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Abstract: Weighted versions of the likelihood ratio, Wald, score and disparity tests

are proposed for parametric inference. If the parametric model is correct, the

weighted likelihood tests are asymptotically equivalent to the corresponding likeli-

hood based tests, while the disparity test has asymptotically the same distribution

as that of
∑p

i=1
λiZ

2
i , where Zi are standard normal random variables and λi are

eigenvalues of an appropriate matrix. The tests have high level and power break-

down points and they perform well in finite samples. A simulation study and a

data example illustrate the performance of the tests in the presence of symmetric

and asymmetric contamination.
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1. Introduction

The investigation of robustness of testing procedures dates back to 1931,
when E. S. Pearson discovered the nonrobustness of the test of variances. How-
ever, most research effort has focused on robust estimation and less attention has
been given to tests.

The aim of robust testing is twofold. The level of the test should be stable
under small, arbitrary departures from the null hypothesis (robustness of valid-
ity), and the test should retain good power under small, arbitrary departures
from specified alternatives (robustness of efficiency). Many authors have pro-
posed tests with desirable robustness properties. Those include Huber (1965,
1981), Schrader and Hettmansperger (1980), Ronchetti (1982), Markatou and
Hettmansperger (1990), Markatou and He (1994), Heritier and Ronchetti (1994),
He (1991) and Simpson (1989), to mention just a few. For a review, see Markatou,
Stahel and Ronchetti (1991).

In this article, we present robust versions of the Wald, score, and likelihood
ratio-type tests that are based on the weighted likelihood estimators (WLEE)
proposed by Markatou, Basu and Lindsay (1997, 1998). Section 2 gives a short
review of the weighted likelihood methodology. Section 3 presents the test statis-
tics under study and looks at disparity test analogous to the one studied by



500 CLAUDIO AGOSTINELLI AND MARIANTHI MARKATOU

Simpson (1989) and Lindsay (1994). Section 4 contains results on the asymp-
totic and stability properties of the proposed tests. It is shown that, when the
model is correctly specified, the weighted likelihood ratio-type, the Wald-type
and the score-type tests have, under the null hypothesis, a central chi-square
distribution. The disparity-based test, has asymptotically the same distribution
as that of the quadratic form

∑p
i=1 λiZ

2
i , where Zi are N(0, 1) random variables

and λi are eigenvalues of an appropriate matrix. This is in constrast with results
obtained by Simpson (1989) and Lindsay (1994).

The new tests have a high breakdown point in terms of level and power.
Markatou and He (1994) showed that the breakdown points of the Wald test that
uses one-step high breakdown point estimates are determined by the breakdown
points of the parameter estimate and the associated variance-covariance matrix.
They also proved that the score-type and likelihood ratio-type tests exhibit high
level breakdown but not high power breakdown. In contrast with those results,
our tests have high level and power breakdown points as long as the hypothesized
models belong to the exponential family. Section 5 presents an example and
simulations to illustrate the performance of the tests.

2. Background

Let X1,X2, . . . ,Xn be a random sample with density function mθ(x) corre-
sponding to a continuous probability measure Mθ(x). Let u(x; θ) = ∂

∂θ logmθ(x)
be the score function. Under regularity conditions the maximum likelihood esti-
mator of θ is a solution of the score equation

∑n
i=1 u(xi; θ) = 0.

Let F̂n be the empirical distribution function. Given any point xi in the
sample space, a weight function w(xi;Mθ, F̂n) is constructed. The parameter
estimates, obtained as solutions of the set of estimating equations

1
n

n∑
i=1

w(xi;Mθ, F̂n)u(xi; θ) = 0, (2.1)

are called the weighted likelihood estimators (Markatou et al. (1998)). The weight
function is defined as w(x;Mθ , F̂n) = min

{
1, [A(δθ(x))+1]+

δθ(x)+1

}
, where [·]+ denotes

positive part. For an extensive discussion and motivation, see Markatou et al.
(1997, 1998).

The quantity δθ(x) that enters in the construction of the weights is called
the Pearson residual and is defined as δθ(x) = f∗(x)/m∗

θ(x) − 1, where f∗(x) =∫
k(x; t, h) dF̂n(t) is a kernel density estimator and m∗

θ(x) =
∫
k(x; t, h) dMθ(t)

is the smoothed model density. The Pearson residual expresses the agreement
between the data and the assumed probability model. In what follows we suppress
the dependence of δ on the parameter θ. The function A(·) in the definition of the
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weight is a residual adjustment function (RAF, Lindsay (1994)). It operates on
Pearson residuals as the Huber ψ-function operates on ordinary residuals. When
A(δ) = δ the weight equals 1, and this corresponds to maximum likelihood. The
choice A(δ) = 2{(δ + 1)1/2 − 1} corresponds to Hellinger distance. Generally,
the weight functions we work with use an A(·) that corresponds to a minimum
disparity problem. Since the weights are functions of δ the notation w(δ) is used.

The estimating equations (2.1) do not necessarily have a unique solution.
Let θ1, θ2, . . . , θp denote the roots of (2.1) and let ρ(f∗,m∗

θ) be the parallel
disparity measure (Markatou et al. (1998)), that is, the disparity constructed
using the RAF of the weight formulation. The parallel disparity is defined as
ρ (f∗,m∗

θ) =
∫
G (δ(x))m∗

θdx, where G is a strictly convex, thrice differentiable
function. When G(δ) = 2δ2/(δ+ 2) then ρ (f∗,m∗

θ) corresponds to a chi-squared
distance. Notice also that the RAF A(δ) is defined as A(δ) = (δ+1)G′(δ)−G(δ),
prime denoting differentiation.

To guarantee uniqueness, define the weighted likelihood estimator θw as
argminθi i=1,...,pρ(f∗,m∗

θi
). Note that the weighted likelihood estimators are

asymptotically normal with the inverse of the Fisher information as covariance
matrix.

The computation of Pearson residuals requires selection of the smoothing
parameter h. This is done by setting h2 = kσ̂2, where k is a constant indepen-
dent of the scale of the model. It provides the mean downweighting that occurs
when the model is correct. In Section 5 we discuss an alternative way to ob-
tain the parameter k in location-scale models and we use it in our examples and
simulations.

3. The Tests

We present the test statistics under study. The objective here is to create test
procedures that are asymptotically equivalent to the corresponding tests based
on maximum likelihood when the model is correct, but are more robust in the
sense of preserving size and power when the true density is contaminated. Let Θ
be the parameter space, a subset of Rp. We are interested in testing H0 : θ ∈ Θ0

vs H1 : θ ∈ Θ1, Θ1 ⊆ Θ/Θ0.
We consider three classes of tests.
1. A Wald-type test statistic is a quadratic form

W (θ) = (θ − θ̂)t{nI(θ̂)}(θ − θ̂), (3.2)

where θ̂ is the maximum likelihood estimate of θ in Θ, the superscript t denotes
transpose, and the Fisher information is evaluated at θ̂.
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The Wald test statistic we use is

Ww(θ) = (θ − θ̂w)t
{ n∑

i=1

w(δθ̂w
(xi))I(θ̂w)

}
(θ − θ̂w), (3.3)

where θ̂w is the weighted likelihood estimator of θ in Θ.
A comparison between (3.2) and (3.3) shows that we have replaced n in (3.2)

by the sum of the weights that the observations receive when the unrestricted
weighted likelihood estimator is used, and the asymptotic Fisher information is
evaluated at the unrestricted weighted likelihood estimator.

2. A score-type test function is

T (θ) = St(θ)(nI(θ))−1S(θ), (3.4)

where S(θ) =
∑n

i=1 u(xi, θ) is the score function evaluated at θ.
We use the score-type test function

Tw(θ) = St
w(θ)

[ n∑
i=1

w
(
δθ̂w

(xi)
)
I(θ)

]−1
Sw(θ), (3.5)

where Sw(θ) =
∑n

i=1w
(
δθ̂w

(xi)
)
u(xi, θ) and θ̂w is the unrestricted weighted

likelihood estimate. A comparison between (3.4) and (3.5) shows that we replaced
n by the sum of weights that the observations receive in the unrestricted model.
The weights evaluated at the unrestricted estimate guarantee the consistency of
the test.

3. A likelihood ratio-type test function is

Λw(θ) = −2
n∑

i=1

w
(
δθ̂w

(xi)
) [

l(xi; θ) − l(xi; θ̂w)
]
, (3.6)

where l(xi; θ) = logmθ(xi) is the log-likelihood.
A disparity-based test analogous to the one proposed by Simpson (1989) can

also be constructed. The test statistic is

D(θ) = −2
{
ρ(f∗,m∗

θ̂w
) − ρ(f∗,m∗

θ)
}
, (3.7)

where ρ is the parallel disparity. If ρ is the log-likelihood the disparity test is
analogous to the likelihood ratio except that the convoluted model is used instead
of the original model mθ(x).

Notice that when the data are from a N(µ, σ2) with σ2 known, the Wald,
score and likelihood ratio-type tests have exactly the same form.
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To define the tests under a composite null hypothesis and/or in the presence
of nuisance parameters, we evaluate them at

θ̂0 = argmaxθ∈Θ0

n∏
i=1

mθ(xi)
w(δ

θ̂w
(xi)), (3.8)

which is weighted likelihood with fixed weights. This is similar to the classical
approach to a composite null hypothesis problem (see Cox and Hinkley (1974)
among others). The computation can be done by numerical optimization under
constraints.

4. Asymptotic and Robustness Properties

In this section we discuss the asymptotic and robustness properties of the
different test statistics. Here are the necessary assumptions.
A1. The weight function w(δ) is a nonnegative, bounded, and differentiable func-

tion.
A2. The weight function w(δ) has w′(δ)(δ + 1) bounded.
A3. The kernel k(x; t, h) is a function of bounded variation and is bounded for

all x by a constant M(h) that may depend on h, but not on t or x.
A4. The Fisher Information matrix is positive definite.

Let ũ(x; θ) = ∂
∂θ logm∗

θ(x) and recall that u(x; θ) = ∂
∂θ logmθ(x), further let

ũ′(x; θ) = ∂
∂θ ũ(x; θ), u

′(x; θ) = ∂
∂θu(x; θ) and u′′(x; θ) = ∂

∂θu
′(x; θ).

A5. For every θ0 ∈ Θ, there is a neighborhoodN(θ0) such that for θ ∈ N(θ0), the
quantities |ũ(x; θ)u′(x; θ)|, ∣∣ũ2(x; θ)u(x; θ)

∣∣, |ũ′(x; θ)u(x; θ)| and |u′′(x; θ)|
are bounded by Mi(x), where Eθ0 [Mi(X)] <∞, i = 1, 2, 3, 4.

A6. Eθ0

[
ũ2(X; θ)u2(X; θ)

]
<∞.

A7. a.
∫ ∣∣∣ ∂

∂θmθ(x)/m∗
θ(x)

∣∣∣ dx < ∞; b.
∫ |ũ(x; θ)u(x; θ)| [mθ(x)/m∗

θ(x)] dx

<∞; c.
∫ |u′(x; θ)| [mθ(x)/m∗

θ(x)] dx <∞.

Theorem 4.1. Under the conditions A1-A7 and a correctly specified model, the
Wald test, the score-type test and the likelihood ratio-type test are asymptotically
distributed as central chi-squares under H0 : θ = θ0, with degrees of freedom
dim(Θ)−dim(Θ0). Under local alternatives H1 : θ = θ0 +∆/

√
n, the asymptotic

distribution is non-central chi-square with the same degrees of freedom and a
non-centrality parameter 0.5(∆/

√
n)tI(θ)(∆/

√
n).

To prove this theorem we need two auxiliary lemmas. Let us write the
density estimator at X1 as f∗(X1) = (1/n)

∑n
=1(k(Xi;X1, h) + k(X1;X1, h)) =

anf
∗
<1>(X1) + bn, where an = (n− 1)/n, bn = k(X1;X1, h)/n and f∗<1>(.) is the

kernel density estimate computed without the first observation.
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Lemma 4.1. For p ∈ [0, 2]

E[Y p
n (t)] ≤ E[|anf

∗
<1>(t) + bn−m∗

θ(t)
m∗

θ(t)
|p]np/2

≤ [anλ(t) + (1/n)(k(X1;X1, h)−m∗
θ(t))

2]p/2

[m∗
θ(t)]p

,

where λ(t) = Var (k(X; t, h)) and Yn(t) = n1/2((anf∗
<1>(t)+bn

m∗
θ
(t) )1/2−1)2.

Proof. Begin by writing

E
[anf

∗
<1>(t) + bn −m∗

θ(t)
m∗

θ(t)

]2

=
(
E

[anf
∗
<1>(t) + bn −m∗

θ(t)
m∗

θ(t)

])2
+ Var

(anf
∗
<1>(t) + bn −m∗

θ(t)
m∗

θ(t)

)
,

where,

E
[anf

∗
<1>(t) + bn −m∗

θ(t)
m∗

θ(t)

]
=
k(X1, t, h) −m∗

θ(t)
nm∗

θ(t)
,

Var
[anf

∗
<1>(t) + bn −m∗

θ(t)
m∗

θ

]
=

a2
nλ(t)

(n− 1)m∗2
θ (t)

.

By a standard inequality,

E
[anf

∗
<1>(t)+bn−m∗

θ(t)
m∗

θ(t)

]p≤ ((1/n)2[k(X, t, h)−m∗
θ(t)]

2+(a2
n/(n−1))λ(t))p/2

(m∗
θ(t))p

.

Multiply this last expression by np/2 to get the desired result.

Lemma 4.2. For p ∈ (0, 2), limE(Y p
n (t) = 0, as n converges to infinity.

Proof. As n converges to infinity we get convergence in probability to 0 for each
t. From Lemma 4.1, for each q < 2, the L2 norm of the sequence is bounded.

Proof of the Theorem. Let Λ(θ) = −2
∑n

i=1

[
l(xi; θ) − l(xi; θ̂)

]
be the classical

likelihood ratio test function. Then
1
n
|Λw(θ) − Λ(θ)|

=
2
n

∣∣∣ n∑
i=1

w(δθ̂w
(xi))[l(xi; θ) − l(xi; θ̂w)] −

n∑
i=1

[l(xi; θ) − l(xi; θ̂)]
∣∣∣

=
2
n

∣∣∣ n∑
i=1

[w(δθ̂w
(x)) − 1](l(xi; θ) − l(xi; θ̂)) +

n∑
i=1

w(δθ̂w
(xi))[l(xi; θ̂) − l(xi; θ̂w)]

∣∣∣
≤ A1 +A2,
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where

A1 =
2
n

∣∣∣ n∑
i=1

[w(δθ̂w
(xi) − 1](l(xi; θ) − l(xi; θ̂))

∣∣∣,

A2 =
2
n

n∑
i=1

|l(xi; θ̂) − l(xi; θ̂w)|.

Hence by Lemma 4.1, Lemma 4.2, the root-n consistency of θ̂ and θ̂w, and the
fact that A1, A2 asymptotically converge in probability to zero, the weighted
likelihood ratio test is asymptotically equivalent to the likelihood ratio test for
θ = θT , the true parameter value.

To study the asymptotic local power, let ε = ∆/
√
n and θ = θT + ε. Then

1/n |Λw(θ) − Λ(θ)| ≤ B1 +B2 +B3, where

B1 =
2
n

∣∣∣ n∑
i=1

[w(δθ̂w
(xi)) − 1](l(xi; θ) − l(xi; θT ))

∣∣∣,
B2 =

2
n

∣∣∣ n∑
i=1

[l(xi; θT ) − l(xi; θ̂)]
∣∣∣,

B3 =
2
n

∣∣∣ n∑
i=1

w(δθ̂w
(xi))[l(xi; θT ) − l(xi; θ̂w)]

∣∣∣.
Under A1-A7 and the above two lemmas, each of the above quantities converges
in probability to zero as n → ∞. Thus, the weighted likelihood-based test and
the likelihood ratio test have asymptotically, under the correct model, the same
local power.

Similarly we can prove the equivalence of the score and Wald type tests to
those based on the maximum likelihood estimator. This completes the proof of
the theorem.

For the disparity test statistic we have the following result.

Theorem 4.2. Under the conditions A1-A7 and a correctly specified model, the
asymptotic distribution of the disparity-based test is given by a weighted sum of
independent chi-squares with one degree of freedom, with weights the eigenvalues
of the matrix I∗(θ)I−1(θ), where I∗(θ) is Fisher information calculated using the
smoothed model.

Proof. For the derivation of the asymptotic results we rely on the quadratic
approximation of the disparity test statistic. The proof is then similar to the one
given in Markatou and He (1994).

Notice that the asymptotic distribution of the disparity based test is different
from the one obtained by Simpson (1989). This is the effect of kernel smoothing
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and the fact that the weighted likelihood estimators are not solutions of an op-
timization problem based on the disparity ρ. The asymptotic distribution of the
disparity test will be a chi-square only if I−1(θ) is the c-inverse of I∗(θ), which
in turn means that the bandwidth should converge to 0.

We now turn to the study of robustness properties of the tests. The robust-
ness of an estimator can be studied via the concepts of influence function and
breakdown point. Ronchetti (1982) extended the definition of the influence func-
tion to tests, but the influence functions of the weighted likelihood tests are the
same as those of the corresponding maximum likelihood-based tests. Therefore
we study the breakdown of the new procedures.

Roughly speaking, the breakdown point of a statistical functional is the
smallest fraction of contamination in the data that can lead to arbitrarily extreme
results. Accordingly one might say that a test statistic breaks down, for a given
level of contamination, if its p-value can be driven to its maximum or minimum
achievable value. For ease of presentation, our analysis focuses on the abstract
functionals associated with the test statistics. These functionals are given as
follows:

Ww(θ, F ) = (θ − θw(F ))t
{ ∫

w(δθw(F )(x))dF (x)
}
I (θw(F )) (θ − θw(F )) ; (4.9)

Tw(θ, F ) =
( ∫

w(δθw(F )(x))u(x; θ)dF (x))t
[ ∫

w(δθw(F )(x))dF (x)I(θ)
]−1

×
( ∫

w(δθw(F )(x))u(x; θ)dF (x)
)
; (4.10)

Λw(θ, F ) = −2
∫
w(δθw(F )(x)){l(x; θ) − l(x; θw(F ))}dF (x). (4.11)

Recall that θw(F ) denotes the functional that introduces the weighted likelihood
estimator.

In what follows we define breakdown functions for the three tests. These
definitions are similar to the ones presented in Simpson (1989). For an extensive
discussion of breakdown concepts in hypotheses testing, see He, Simpson and
Portnoy (1990).

Let t(θ, F ) be a generic functional with domain F, the set of all proper
distributions on Rd. Let tmax = supF∈F infθ∈Θ0 t(θ, F ) and tmin = infF∈F

infθ∈Θ0 t(θ, F ), and define the level breakdown function as

ε0(MθT
; t) = inf

{
ε : sup

G∈F
inf

θ∈Θ0

t (θ, (1 − ε)MθT
+ εG) = tmax ; θT ∈ Θ0

}

and the power breakdown function as

ε1(MθT
; t) = inf

{
ε : inf

G∈F
inf

θ∈Θ0

t (θ, (1 − ε)MθT
+ εG) = tmin ; θT ∈ Θ1

}
,
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where G is the contaminating distribution, F is assumed convex, and θT is the
“true” value of the parameter. Heuristically, εs is the smallest fraction of con-
tamination that can drive the p-value to s and is of most interest under the
hypotheses Hs (s = 0, 1). If θT ∈ Θ1 and tmin = 0, then ε1(MθT

; t) is the small-
est fraction of contamination on MθT

that can make the test inconsistent. We
then define the power breakdown point, ε∗1(t) = supθT ∈Θ1

ε1(MθT
, t), and the

level breakdown point ε∗0(t) = supθT ∈Θ0
ε0(MθT

, t).

Theorem 4.3. Assume A1-A7 hold and that the models belong to the exponential
family. Then the level and power breakdown points of Ww, Tw and Λw tests are
the same as the breakdown point ε∗ of the weighted likelihood estimator.

Proof. Clearly Wmin = 0 and Wmax = ∞. Power breakdown occurs if the test
statistic can be driven to Wmin when θτ ∈ Θ1. Because the breakdown point of
θ̂w is ε∗ and if ‖θ − θT‖ is bigger than the maximum bias of θw then ‖θ − θ̂w‖ is
away from 0 if ε < ε∗. Moreover, if ε < ε∗,

∑n
i=1 w

(
δθ̂w

(xi)
)

stays away from 0
and the power breakdown is ε∗.

Level breakdown occurs if the test statistics can be driven to its largest
value Wmax when θT ∈ Θ0. By the triangle inequality we have ‖θ − θT ‖ <∞ ⇔
‖θ − θ̂w(F )‖ <∞ for all ε ≤ ε∗. Hence, since conditions A1 and A4 hold, Wmax

is reached if and only if the test based on the “true” value θT also reached this
value (for every ε ≤ ε∗). This show that the level breakdown point ε0(Ww) is ε∗.

To address the breakdown analysis of the likelihood ratio and the score tests
we first rewrite them in a different form. Using a Taylor expansion of l(x; θ) =
logmθ(x) in a neighborhood of θ̂w, we get

Λw(θ, F )

= −2
∫ [

w(δθw(F )(x))
(
u(x; θw(F ))(θ−θw(F )) +

1
2
∂

∂θ
u(x; θ)

∣∣∣
θ=θ∗

(θ−θw(F ))2
)]

= −
∫ [

w(x; θw(F ), F )
∂

∂θ
u(x; θ)

∣∣∣
θ=θ∗

]
(θ−θw(F ))2,

where θ∗ is between θ and θ̂w. Now from A1 and A4, and the continuity of the
Fisher information with respect to θ, we deduce high level and power breakdown
for models that belong to the exponential family. Similarly, we can prove high
level and power breakdown for the score test.

5. Examples and Simulations

In this section we present a simulation of the performance of the test proce-
dures in terms of their level and power. We also present an example to compare
the new procedures with known procedures.
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Data were generated from the models (1 − ε)N(0, 1) + εN(0, 25) and (1 −
ε)N(0, 1) + εN(8, 1), with ε = 0%, 5%, 10%, 20%, 30%, 40%, 50%. We used
the IMSL subroutine DRNNOR to generate the normal variates. The nominal
model is assumed to be N(µ, σ2). In our simulations we use sample sizes of 20
and 80.

To study the level of the tests we use H0 : µ = 0 vs H1 : µ 	= 0. To study the
power of the tests we use H0 : µ = 0.5 vs H1 : µ 	= 0.5, and we report the times
the null hypothesis is rejected at a fixed level of significance. The variance σ2

is treated as unknown and is estimated from the data. The weighted likelihood
estimator is used; for the case where σ needs to be estimated under H0, we use
(3.8). The nominal levels of significance used were 0.1, 0.05, 0.01.

We now present an alternative to the way Markatou et al. (1998) select the
parameter k that enters in the bandwidth construction. If we have a model Mθ,
we can calculate an asymptotic residual function arising from contamination at
the point y, in proportion ε, by calculating

δ(x) =
(1 − ε)m∗

θ(x) + εk(x, y;h)
m∗

θ(x)
− 1.

In this case, w(δ(y)) becomes the asymptotic weight at the outlier y.
To illustrate, assume the nominal model is N(0, σ2) and let Fε(x) = (1 −

ε)N(0, σ2) + ε∆y(x) be the true model. If we use a normal kernel with variance
kσ2, then the asymptotic Pearson residual at the targeted outlier value y is

δ(y) = ε
(1 + k

k

)1/2
exp

( y2

2σ2(1 + k)

)
− 1. (5.12)

Now if the outlier is expressed on the standard deviation scale, y = cσ where c is
a constant, δ(y) = ε[(1 + k)/k]1/2 exp(c2/2(1 + k)) − 1 independent of σ2. From
this formula, we can determine the downweighting applied to any fraction ε and
outlier value y.

Thus, to calculate the weighted likelihood estimates we used a normal kernel
with variance h2 = kσ2, k = 0.003. This corresponds to a weight of 0.2, which is
obtained by defining an observation as an outlier when it is 3 or more standard
deviations away from the mean, and the contamination is fixed at 20%.

In our simulations, we used weights based on the Hellinger distance RAF.
The number of Monte Carlo replications is 5000 and the maximum standard
error of the Monte Carlo trials is 0.00707. To obtain the initial values needed
to start the algorithm that computes the weighted likelihood estimator, we used
100 bootstrap samples of size 2 to obtain the sample mean and sample variance.
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In the case of symmetric contamination, the weighted likelihood equations
have only one root. In the case of asymmetric contamination, the weighted
likelihood equations have multiple roots. To obtain the estimator for use in our
test statistics we evaluate the disparity at the different roots, and select the root
that minimizes it. To compute the value of the test statistic on each simulated
sample we need approximately 10 seconds of real time.

For comparison we also calculated the Wald-type test of Markatou and He
(1994). This is a test based on a one-step estimator with high breakdown initial
estimate. The one-step estimator used is that of Simpson, Ruppert and Carroll
(1992) with Huber ψ-function (tuning constant 1.345). The initial high break-
down point estimate we use is the LTS (Rousseew (1984)). In the tables and
figures we call this test HBT. Moreover, we report the classical Wald-type test
based on maximum likelihood (W ).

All programs were written in FORTRAN and Splus and all calculations were
carried out on a SUN workstation at the Department of Statistics, Columbia
University.

Here are the results for the symmetric contamination case. When the sample
size is 20, the performance of the Wald-type test based on the weighted likeli-
hood estimator, (Ww), is very similar to the performance of the HBT test. The
likelihood-type test based on the weighted likelihood estimator, (Λw), and the
score test based on the weighted likelihood estimator, (Tw), perform similarly,
with Tw exhibiting the best performance in terms of level for high amounts of
contamination. The Wald test based on the maximum likelihood estimator, W ,
performs very well in terms of level for all contamination percentages, but rapidly
loses power. This result is in accord with the observations made by Tsou and
Royall (1995). When the sample size increases, all three tests perform well in
terms of level, and have improved power over W .

Table 1 presents the results for sample size 80. Notice that the HBT test
performs well in terms of level for up to 15% contamination, and then breaks
down. The poor performance of the HBT is due to the fact that it requires
larger samples than the ones used here to hold its level and to exhibit good
power. Moreover, its power performance improves when the alternative is not
too close to the null hypothesis. The test on W again performs well in terms of
level.

Table 2 presents the results when contamination is asymmetric. The supe-
riority of the weighted likelihood-based tests is clear. Notice that the HBT and
the W test perform similarly. When the sample size is 20, for contamination up
to 30%, the Λw test performs best in terms of level. For higher percentages of
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contamination, the levels of all tests are inflated considerably. This behaviour is
not observed when the sample size is 80.

Table 1. Level and power for the Wald tests based on the WLE, the MLE
and the deviance test. The data come from (1 − ε)N(0, 1) + εN(0, 25) and
the hypothesized model is N(µ, σ2). The sample size is 80.

H0 : µ = 0 vs H1 : µ 	= 0 H0 : µ = 0.5 vs H1 : µ 	= 0.5
Cont. Test 10.0% 5.0% 1.0% 10.0% 5.0% 1.0%
ε = 0% Ww 12.080 6.500 1.860 99.600 99.220 97.360

Λw 11.640 6.120 1.740 99.580 99.220 97.000
Tw 11.340 5.640 1.520 99.580 99.160 96.640
W 10.100 5.120 1.120 99.620 99.300 97.380

HBT 10.000 5.040 1.160 99.460 99.100 96.140
ε = 5% Ww 11.80 6.600 1.860 99.44 98.880 95.860

Λw 11.600 6.160 1.700 99.400 98.840 95.320
Tw 11.160 5.800 1.540 99.360 98.760 94.620
W 9.560 4.920 0.880 91.18 85.520 69.360

HBT 11.20 5.500 1.480 99.16 98.460 93.800
ε = 10% Ww 11.980 6.940 1.800 99.180 98.280 93.440

Λw 11.640 6.580 1.640 99.160 98.100 92.580
Tw 11.260 6.280 1.380 99.140 97.960 91.520
W 10.500 4.600 0.680 78.760 69.440 48.280

HBT 11.700 6.000 1.440 98.740 97.580 90.820
ε = 20% Ww 12.480 6.760 1.820 97.320 94.940 83.960

Λw 12.040 6.340 1.580 97.280 94.660 82.420
Tw 11.660 6.040 1.320 97.220 94.340 80.760
W 10.460 4.980 0.860 60.080 48.520 26.820

HBT 13.340 7.580 2.100 96.220 92.840 81.460
ε = 30% Ww 12.637 6.981 1.953 89.210 83.392 62.239

Λw 11.982 6.201 1.460 89.338 82.937 64.933
Tw 11.582 5.681 1.200 89.018 82.376 62.432
W 10.210 5.074 0.994 52.198 31.102 19.628

HBT 16.280 9.620 2.980 90.260 85.280 71.010
ε = 40% Ww 12.983 7.393 2.399 70.731 60.716 40.130

Λw 12.222 6.732 1.743 70.387 58.928 38.229
Tw 11.821 6.211 1.403 69.746 58.926 35.784
W 10.078 5.189 1.042 40.413 29.092 12.442

HBT 19.120 12.20 4.520 82.280 75.780 58.900
ε = 50% Ww 12.431 7.057 1.858 49.910 38.861 20.538

Λw 11.854 6.348 1.402 48.899 37.405 18.803
Tw 11.434 5.987 1.181 48.258 36.504 17.361
W 10.272 5.226 0.901 34.622 24.569 9.932

HBT 22.940 15.26 6.220 73.420 65.560 48.300
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Table 2. Level and power for the Wald tests based on the WLE, the MLE
and the deviance test. The data come from (1− ε)N(0, 1)+ εN(8, 1) and the
hypothesized model is N(µ, σ2). The sample size is 80.

H0 : µ = 0 vs H1 : µ 	= 0 H0 : µ = 0.5 vs H1 : µ 	= 0.5
Cont. Test 10.0% 5.0% 1.0% 10.0% 5.0% 1.0%
ε = 5% Ww 12.100 6.960 1.860 99.500 98.980 96.320

Λw 11.800 6.620 1.660 99.500 98.920 95.860
Tw 11.420 6.280 1.460 99.480 98.900 95.080
W 62.200 36.460 5.780 0.780 0.100 0.000

HBT 18.620 11.260 3.080 96.100 92.420 78.720
ε = 10% Ww 12.020 6.900 1.780 99.420 98.760 95.140

Λw 11.660 6.560 1.600 99.380 98.720 94.580
Tw 11.340 6.260 1.380 99.380 98.600 93.780
W 99.880 97.860 68.800 5.480 1.080 0.020

HBT 43.700 31.460 12.420 75.680 63.580 38.160
ε = 20% Ww 13.540 8.060 3.100 98.800 97.000 91.280

Λw 13.060 7.694 2.703 98.777 96.824 90.018
Tw 12.705 7.299 2.466 98.659 96.646 88.538
W 100.000 100.000 100.000 100.000 99.980 88.380

HBT 94.780 89.440 68.600 69.000 51.360 19.740
ε = 30% Ww 12.380 6.918 1.650 98.18 96.208 88.046

Λw 10.927 5.642 0.965 97.945 95.701 85.717
Tw 10.424 5.159 0.755 97.840 95.323 83.620
W 100.00 100.00 100.00 100.00 100.00 99.60

HBT 99.980 99.940 99.160 4.860 2.02 0.340
ε = 40% Ww 11.26 6.028 1.542 96.25 92.67 79.211

Λw 11.781 6.195 1.604 95.520 91.925 76.825
Tw 11.338 5.642 0.940 95.299 91.427 73.119
W 100.00 100.00 100.00 100.00 100.00 100.00

HBT 94.78 89.44 68.60 4.88 2.04 0.360
ε = 50% Ww 9.889 5.154 1.163 92.287 86.041 67.409

Λw 8.621 3.448 0.431 90.948 83.190 62.500
Tw 8.190 3.448 0.862 90.517 81.897 57.759
W 100.00 100.00 100.00 100.00 100.00 100.00

HBT 100.00 100.00 100.00 100.00 100.00 100.00

Figures 1, 2 and 3 show the performance of the various tests in terms of level
and power under asymmetric contamination. The data consist of 100 points
generated from (1 − ε)N(0, 1) + εN(6, 0.5). Figure 1 shows the performance, in
terms of level, as ε changes. The null hypothesis is µ = 0. In this case we report
also a Wald-type test of Heritier and Ronchetti (1994) based on the Huber ψ-
function. Since its behaviour is similar to the HBT based on one-step estimator,
we do not report it in the following figure. Observe that, as ε increases, all tests
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but the WLEE-based become significant. When ε = 0.1, notice from Figure
2 that the Ww test becomes significant sooner than the remaining tests as the
null hypothesis changes from µ = 0 to µ = 1.5. This indicates the superior
performance of the WLEE-based test; this performance is also seen in Figure 3
in terms of power.
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Figure 1. Level breakdown analysis of the Ww test based on weighted like-
lihood, HBT based on a one-step estimate (starting point LTS), Wald-type
test based on a Huber M-estimator, and W based on likelihood. Data are
(1 − ε)N(0, 1) + εN(6, 0.5). The sample size is 100.
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Figure 2. Levels of the Ww test based on weighted likelihood, HBT based on
a one-step estimate (starting value LTS) and W based on likelihood. Data
are 0.9N(0, 1) + 0.1N(6, 0.5). The sample size is 100.
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Figure 3. Power of the Ww test based on weighted likelihood, HBT based
on a one-step (starting value LTS) and W based on likelihood. Data are
0.9N(0, 1) + 0.1N(6, 0.5). The sample size is 100.

To illustrate the applicability of the methodology, we use data on times
between successive failures of air conditioning equipment in thirteen Boeing 720
aircrafts. The data set for plane number 7909 is taken from Proschan (1963),
and has also been analyzed by Lawless (1982) and Keating, Glaser and Ketchum
(1990). Lawless, using nonparametric methods, concluded there is a lack of
evidence against the null hypothesis of exponentiality. Keating et al. (1990)
model the data as a gamma distribution with shape parameter 1 and reject
the hypothesis H0 : θ = 1 in favor of H1 : θ > 1. We used our methods to
carry out the same test of exponentiality. To calculate the WLEE we used the
folded normal density as a kernel with variance h2 = σ̂2. The p-value obtained is
approximately 0 and we rejectH0. Keating et al. (1990) reject the null hypothesis
at the 5% level but not at the 1% level. A closer look at the data reveals outliers.
Our Wald test rejects H0 at both 5% and 1% levels.
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