 1,
Ca

i ≤ max{0, ||ȳi|| − k, . . . , ||ȳ1 + · · ·+ ȳi|| − ik} = Ci, which gives the inequality
max||a||=1 Ca

i ≤ Ci.

By definition, all one needs to do is to recursively add the y-vectors together
in calculating {Ci}. It seems that the MEWMA is easier to compute than the
PPCUSUM (see Runger and Prabhu (1996)).

When an out-of-control signal appears in the PPCUSUM chart, interpre-
tation is needed. Let S0 = 0, Si =

∑i
j=1 ȳj for i = 1, 2, . . . . Then Ci =

max{0, ||Si − Si−1|| − k, ||Si − Si−2|| − 2k, . . . , ||Si − S0|| − ik} for i = 1, 2, . . . .
This implies that when an out-of-control signal appears in the PPCUSUM at
the i0th time period, there will exist i1 such that ||Si0 − Si1|| − (i0 − i1)k =
max||a||=1 Ca

i0 > h, i0 > i1. We use Σ1/2
0 (Si0 − Si1) to estimate the direction of

shift in the mean of X, where â0 = (Si0 − Si1)/||Si0 − Si1 || gives the maximum
value of Ca

i0
. We make a CUSUM control chart for the projections of the trans-

formed samples {ȳi, i = 1, 2, . . .} in that estimated direction. Let Sâ0
ui , 1 ≤ i < ∞

and Sâ0
li , 1 ≤ i < ∞ denote the associated two sequences of the CUSUM values

(see, for example, Hawkins and Olwell (1998, p.27) for the definitions). Now the
problem of estimating the shift-time can be solved by existing methods for the
univariate CUSUM chart (see Hawkins and Olwell (1998, pp.20-21 and pp.26-
27); Montgomery (1991)). Since the shift is upward in the direction â0, here
we adopt the method in Hawkins and Olwell (1998): estimate the shift-time by
i3 + 1, where i3 = min{i ≤ i0 : Sâ0

ui = 0}. It is helpful to choose those of rela-
tively larger absolute values from p components of Σ1/2

0 (Si0 − Si1)/||Si0 − Si1||
to diagnose the causes of the signal. We can also use the charts suggested by
Pignatiello and Runger (1990) and Hawkins (1993) to interpret the signal.

In practice there is a special situation in which the process mean is already
shifted at the time the charting begins. In this situation Lucas and Crosier (1982)
proposed the Fast Initial Response (FIR) CUSUM chart for a univariate normal
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mean by giving the CUSUM a “head start”. It is difficult to extend their method
to the multivariate setting directly. We propose the following tentative solution.

Note that when the process mean is in-control, the statistic Ci plotted in the
PPCUSUM chart will be within the decision interval [0, h] and away from the
upper control limit h for 1 ≤ i ≤ m and a large m. Our simulation experience
shows that in this setting (1−λ)i−ti+1h is very small, where 0 < λ < 1 is a suitably
chosen constant and ti = min{j : 1 ≤ j < i,Cij = Ci}. If we add (1 − λ)i−ti+1h

to each Ci, 1 ≤ i ≤ m, the resulting sequence should be still within the decision
interval [0, h]. However, when a large mean shift occurs, there is a higher chance
that Cii takes a large value. Thus {Ci} will soon cross the upper control limit.
Our simulation experience indicates that (1 − λ)i−ti+1h is not very small in this
setting. Consequently, adding (1−λ)i−ti+1h to Ci will cause Ci to cross the upper
control limit more quickly. We are thus led to modifying the PPCUSUM chart
by adding (1−λ)i−ti+1h to the statistic Ci. The new statistic is denoted by CMi

and the modified chart is referred to as FPCUSUM. It can be shown that the
FPCUSUM chart exhibits a fast initial response feature (the numerical results
similar to Lucas and Crosier (1982) are omitted but available from the authors).
We use Example 5.1 (Case 1) in Section 4 to show this feature. First, we use the
PPCUSUM chart with k = 0.5, h = 5. The corresponding PPCUSUM values are
(C1, C2, C3, C4, C5) = (0.629919, 2.166418, 4.460767, 5.7131002, 2.9141109). The
PPCUSUM chart gives an out-control-control signal at the 4−th time period.
Now we apply the FPCUSUM chart with λ = 0.55 and with the same k and h.

The corresponding FPCUSUM values become (CM1, CM2, CM3, CM4, CM5) =
(3.379919, 4.916418, 7.210767, 9.7006002, 5.6641109). The FPCUSUM chart gives
an out-of-control signal at the third time period. Thus the FPCUSUM chart
results in a faster detection at the expense of a smaller in-control ARL (see
Figure 1).

3. Basic Properties

The method of Pignatiello and Runger (1990, p.185) can be applied directly
to prove the first property.

Property 1. Both the PPCUSUM and FPCUSUM charts are directionally
invariant. That is, the ARL and SRL of the PPCUSUM and FPCUSUM charts
depend on the shift µ only through the distance d = d(µ, µ0) = {(µ−µ0)T Σ−1

0 (µ−
µ0)}1/2.

This property makes the calculation and comparison of the ARL and SRL
easier because we need only consider shifts of the form µ − µ0 = (δ, . . . , δ) and
Σ0 = Ip×p.
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Property 2. When p = 1 the PPCUSUM chart reduces to the two-sided
CUSUM chart, the PPCUSUM chart is a natural multivariate extension of the
univariate CUSUM chart.

Pignetiello and Runger (1990) suggested a multiple CUSUM chart: use
univariate CUSUM charts along several uniformly selected directions, say aj,

1 ≤ j ≤ l, simultaneously. In the language of repeated significance tests, this
chart is equivalent to using C

aj

i , 1 ≤ j ≤ l, to test the hypothesis µ = µ0 si-
multaneously when the first i samples are obtained. If we use the same control
limit, say h, for all these charts, then an out-of-control signal appears in one of
these charts if and only if max1≤j≤l C

aj

i > h. Note that if l tends to infinity, then
max1≤j≤l C

aj

i converges to max||a||=1 Ca
i , the statistic used in the PPCUSUM. In

this sense we have the next property.

Property 3. The PPCUSUM chart is the limit of the Pignatiello-Runger mul-
tiple CUSUM chart when the number of uniformly selected directions tends to
infinity.

Note that in higher dimension a very large l is required, and in this case the
computation of max1≤j≤l C

aj

i is harder than that of Ci.

Table 3.1. The in-control ARL and SRL of the PPCUSUM charts with
k = 0.5, for p = 2, 3, 4 and various control limits h.

p = 2 p = 3 p = 4
h ARL SRL h ARL SRL h ARL SRL

4.75 107 98.6 5.75 108 103 7.00 143 133
5.00 133 124 6.00 132 125 7.50 212 195
5.50 206 196 6.25 163 153 7.75 260 246
5.75 261 249 6.50 195 187 8.00 305 285
6.00 326 311 6.75 245 232 8.25 378 340
6.25 406 359 7.00 300 275 8.50 446 392
6.50 485 421 7.25 365 337 8.75 524 437
7.00 689 504 7.50 450 391 9.00 628 486

For the convenience of using the PPCUSUM chart, some simulated in-control
ARL and SRL values of various control limits are presented in Table 3.1. These
values are the sample mean and sample standard deviation of the simulated run
lengths. In these simulations, the number of replications is 6000. The relative
standard error of the estimated ARL can be estimated by SRL/(ARL · u1/2),
where u is the number of the replications. Thus the estimated relative standard
errors of these simulations are smaller than 0.03. It follows from the approx-
imation formula of Siegmund (1985) for the in-control ARL of the univariate
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CUSUM chart with control limit h that log(ARL) can be approximated by a lin-
ear function of h when ARL is large. This motivates using some linear functions
to approximate the in-control ARLs of the PPCUSUM chart. To this end, we
apply the least squares fitting (see, for example, the S-PLUS Guide to Statistical
and Mathematical Analysis, version 3.3) to the simulated ARLs for various h in
Table 3.1. This results in a useful approximate formula.

For the in-control ARL of the PPCUSUM chart, we have log(ARL) = c0+c1h

where

co =




0.6899, when p = 2, k = 0.5;

−0.0120, when p = 3, k = 0.5;

−0.1714, when p = 4, k = 0.5;

c1 =




0.8438, when p = 2, k = 0.5;

0.8159, when p = 3, k = 0.5;

0.7368, when p = 4, k = 0.5.

Let R2
P be the residual error of the above fitting. Then

R2
P =




0.001390, when p = 2, k = 0.5;

0.000076, when p = 3, k = 0.5;

0.000396, when p = 4, k = 0.5.

Similar tables and formulae for the FPCUSUM chart are available from the
authors.

4. Procedure for Operating the New Charts

We begin with discussing the choice of the parameter λ of the FPCUSUM
chart. The simulation results in Ngai and Zhang (1998) suggest that in general
if we want to detect large mean shifts quickly, then a small λ is preferable, and
that if both small and large mean shifts are considered, a relatively good choice
of λ is as follows: λ = 0.55 when p = 2, and λ = 0.6 when p = 3, 4, 5.

Let µ1 be the out-of-control value of interest. Then, like the univariate case,
the parameter k of the PPCUSUM and FPCUSUM charts is usually chosen so
that k/

√
n is about one half of the Mahalanobis distance d(µ1, µ0) = ((µ1 −

µ0)T Σ−1
0 (µ1 − µ0))1/2.

In general the procedure for operating the PPCUSUM and FPCUSUM charts
consist of three steps. Take the PPCUSUM as an example.

Step 1. Estimate µ0 and Σ0 from past data. Calculate Σ−1/2
0 .
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Step 2. Specify the in-control ARL and SRL, the out-of-control shift of interest
and the parameter k. Use the empirical formulae mentioned above to choose the
parameter h.

Step 3. Transform the ith sample mean x̄i by ȳi =
√

nΣ−1/2
0 (x̄i − µ0); calculate

Ci and ti for each i. Then, plot Ci against i and check whether the plotted
point falls outside the decision interval [0, h]. If the plotted point falls outside
the decision interval, then an out-of-control signal is given. Use the proposal in
Section 2 to estimate the direction of the shift and the shift-time.

5. Performance of the New Charts

In this section, the ARL, SRL, ADRL and SDRL performances of the PP-
CUSUM, MEWMA1, MEWMA2 and MC1 charts are compared in Tables 5.1 and
5.2 for p = 2, 5 via Monte Carlo simulation. The χ2−chart, Crosier’s MCUSUM
chart and the multiple CUSUM chart have not been involved in this study be-
cause they have been compared with the MEWMA2 chart in Lowry, Woodall,
Champ and Rigdon (1992), and it has been shown that the MEWMA2 chart
performs slightly better. See Appendix 1 for the definitions of MC1, MEWMA1
and MEWMA2 charts.

In Lowry, Woodall, Champ and Rigdon (1992), the ARL performances of
the MC1, MEWMA1 and MEWMA2 charts are compared only under initial
out-of-control conditions. This is in contrast to how quality control charts are
applied in practice: a shift often occurs after the process mean has been in-control
for some time. We call it a delayed shift. This issue has been investigated by
Siegmund (1985), Pollak (1985), Moustakides (1986) and Ritov (1990), among
others. Here we address the issue according to the scheme used by Siegmund
(1985). That is, we make a comparison of the PPCUSUM, MC1, MEWMA1 and
MEWMA2 charts in terms of the average delayed run length (ADRL) and the
standard deviation of the delayed run lengths (SDRL) under the following model:
for a fixed integer v the process mean is in-control before the first v− 1 samples,
and out-of-control after the vth sample (including the vth sample). ADRL and
SDRL are equal to ARL and SRL when v = 1. Mathematically, the ADRL and
SDRL under the above model are just the conditional expectation and conditional
standard deviation, E((RL−v+1)|RL ≥ v) and (V ar((RL−v+1)|RL ≥ v))1/2.

After simulation, we choose v so that these quantities are near their limits, the
steady-state ADRL and SDRL: v = 15 is a reasonable choice. In this study, we
adopt Yashchin’s approach to assume that there is no false alarm before the shift
(see, for example, Yashchin (1985); Reynolds, Amin and Arnold (1990)). Similar
to Taylor (1968), if the control chart signals during the first v − 1 samples, then
this sequence of samples is discarded and the count of samples is reset to zero.
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Each simulated value of the delayed run length is obtained by subtracting v − 1
from a simulated run length.

Table 5.1. ARL and SRL comparison.

p = 2
d 0.0 0.5 1.0 1.5 2.0 2.5 3.0

PPCUSUM with h = 5, k = 0.5
ARL 133 27.4 9.33 5.41 3.82 3.00 2.51
SRL 124 21.3 4.71 2.10 1.22 0.84 0.64

MC1 with h = 4.33, k = 0.5
ARL 131 26.2 8.57 4.80 3.40 2.70 2.27
SRL 126 21.3 4.83 2.01 1.18 0.82 0.60

MEWMA1 with h =
√

7.88, r = 0.1
ARL 132 20.8 6.96 3.67 2.40 1.75 1.41
SRL 135 17.5 4.61 2.21 1.30 0.86 0.60

MEWMA1 with h = 3.077, r = 0.4
ARL 132 39.2 10.6 4.76 2.86 2.03 1.58
SRL 128 38.4 8.73 3.21 1.62 1.02 0.71

MEWMA2 with h = 2.763, r = 0.1
ARL 132 23.7 9.18 5.64 4.11 3.29 2.74
SRL 123 16.3 4.18 1.94 1.18 0.83 0.65

p = 5
d 0.0 0.5 1.0 1.5 2.0 2.5 3.0

PPCUSUM with h = 8, k = 0.5
ARL 163 37.5 12.6 7.44 5.36 4.22 3.51
SRL 154 28.1 5.71 2.41 1.44 0.98 0.74

MC1 with h = 6.55, k = 0.5
ARL 163 35.4 10.5 6.15 4.42 3.51 2.93
SRL 159 30.2 5.53 2.25 1.30 0.90 0.68

MEWMA1 with h =
√

14.3, r = 0.1
ARL 161 31.4 9.62 4.95 3.13 2.26 1.75
SRL 164 26.5 6.21 2.79 1.63 1.09 0.78

MEWMA1 with h =
√

15.97, r = 0.4
ARL 161 65.3 17.6 6.99 3.88 2.62 1.97
SRL 156 63.4 15.4 4.98 2.27 1.33 0.90

MEWMA2 with h = 3.75, r = 0.1
ARL 163 35.0 12.4 7.40 5.34 4.22 3.52
SRL 152 24.0 5.55 2.41 1.42 0.96 0.74
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For the out-of-control case, in Table 5.1 we used the assumption that the shift
has occurred prior to the application of charts, while in Table 5.2 we used the
assumption that the shift occurs after v − 1(= 14) samples. As before, ARL and
SRL (or ADRL and SDRL) in these tables are, respectively, the average and the
standard deviation of at least 6000 simulated run lengths. The relative standard
errors of the estimated ARL and ADRL are smaller than 0.01. In addition, the
following remarks apply to these tables.

1. We let the reference values of all these charts be 0.5. For the parameter
r of the MEWMA1 and MEWMA2 chart, r = 0.1 is recommended by Lowry,
Woodall, Champ and Rigdon (1992). Our simulation study shows that for the
MEWMA1, with r = 0.1, the in-control SRL is larger than the in-control ARL
(see Table 5.1). For example, when p = 2, h =

√
7.88 and r = 0.1, the in-control

ARL and SRL are 132 and 135. As pointed out by Chan and Zhang (1996a),
this results in a higher chance that the run length takes a small value.

2. Note that the PPCUSUM, FPCUSUM, MEWMA1 and MEWMA2 and
MC1 charts are directionally invariant (see Pignatiello and Runger (1990); Lowry,
Woodall, Champ and Rigdon (1992)). Hence, without loss of generality, we
assume that Σ0 = Ip×p and µ − µ0 is of the form (δ, . . . , δ). For p = 2, 5, we let
d =

√
nd(µ, µ0) = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0. For convenience, we assume n = 1

although the results hold for any integer n.

3. To compare different control procedures fairly, we need to calibrate each
procedure so that the in-control ARL is approximately the same for all the pro-
cedures (see Pignatiello and Runger (1990)).

When p = 2, several points emerge from Table 5.1. (i) For the initial shift
µ1 with 0.5 ≤ d(µ1, µ0) ≤ 2, the PPCUSUM produces slightly larger ARL than
the MC1 chart. (ii) The MEWMA1 chart with r = 0.1 is slightly quicker than
the PPCUSUM chart in detecting initial shifts in terms of ARL. However, the
in-control SRL of that MEWMA1 chart is larger than that of the PPCUSUM
chart. If we let r = 0.4 so that the in-control SRL = 128 is smaller than the
in-control ARL = 132, then the PPCUSUM chart performs better than the
MEWMA1 chart. (iii) The MEWMA2 chart with r = 0.1 performs slightly
better than the PPCUSUM chart when 0.5 ≤ d(µ, µ0) ≤ 1.0, while the latter
performs better when 1.5 ≤ d(µ, µ0) ≤ 3.0. (iv) Table 5.2 indicates that when
p = 2 the PPCUSUM chart has better ADRL and SDRL performances than the
competing charts.

For p = 5, similar conclusions can be drawn from Tables 5.1 and 5.2. The per-
formance of the FPCUSUM chart has been shown to be better than PPCUSUM
chart in some cases by Ngai and Zhang (1998).
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Table 5.2. ADRL and SDRL comparison when v = 15.

p = 2
d 0.5 1.0 1.5 2.0 2.5 3.0

PPCUSUM with h = 5, k = 0.5
ADRL 26.1 8.45 4.84 3.44 2.74 2.26
SDRL 22.7 5.16 2.25 1.37 0.95 0.72

MC1 with h = 4.33, k = 0.5
ADRL 26.5 8.81 5.22 3.78 3.00 2.56
SDRL 22.2 5.00 2.48 1.59 1.18 0.92

MEWMA1 with h =
√

7.88, r = 0.1
ADRL 24.4 9.29 5.65 4.12 3.30 2.75
SDRL 17.0 4.25 4.12 1.20 0.85 0.65

MEWMA1 with h = 3.077, r = 0.4
ADRL 40.8 11.1 5.18 3.23 2.42 1.93
SDRL 38.5 8.65 3.12 1.52 0.95 0.69

MEWMA2 with h = 2.763, r = 0.1
ADRL 23.6 9.15 5.64 4.10 3.31 2.75
SDRL 16.2 4.08 1.97 1.18 0.85 0.64

p = 5
d 0.5 1.0 1.5 2.0 2.5 3.0

PPCUSUM with h = 8, k = 0.5
ADRL 33.7 11.1 6.60 4.71 3.69 3.06
SDRL 27.9 5.80 2.70 1.65 1.18 0.94

MC1 with h = 6.55, k = 0.5
ADRL 37.0 12.8 7.69 5.55 4.37 3.67
SDRL 30.1 7.16 3.59 2.35 1.74 1.41

MEWMA1 with h =
√

14.3, r = 0.1
ADRL 35.9 12.6 7.39 5.32 4.20 3.50
SDRL 26.0 5.64 2.42 1.43 0.96 0.73

MEWMA1 with h =
√

15.97, r = 0.4
ADRL 66.3 18.1 7.41 4.33 3.06 2.41
SDRL 63.8 15.2 4.81 2.15 1.21 0.82

MEWMA2 with h = 3.75, r = 0.1
ADRL 34.5 12.4 7.37 5.33 4.24 3.53
SDRL 24.6 5.46 2.42 1.41 0.98 0.72



MULTIVARIATE CUSUM CHART 759

Generally speaking, we recommend using the MCUSUM, MC1, MEWMA1
and MEWMA2 charts for detecting initial shifts and the PPCUSUM and FP-
CUSUM charts for detecting delayed shifts. The following examples highlight
these conclusions.

In a manufacturing process, raw material can have a large effect on the
quality of products. Abnormalities in some characteristics of the raw material
may cause production upsets and it is important to use control charts in this
context. Prusinoski (1979) and Sultan (1986) have applied Hotelling’s T 2−charts.
We consider this situation again by using PPCUSUM, FPCUSUM, MC1 and
MEWMA1 charts.

Example 5.1. Two quality characteristics of steel sections are monitored: x1 =
Brinell hardness and x2 = tensile strength measured in Kg/mm2 (see Sultan
(1986); Chan and Li (1995)). There are 30 samples of size 1 with the first 25
from the original shipment and the next 5 from a new shipment.

Case 1. To illustrate the situation that the process mean is out-of-control at
the beginning of the process, we take the first 25 observations as the in-control
ones and use the PPCUSUM, FPCUSUM, MC1 and MEWMA1 charts to test 5
observations from the new shipment. Take the PPCUSUM chart as an example,
the procedure is as follows.

Step 1. Estimate the target values by the sample mean and covariance matrix
based on 25 observations from the original shipment:

µ0 =

(
177
53

)
and Σ0 =

(
324 65
65 20

)
.

Step 2. Suppose d(µ1, µ0) = 1 where µ1 denotes the out-of-control value of the
process mean of interest. Choose the reference value k = 0.5. By Table 3.1,
choose the control limit h = 5 in the PPCUSUM chart so that the in-control
ARL is about 133.

Step 3. Transform the ith sample mean, calculate Ci and plot it against i in the
PPCUSUM chart (see Figure 1) and check whether it falls outside the decision
intervals. It turns out that the PPCUSUM chart gives an out-of-control signal
at the 4th sample from the new shipment.

Similarly, choose h = 4.75 and k = 0.5 in the MC1 chart; h =
√

8.79 and
r = 0.1 in the MEWMA1 chart so that they have approximately the same in-
control ARL of 133 as the PPCUSUM chart. Calculate and plot the statistics
MC1i, NZi against i in the MC1, MEWMA1 charts, respectively (the figures are
available from the authors). Then the MEWMA1 chart gives an out-of-control
signal at the 4th sample. No out-of-control signal is generated from the MC1
chart.
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Figure 1. PPCUSUM and FPCUSUM charts for Example 5.1 (Case 1).

Note that if we use the four charts to make retrospective test for the samples
from the original shipment, then we find that the first sample is out-of-control
and the last 24 are in-control.

Case 2. For an illustration of a process mean that is out-of-control after the
process mean has been in-control for some time, we change the assumption used
in Case 1. Here we do not know whether the last 24 samples come from an
in-control process, but we know the values of µ0 and Σ0 :

µ0 =

(
177
53

)
and Σ0 =

(
324 65
65 20

)
.

We apply the PPCUSUM chart with h = 5, k = 0.5, MC1 with h = 4.75, k =
0.5 and MEWMA1 with h =

√
8.79, r = 0.1. The data set is composed of the last

24 samples from the original shipment and 5 samples from the new shipment.
The PPCUSUM gives an out-of-control signal at the 4th sample from the new
shipment (see Figure 2), while no out-of-control signal is presented by the MC1
and MEWMA1 charts (the figures are available from the authors). This shows
the PPCUSUM is more effective than the MC1 and MEWMA1 in detecting a
late shift in mean.

The last example is used to show how to estimate the shift time.

Example 5.2. We apply the PPCUSUM (with h = 5, k = 0.5), defined in
Example 5.1 to a data set given by Crosier (1988). This data set is composed
of the samples of size 1 from the normal distribution with unit variances and
a correlation coefficient of 0.5. The process mean is in control for the first five
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samples and then shifts to (1, 2)T for the last five samples. In this example µ0 is
zero.
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Figure 2. PPCUSUM chart for Example 5.1 (Case 2).

The PPCUSUM chart gives the out-of-control signal at the 10th sample (see
Figure 3).

We project the standardized versions ȳi, 1 ≤ i ≤ 10 to the estimated optimal
direction of the shift, âT

0 = (−0.039023, 0.9992383). Then i3 = 5 is the first i

such that Sâ0
ui = 0 (see the definition in Section 2). So the estimated shift-time

is 6.
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Figure 3. PPCUSUM chart for Example 5.2.

6. Inertia Problems

The “inertia” problem was originally studied by Yashchin (1987) for the
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univariate EWMA chart. Lowry, Woodall, Champ and Rigdon (1992) pointed out
that the MC1, MEWMA1, MEWMA2 and MCUSUM charts can have “inertia”
in reacting to shifts in the process mean relative to the univariate CUSUM chart.
They presented a worst-case inertia existing in the MEWMA1 and MEWMA2
charts. In contrast, it is easy to see that the PPCUSUM and FPCUSUM charts
can avoid this problem. In the same paper, Lowry et al. suggested that the
χ2−chart should always be used in conjunction with the MEWMA chart to help
to prevent such delays. However, as noted by them, the use of the χ2−chart
does not completely solve the inertia problem. When inertia has built up, a
sequence of relatively large shifts from the target value that does not trigger
the χ2− chart may still not result in out-of-control signal from the MCUSUM,
MC1, MEWMA1 and MEWMA2 charts. Simulation results displayed in Table
6.1 show that for Model 1, described in the next paragraph, the PPCUSUM
chart can be more effective than the MC1, MEWMA1, MEWMA2, the combined
χ2−MEWMA1 and the combined χ2−MEWMA2 charts against moderate inertia
(see Appendix 1 for the definitions of these charts and note that the rough rule
of thumb of Lowry et al. (1992) is used here in designing χ2−MEWMA1 and
χ2−MEWMA2 charts). For the alternative normal model described below, Table
6.2 shows that the PPCUSUM chart performs better than MC1, MEWMA1
and MEWMA2 charts. Ngai and Zhang (1998) showed that similar results hold
for the FPCUSUM chart. For the alternative normal model with some small
means, the FPCUSUM chart can be superior to the combined χ2−MEWMA1
and χ2−MEWMA2 charts.

In Table 6.1 we adopt a special model, called Model 1. In this model, we
let the sample size be 1. Let yi = (0, 0)T , for 1 ≤ i ≤ 17, y18 = (−2.8,−0.5)T

and y19 = (−1.5,−1.5)T for p = 2; and let yi = (0, 0, 0, 0, 0)T , 1 ≤ i ≤ 17, and
y18 = (−2.8,−0.5,−0.5, −0.5,−0.5)T and y19 = (−1.5,−1.5, −1.5,−1.5,−1.5)T

for p = 5. Assume that µ0 = 0. Let yi, 20 ≤ i < ∞ be samples from N(µ, I2×2)
for p = 2 and N(µ, I5×5) for p = 5, where µ is of the form (δ, . . . , δ). We assume
that the process mean is in-control during the time period from 1 to 19. Note
the last two observations are located in the third quadrant (all components are
negative). However a shift to the first quadrant occurs after period 19. Applying
the MEWMA chart {yi, 1 ≤ i < ∞}, we find the 18th and 19th values of the
MEWMA statistics are well below the centerline. Since the components of µ are
positive, we will wait a longer time to find the MEWMA statistic over the upper
control limit than when y18, y19 and µ are located in the first quadrant. This
is a prototype of the inertia model suggested by Yashchin (1987) and Lowry,
Woodall, Champ and Rigdon (1992).

Remark. Shifts of the form (δ, . . . , δ)T are considered in Table 6.1. Here, δ =
d/

√
p and d = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0. Each pair of ARL and SRL values in

Table 6.1 is obtained from 6000 replications.
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Table 6.1. ARL and SRL comparison under model 1 for the following charts
of the same in-control ARL approximately and δ = d/

√
p.

p = 2
d 0.5 1.0 1.5 2.0 2.5 3.0

PPCUSUM with h = 5, k = 0.5
ARL-19 26.7 9.26 5.38 3.83 2.98 2.51
SRL 21.9 4.85 2.11 1.24 0.83 0.64

MC1 with h = 4.33, k = 0.5
ARL-19 27.8 11.8 7.79 5.90 4.77 4.02
SRL 23.2 5.43 2.47 1.50 1.06 0.80

MEWMA1 with h =
√

7.88, r = 0.1
ARL-19 28.8 12.3 7.93 5.86 4.72 3.99
SRL 17.1 4.52 2.23 1.36 0.98 0.75

χ2-MEWMA1 with h = 2.823, h1 = 4, r = 0.1
ARL-19 29.1 12.3 7.16 5.58 4.18 3.14
SRL 17.6 4.67 2.43 1.75 1.57 1.44

MEWMA2 with h = 2.763, r = 0.1
ARL-19 27.9 12.2 7.85 5.83 4.68 3.95
SRL 16.6 4.42 2.17 1.34 0.95 0.75

χ2-MEWMA2 with h = 2.78, h1 = 4, r = 0.1
ARL-19 28.1 12.1 7.68 5.52 4.15 3.13
SRL 16.9 4.60 2.41 1.73 1.54 1.42

p = 5
d 0.5 1.0 1.5 2.0 2.5 3.0

PPCUSUM with h = 8, k = 0.5
ARL-19 36.2 12.5 7.45 5.36 4.21 3.50
SRL 26.9 5.59 2.40 1.44 0.98 0.73

MC1 with h = 6.55, k = 0.5
ARL-19 43.2 17.4 10.9 7.97 6.29 5.23
SRL 31.7 6.86 3.10 1.81 1.25 0.92

MEWMA1 with h =
√

14.3, r = 0.1
ARL-19 40.8 16.1 10.0 7.39 5.90 4.94
SRL 26.2 5.79 2.67 1.59 1.11 0.85

χ2-MEWMA1 with h = 3.8, h1 = 4.83, r = 0.1
ARL-19 41.2 16.1 9.95 7.21 5.54 4.26
SRL 26.7 5.97 3.84 1.96 1.67 1.61

MEWMA2 with h = 3.75, r = 0.1
ARL-19 39.5 15.9 9.95 7.34 5.87 4.93
SRL 25.1 5.69 2.64 1.58 1.11 0.84

χ2-MEWMA2 with h = 3.77, h1 = 4.8, r = 0.1
ARL-19 40.0 15.9 9.85 7.14 5.48 4.22
SRL 25.7 5.85 2.83 1.95 1.71 1.63
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7. Conclusions

Two new charts, namely PPCUSUM and FPCUSUM, are developed for de-
tecting mean shifts in a multivariate normal distribution. It is shown that these
charts are directionally invariant. The PPCUSUM chart is a natural multivari-
ate extension of the univariate CUSUM chart because it reduces to the two-
sided CUSUM chart when the dimension p is equal to 1. Simulations indicate
that the new charts have slightly superior SRL, ADRL and SDRL performances
than the MC1 and MEWMA1 charts, while performing a little worse in terms
of ARL. The main advantage of the new charts is that they can be more ef-
fective in avoiding the inertia problem and coping with delayed shifts than the
MC1, MEWMA1, MEWMA2, the combined χ2−MEWMA1 and the combined
χ2−MEWMA2 charts. On the whole, the new charts seem promising when on-
line computers are used during production.
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Appendix 1. Brief definitions of the MC1 and MEWMA charts

The MC1 chart: Let l0 = 0, l1 = 1 and, for i = 1, 2, . . . ,

Di =
∑i

i−li+1 yj,MCi = max{0, ||Di|| − kli},
li =

{
li−1 + 1, MCi−1 > 0,

1, otherwise.

An out-of-control signal is given as soon as MCi > h, where k > 0 and h > 0.
The MEWMA1 chart (using the exact covariance of the MEWMA statistic):

Let Z0 = 0 and Zi = ryi+(1−r)Zi−1, 1 ≤ i < ∞,where 0 < r < 1 is a constant.

An out-of-control signal is given as soon as NZi = ||Zi||
(

2−r
r(1−(1−r)2i)

)1/2
> h.

The MEWMA2 chart (using the asymptotic covariance of the MEWMA

statistic): replace NZi in MEWMA1 chart by NZi = ||Zi||
(

2−r
r

)1/2
.
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The combined χ2−MEWMA1 chart: Let h2
1 be the upper control limit of

the χ2− chart. Let Zi and NZi be those used in the MEWMA1 chart. Then, the
combined χ2−MEWMA1 chart gives an out-of-control signal as soon as ||Zi|| >

h1 or NZi > h.

Similarly, we can define the combined χ2−MEWMA2 chart.
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