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Abstract: The paper studies large deviations of maximum likelihood and related

estimates in the case of i.i.d. observations with distribution determined by a param-
eter θ taking values in a general metric space. The main theorems provide sufficient

conditions under which an approximate sieve maximum likelihood estimate is an
asymptotically locally optimal estimate of g(θ) in the sense of Bahadur, for virtu-

ally all functions g of interest. These conditions are illustrated by application to

several parametric, nonparametric, and semiparametric examples.
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1. Introduction

Let Y1, Y2, . . . be a sequence of independent and identically distributed ran-
dom elements, with the distribution of each Y determined by a parameter θ
taking values in a metric space Θ. Let g be a function on Θ into a metric
space Γ with metric D, and suppose it is required to estimate g. For each n, let
Tn = Tn(Y1, . . . , Yn) be an estimate, i.e., a measurable function with values in Γ,
and for ε > 0 let

αn(ε, θ) = Pθ (D(Tn, g(θ)) > ε) . (1.1)

Assume that Tn is consistent for g, i.e., αn → 0 as n → ∞ for each ε > 0 and
θ in Θ. The large deviation theory of estimation initiated by Basu (1956) and
Bahadur (1960) evaluates Tn in terms of αn with ε held fixed as n→ ∞. In typical
cases αn → 0 exponentially fast, and in his 1960 paper Bahadur obtained global
and local bounds for the best possible rate by an application of the Neyman-
Pearson Lemma. Present-day versions of these bounds are stated in (1.3)–(1.8)
below. It is also shown in Bahadur (1960), under general conditions, that the
local bound (1.8) is attained by the maximum likelihood estimate (MLE) if g
and θ are real valued; this conclusion is extended to the case when Θ is finite-
dimensional in Bahadur (1967).

Let (Y,B) denote the sample space of a single observation Y ; here Y is a
set of points y, and B is a σ-field. Assume that, for each θ in Θ, the probability
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distribution of Y has a density p(y; θ) with respect to a fixed σ-finite measure
µ, and let �(θ, y) = log p(y; θ). Let Ln(θ) = Ln(θ | Y1, . . . , Yn) denote the scaled
log-likelihood function n−1 ·∑n

i=1 �(θ, Yi) based on the sample (Y1, . . . , Yn). A
standard or exact MLE is a point in Θ maximizing Ln(·) over Θ. Sometimes the
exact MLE does not exist, and existence does not always guarantee that the MLE
is an acceptable estimate. These difficulties are especially frequent in, but not
restricted to, infinite-dimensional cases (see, e.g., Kiefer and Wolfowitz (1956),
Bahadur (1958)). A partial solution of the existence difficulty is approximate ML
estimation, i.e., maximizing Ln to within a preassigned constant of its supremum
over Θ (cf., e.g., Wald (1949)); a proposed solution to both difficulties is sieve ML
estimation, i.e., maximizing Ln over a suitable subset of Θ (Grenander (1980)).
We treat both these generalizations of standard ML estimation simultaneously,
as follows. Choose a sequence a1, a2, . . . of constants an ≥ 0 with limn→∞ an = 0,
and choose a sequence Θ1,Θ2, . . . of subsets of Θ such that Θn approximates Θ
as n→ ∞ (see Section 2 for the precise condition). The sequence {Θn} is called
a sieve. Then θ̂n = θ̂n(Y1, . . . , Yn) is an approximate sieve MLE of θ if

θ̂n ∈ Θn, Ln(θ̂n) ≥ sup
η∈Θn

Ln(η) − an. (1.2)

Given a function g : Θ → Γ, the approximate sieve MLE of g is defined to be
g(θ̂n).

Bahadur, Gupta and Zabell (1980) have obtained an asymptotic lower bound
for large deviation probabilities for any consistent estimate in virtually any es-
timation problem. In the present i.i.d. case this bound becomes the following
version of the global bound in Bahadur (1960). Let K denote the Kullback-
Leibler information in a single observation Y with sample space (Y,B), i.e.,

K(η, θ) = Eη [�(η, Y ) − �(θ, Y )] , 0 ≤ K ≤ ∞. (1.3)

Given a function g : Θ → Γ, and a metric D on Γ, let

b(ε, θ) = inf {K(η, θ) : η ∈ Θ,D(g(η), g(θ)) > ε} (1.4)

and b(ε, θ) = ∞ if the set in (1.4) is empty, 0 ≤ b(ε, θ) ≤ ∞.

Proposition 1. (Bahadur, Gupta and Zabell (1980)) If Tn is a consistent esti-
mate of g, then with αn defined by (1.1) and b(ε, θ) defined by (1.4),

lim inf
n→∞

1
n

logαn(ε, θ) ≥ −b(ε, θ) (1.5)

for all ε > 0 and θ in Θ.
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It is now known that in general the bound (1.5) is not attainable by any es-
timate (Rukhin (1983), Kester (1985)). An important special case of attainment
is when θ is the natural parameter in a finite-dimensional exponential family and
Θ is an open subset of the natural parameter space; here the limit in (1.5) exists
and equality holds for 0 < ε < ε1(θ) for Tn = the exact MLE of g (Kester (1985),
Kester and Kallenberg (1986)). In the general case, with (1.5) not attainable,
one possibility is to consider larger lower bounds for certain classes of estimates.
For example, Sievers (1978) considered equivariant (not necessarily consistent)
estimates for one-dimensional location families and obtained a lower bound dif-
ferent from (1.5); see Sievers (1978), Rubin and Rukhin (1983), Fu (1985), and
Kester and Kallenberg (1986) for discussion and examples of the Sievers bound.
Another possibility is to study the Bahadur bound locally, as in Bahadur (1960),
Fu (1973, 1975, 1982) and Perng (1978). In the following, we consider only the
local bound (1.8) provided by (1.5).

In typical estimation problems, the bound b(ε, θ) in estimating g satisfies

0 < b(ε, θ) ≤ ∞, and b(ε, θ) → 0 as ε→ 0. (1.6)

In many cases, g is real-valued and b(ε, θ) also satisfies

b(ε, θ) = c(θ)εν + o(εν) as ε→ 0, (1.7)

with ν = 2 and c(θ) = v(θ)/2, where v(θ) is the Fisher information for estimating
g. In certain other cases, (1.7) holds with ν �= 2, see Example 5. In the earliest
literature it is often assumed that an expansion such as (1.7) holds and local
bounds are stated and discussed in terms of the c(θ) in (1.5). However, as
pointed out in Bahadur (1980, 1983), except for (1.6), specific properties of g
are not required for defining local optimality, and they are dispensable even for
establishing optimality of substitution estimates such as g(θ̂n).

It follows from (1.5) and (1.6) that, for a consistent Tn,

lim inf
ε→0

lim inf
n→∞

1
nb(ε, θ)

log αn(ε, θ) ≥ −1. (1.8)

Accordingly, we shall say that Tn is asymptotically locally optimal for a specific
g(·) at a particular θ if, with αn defined by (1.1) and b(·, ·) defined by (1.4),

lim sup
ε→0

lim sup
n→∞

1
nb(ε, θ)

log αn(ε, θ) = −1. (1.9)

Local optimality of Tn at θ means, of course, that for small ε > 0, αn → 0
at nearly the optimal exponential rate exp(−nb(ε, θ)); i.e., Pθ(D(Tn, g(θ)) ≥
ε) = exp(−nb(ε, θ)[1 + δn(ε, θ)]), where limε→0 lim supn→∞ |δn(ε, θ)| = 0. This
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definition, which seems adequate, agrees with definitions in some of the literature,
e.g., Bahadur (1960, 1983), Kester (1985), Kester and Kallenberg (1986); other
works, e.g., Bahadur (1971) and Fu (1973), require in addition that Tn have an
exact local rate, i.e., δn(ε, θ) → 0 for each sufficiently small ε.

Now let Un = Un(Y1, . . . , Yn) be an estimate of θ itself (e.g., Un = θ̂n) and
consider the substitution estimate g(Un). It is clear from (1.4) that D(g(Un), g(θ))
> ε implies K(Un, θ) ≥ b(ε, θ); hence, for Tn ≡ g(Un),

αn(ε, θ) ≤ Pθ(K(Un, θ) ≥ b(ε, θ)). (1.10)

According to (1.6), b(ε, θ) decreases to 0 through positive values as ε decreases
to 0. Hence, by (1.10):

Proposition 2. (Bahadur (1980, 1983)). If

lim sup
t→0+

lim sup
n→∞

1
nt

log Pθ (K(Un, θ) ≥ t) ≤ −1 (1.11)

then (1.9) holds for Tn ≡ g(Un).

The condition (1.11) does not depend on g : Θ → Γ or D, so provides a
method of establishing that, for virtually all functions g of interest, g(Un) is an
asymptotically locally optimal estimate of g when (1.6) is assumed. We shall
therefore say that

Un generates locally optimal estimates in the sense of Bahadur if (1.11) holds

for each θ ∈ Θ. (1.12)

In general this requires that Un itself be locally optimal, or at least that Un

be consistent in the large deviations (LD) sense. An estimate Un of θ is LD-
consistent if, for each θ ∈ Θ and ε > 0, Pθ(d(Un, θ) > ε) → 0 exponentially fast
as n → ∞ for a metric d on Θ. In verifying (1.11) for Un = θ̂n it is convenient
and advantageous to consider LD-consistency first, and then (1.11). Such two-
stage verifications are familiar in the classical theory of ML estimation (cf. Wald
(1949) and Cramér (1946)) and have been used previously in the large deviations
context in the finite-dimensional case.

The main contributions of the present paper (Theorems 2 and 4) provide suf-
ficient conditions in the general possibly infinite-dimensional case for asymptotic
optimality of the exact and approximate MLEs in the sense of the local bound
(1.9) and (1.12). Neither this bound nor the conditions of Theorems 2 and 4
involve the actual values of the metric entropy, and there is no trade-off between
bias and variance. This is in contrast with the classical theory, where ε = εn → 0
at some rate depending on the size of the sieve used, in infinite-dimensional cases
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(Shen and Wong (1994)). The sufficient conditions of Theorems 2 and 4 do
not, however, supersede the sufficient conditions of Bahadur (1960, 1967) and a
statement of these conditions is also included here (Theorems 1 and 3).

Section 2 describes sufficient conditions (Theorems 1 and 2) for LD-con-
sistency of θ̂n, and Section 3 describes additional conditions (Theorems 3 and 4)
for local optimality. Illustrative examples in Section 4 include a one-dimensional
location model, a conditionally exponential family (semiparametric model), a
nonparametric regression model, and estimating functionals of an infinite-dim-
ensional density. Proofs are in Section 5.

2. Consistency in the Large Deviation Sense

Let d be a metric in Θ. Suppose that

bd(ε, θ) = inf {K(η, θ) : η ∈ Θ, d(η, θ) > ε} > 0 for ε > 0. (2.1)

Since K(η, θ) = 0 if and only if Pη ≡ Pθ, (2.1) is a global identifiability condition.
It is plain that (1.11) and (2.1) imply the LD-consistency of Un. The infimum in
(2.1) is b(ε, θ) for the special case Γ = Θ, g(θ) = θ, and D = d. Additionally, if
bd(ε, θ) satisfies the second part of (1.6), (1.11) implies that Un is locally optimal
at θ. The second part of (1.6) for bd(ε, θ) is equivalent to the following: for a
sequence {ηj} in Θ,

lim
j→∞K(ηj , θ) = 0 implies ηj → θ. (2.2)

The condition (2.2) relates the topology on Θ to the L1-topology on the set
{p(y; θ) : θ ∈ Θ} of densities relative to µ; cf. Kullback (1967) and Csiszár
(1975). In the following, (2.1) and (2.2) are used as needed.

LD-consistency (which is stronger than consistency, and different from
√
n

-consistency) can be used to extend important variants of global ML estimation
in the classical theory, such as the scoring method of Fisher (see, e.g., Lehmann
(1983, p.422)), to the large deviation theory. Suppose that Un is an LD-consistent
but not necessarily efficient estimate of θ; this is generally the case if, for exam-
ple, Un is obtained by the method of moments, or by some minimum-distance
method with the empirical distribution of (Y1, . . . , Yn) as the initial estimate of
the distribution of Y . Suppose that Θ is finite-dimensional, let L

′
n(θ) denote

the gradient of Ln(θ) and consider the likelihood equation L
′
n(θ) = 0. If the

equation has any roots, let Vn be a root which is closest to Un, and let Vn = Un

if there is no root. If the local assumptions of Section 3 are satisfied, Vn also is
LD-consistent and Vn generates locally optimal estimates in the sense of (1.12).
Related constructions of Vn may be given in the infinite-dimensional case.



484 XIAOTONG SHEN

The first general proof of the consistency of the MLE is due to Wald (1949).
Lemma 5.2 in Bahadur (1960) is an LD version of Wald’s theorem; Theorem 1 in
Rubin and Rukhin (1983) is another LD-consistency theorem. Theorem 1 below
is a general statement of Bahadur’s result in terms of suitable compactification
and Theorem 2 is a new LD-consistency result which uses metric entropy instead.
See Bahadur (1971) for more discussions on the choice of the distance and suitable
compactification.

2.1. Suitable compactification

A compact metric space Θ̄ with metric d is a suitable compactification of
Θ in the sense of Bahadur (1967) if the following conditions are satisfied: (1)
Θ is a dense subset of Θ̄, (2) q(η, y, ε) = sup{p(y; θ) : θ ∈ Θ, d(η, θ) < ε} is
measurable for η ∈ Θ̄ and all sufficiently small ε > 0, and (3)

∫
q(η, y, 0)dµ ≤ 1

for each η ∈ Θ̄, where q(η, y, 0) = limε→0 q(η, y, ε).

Condition A1) There exists a suitable compactification Θ̄ of Θ.

Condition A2) For each θ ∈ Θ, there exists u = u(θ) > 0 such that Eθ[supη∈Θ

p(Y ; η)/p(Y ; θ)]u < +∞.

Condition A3) If η ∈ Θ̄, θ ∈ Θ and η �= θ, then µ{y : q(η, y, 0) �= p(y; θ)} > 0.

Theorem 1. If A1)-A3) hold, then there exist c = c(θ, ε) > 0, r = r(θ, ε), and
0 < r < 1 such that with the MLE θ̂n defined in (1.2) with Θn = Θ,

Pθ(d(θ̂n, θ) ≥ ε) ≤ Pθ( sup
{η∈Θ:d(η,θ)≥ε}

[Ln(η) − Ln(θ)] ≥ −c) ≤ rn (2.3)

for each θ ∈ Θ, ε > 0 and, all sufficiently large n.

The conclusion of the theorem implies that if θ̂n is an exact or approximate MLE
of θ in the sense of (1.2) with Θn = Θ, then θ̂n is LD-consistent under d(·, ·). If
Θ is compact to begin with, Pθ1 �= Pθ2 for θ1 �= θ2, and p(y; ·) is continuous for
each fixed y, then A1) and A3) are satisfied (with Θ̄ = Θ) and only A2) requires
verification.

2.2. Metric entropy

Let P be a probability measure on B and let F be a subset of L2 =
L2(Y,B, P ), the space of measurable functions f such that ‖f‖2

2 =
∫
f2dP <

∞. For given ε > 0, if S(ε, k) = {fL
1 , f

U
1 , . . . , f

L
k , f

U
k } ⊂ L2 is such that

maxj≤k ‖fU
j − fL

j ‖2 ≤ ε and for any f ∈ F , there exists a j with fL
j ≤ f ≤ fU

j

a.e., then S(ε, k) is called a bracketing ε-covering of F with respect to ‖·‖2. Sup-
pose such sets S(ε, k) exist, and let N(ε,F) = min{k : S(ε, k)} be the minimum
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size of bracketing ε-coverings of F . Then H[ ](ε,F , P ) = logN[ ](ε,F) is called
the L2 metric entropy of F with bracketing.

In the following, we require upper bounds for H[ ](ε,F , P ). Kolmogorov and
Tihomirov (1959) and Birman and Solomjak (1967) give upper bounds for the
metric entropy defined there. In examples we use these results for verification of
the conditions in Theorems 2 and 4 of this paper.

Let {Θn} be a sieve. For each n, let πn be a map from Θn → Θ. For given
θ ∈ Θ, πnθ is to be thought of as the sieve approximation to θ. If Θn = Θ, we
define πnθ ≡ θ. Condition B4) below is that πn(θ) → θ in a strong sense as
n→ ∞.

In the following conditions B1)-B4) and D1)-D4), θ is a given point in Θ
and θε is a point in {η ∈ Θ : d(η, θ) ≤ ε}. Typically, θε can be chosen as θ or
(1− ε)θ + εη when (1− ε)θ + εη ∈ Θ for some small 0 < ε < 1. The later choice
allows us to handle the lower tail of the likelihood ratio statistic.

Condition B1) For some small ε>0, inf{η∈Θn:d(η,θ)≥ε}Eθ[�(θε, Y )− �(η, Y )] > 0.

Condition B2) There exists a random variable Z = Z(θ) such that sup{|�(η, Y )
−�(θε, Y )| : η ∈ Θn} ≤ Z and Eθ exp(t0Z) <∞, where t0 = t0(θ) > 0.

Condition B3) For each sufficiently small u > 0, H[ ](u,F (0)
n (θ),Pθ) = o(n),

where F (0)
n (θ) = {�(η, y) − �(θε, y) : η ∈ Θn}.

Condition B4) For some α > 0, the approximation error ρα(θε, πnθε) = Eθgα

(p(Y ; θε)/p(Y ;πnθε)) → 0 as n→ 0, where gα(x) = [xα − 1] for x ≥ 0.

Theorem 2. If B1)-B4) hold, then for each θ ∈ Θ and ε > 0 there exist
c = c(θ, ε) > 0 and ρ = ρ(θ) (0 < ρ < 1) such that, with θ̂n being the approximate
sieve MLE defined by (1.2),

Pθ(d(θ̂n, θ) ≥ ε) ≤ Pθ( sup
{η∈Θn:d(η,θ)≥ε}

[Ln(η) − Ln(πnθε)] ≥ −c) ≤ ρn (2.4)

for all sufficiently large n.

Thus B1)–B4) imply LD-consistency of θ̂n for each θ ∈ Θ. Condition
B1), like (2.1), can generally be taken for granted, since in many situations
Eθ [�(θε, Y ) − �(η, Y )] can be bounded below by K(θ, η); see Wang (1985).

Conditions A1)-A3) and Conditions B1)-B4) are conditions, based respec-
tively, on the suitable compactification and metric entropy. The former is more
suitable for parametric models, whereas the latter is mainly for nonparametric
and semiparametric models. These conditions use only likelihood ratios rather
than the derivatives of likelihood functions. Conditions A1) and B3) concern
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compactness of the parameter space. The integrability condition B2) is essen-
tially the same as A2). Conditions A3) and B1) are related to model identifia-
bility. Conditions B3) and B4) control the size of Θn as n→ ∞. B4) is satisfied
automatically for exact ML estimates, i.e., if Θn = Θ for each n.

3. Local Conditions: Asymptotic Local Optimality

We begin with the local conditions in Bahadur (1960, 1967) for the finite-
dimensional case. As in Section 1, �(θ, y) = log p(y; θ).

Condition C1) The parameter space Θ is an open set in Rk. For each y,
the derivatives �i(θ, y) = d

dθi
�(θ, y) and �ij(θ, y) = d2

dθidθj
�(θ, y) exist, and are

continuous in θ. Furthermore, Eθ�i(θ, Y ) = 0, Eθ�i(θ, Y )�j(θ, Y ) = −Eθ�ij(θ) =
Iij(θ) (i, j = 1, . . . , k), and the matrix {Iij(θ)} is positive definite.

Condition C2) There exist u = u(θ) > 0 and t = t(θ) > 0 such that
Eθ exp(t|�i(θ, Y )|) < +∞, Eθ exp(tmij(θ, Y, u)) < +∞, i, j = 1, . . . , k, where
mij(θ, y, u) = sup{|�ij(η)| : d(η, θ) < u}.
Theorem 3. If the approximate MLE θ̂n is LD-consistent, and C1)-C2) hold,
then θ̂n generates asymptotically locally optimal estimates in the sense of (1.12).

If Θ is not finite-dimensional, or � has only one derivative, the following
conditions D1)-D4) may be applicable instead of C1)-C2) above.

Suppose now that, for any η ∈ {η ∈ Θn : K(η, θ) ≤ ε0}, θ̃(t) = πnθ +
t(η − πnθ) ∈ Θn and K(θ̃(t), θ) is continuous in t ∈ [0, 1]. Let η be an interior
point of Θn in the sense that for any direction ξ = η2 − η1 of Θn, η + hξ ∈ Θn

for |h| ≤ ε∗ and large enough n, where η1, η2 ∈ {η ∈ Θn : K(η, θ) ≤ ε0} and
ε∗ > 0 is a small constant. Assume that the function �(η+ hξ, y) is continuously
differentiable for |h| ≤ ε∗ and define �

′
[η; ξ; y] as d

dh�(η + hξ, y) at h = 0. Let
Θ0

n ⊂ {η ∈ Θn : K(η, θ) ≤ ε0} be a collection of all interior η points of Θn.
In the following conditions D1)-D4), ε takes all positive values less than

ε
′ ≤ ε0, where ε0 = ε0(θ) is some small fixed constant.

Condition D1) inf{η∈Θ0
n:ε≤K(η,θ)}−Eθ(�

′
[η; η − πnθ;Y ]) ≥ 2ε(1 − h1(ε

′
)) −

bn(ε
′
, θ), where bn(ε

′
, θ) → 0 as n → ∞ for fixed ε

′
> 0, and h1(ε

′
) → 0 as

ε
′ → 0.

Condition D2) sup{η∈Θ0
n:K(η,θ)≤ε}Eθ(�

′
[η; η − πnθ;Y ])2 ≤ 2ε(1 + h2(ε

′
)) +

cn(ε
′
, θ), where cn(ε

′
, θ) → 0 as n → ∞ for fixed ε

′
> 0, and h2(ε

′
) → 0 as

ε
′ → 0.

Condition D3) There exist random variables X and W (independent of η)
such that for any η ∈ {η ∈ Θ0

n : K(η, θ) ≤ ε}, |�′ [η; η − πnθ;Y ]| ≤ |∆η(X)|W,
where X and W are independent and Eθ exp(t0W ) < ∞ for some t0 = t0(θ) >



ON BAHADUR EFFICIENCY AND MAXIMUM LIKELIHOOD ESTIMATION 487

0. Furthermore, sup{η∈Θ0
n:K(η,θ)≤ε} ‖∆η‖sup ≤ h3 ε

β/2 and sup{η∈Θ0
n:K(η,θ)≤ε}

E∆2
η(X) ≤ h4ε for some constants h3 > 0, h4 > 0 and β > 0, where ‖∆η‖sup =

supx∈X |∆η(x)| and X is the support of X.

Condition D4) For each sufficiently small u > 0, H[ ](u,F (1)
n (θ),Pθ) = o(n),

where F (1)
n (θ) = {η ∈ Θ0

n : K(η, θ) ≤ ε0}.
Theorem 4. If the approximate sieve MLE θ̂n defined in (1.2) is LD-consistent
with K(πnθ, θ) → 0 as n → ∞, and (2.2) and conditions D1)-D4) hold, then θ̂n

generates asymptotically locally optimal estimates in the sense of (1.12).

Remarks
1. Conditions D1) and D2) are local smoothness properties of the underly-

ing model in terms of the Kullback-Leibler information number. In one-
dimensional maximum likelihood estimation with πnθ = θ and Θ an open
subset of R1, �

′
[η; η − πnθ;Y ] reduces to �

′
η · (η − θ) with �

′
η = limt→0[�(η +

t) − �(η)]/t being the usual derivative at η in R1. In this situation, a Taylor
expansion yields that K(η, θ) ∼ 1

2 (η−θ)2v(θ), −Eθ�
′
[η; η−θ;Y ] ∼ (η−θ)2v(θ)

(Lemma 1, Fu (1973)), and Eθ(�
′
[η; η − θ;Y ])2 ∼ (η − θ)2v(θ), where v(θ) is

the Fisher information for θ. This leads to D1) and D2).
Condition D3) is an integrability condition. In one-dimensional maximum

likelihood estimation with πnθ = θ, |�′ [η; η − πnθ;Y ]| ≤ |�′η||η − θ|, which
implies D3) for any u1 > 0 and h3(ε) = (2v−1(θ)ε)1/2 when Eθ exp(t0|�′η|) <
∞, since K(η, θ) ∼ 1

2(η−θ)2v(θ). Condition D4) is a mild restriction in terms
of metric entropy on the rate at which the sieve Θn increases with sample
size n, and is usually satisfied when the sieve does not grow too fast in n.

2. The results for the sieve estimate are not expected to hold if W specified in
D1)-D4) involves the sample size n.

3. In the case of non-sieve ML estimation, D4) becomes the condition that the
metric entropy of F (1)

n (θ) = F (1)(θ) is finite for small u > 0. In the finite-
dimensional case, H[ ](u,F (1)(θ),Pθ) is upper-bounded by c5 log( 1

u) for each
small u and some c5 > 0, and hence D4) is satisfied.

4. The sieve Θn may consist of boundary points. However, �
′
[η; η − πnθ;Y ] is

only defined for η ∈ Θ0
n. Suppose that {Θn} is a sieve which does not satisfy

the condition that each Θn is a subset of the given Θ. It is easily seen that
definitions, conditions and conclusions stated in Sections 1–3 extend to this
case, provided, of course, that �(θ, Y ) is defined not only for θ ∈ Θ but also
for θ ∈ ⋃n Θn.

4. Examples

Example 1. Location model. Let f(y) be a probability density on R1 and sup-
pose Y1, . . . , Yn are independent and identically distributed according to p(y; θ) =
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f(y − θ), where θ ∈ Θ = (−∞,∞) and Θ is non-compact. Assume that f(y)
is continuous and positive with limy→±∞ f(y) = 0. Then A1) and A3) hold
with Θ̄ = [−∞,∞], and the exact MLE θ̂n exists for each n. Assume also that∫∞
−∞ fα(y)dy <∞ for some 0 < α < 1; then A2) holds and θ̂n is LD-consistent by

Theorem 1. If f(y) has at least two continuous derivatives, and �
′
(y) and �

′′
(y)

are bounded, (2.1)–(2.2) and C1)-C2) are satisfied. Hence Theorem 3 implies
that θ̂n is locally optimal at each θ in the sense of (1.9).

Example 2. Density estimation. Let θ(y) be a probability density on the
interval [0, 1] in R1, with Θ = {θ : θ ∈ C1[0, 1], 1

2 ≤ θ(y) ≤ 2}. This exam-
ple is a version of Example 1 in Bahadur (1958); standard MLEs exist but are
not necessarily consistent even in the weak topology. We consider sieve ML
estimation. Let d be the usual L2-metric, i.e., d(θ1, θ2) =

∫ 1
0 (θ1 − θ2)2dy, let

cn be a sequence satisfying limn→+∞ cn = +∞, limn→+∞ cn/n = 0, and let
Θn = {θ ∈ Θ : supθ∈Θn

|θ′
(x)| ≤ cn}. For each n, let πnθ be a point in

Θn such that πnθ = θ for all sufficiently large n. It is easy to see that (2.1),
(2.2), B1), B2) and B4) are satisfied. From Kolmogorov and Tihomirov (1959),
H[ ](u,F (0)

n (θ),Pθ) ≤ k · (cn/u) = o(n). Hence, B3) holds. Finally, D1)-D4)
can be verified. Then, by Theorem 4, the approximate sieve MLE θ̂n is locally
optimal at each θ in the sense of (1.9).

Example 3. Nonparametric regression. Let

Yi = θ(Xi) + εi, i = 1, . . . , n,

where Xi and εi are independent and εi ∼ N(0, σ2). The parameter of interest
is the unknown regression function θ ∈ Θ. For simplicity, we assume that σ2

is known and the design density of X is uniform. Suppose Θ = {θ ∈ Cp[0, 1] :
‖θ(j)‖sup ≤ Lj, j = 0, . . . , p, sup{x1,x2} |θ(p)(x1) − θ(p)(x2)|/|x1 − x2|m ≤ Lp+1},
where Lj > 0, j = 0, . . . , p+ 1, are known constants, p+m > 0, and 0 ≤ m ≤ 1.

The log-likelihood function �(θ, y) is − 1
2σ2 (y − θ(x))2, and �

′
[η; η − θ; y] =

1
σ2 (y − η(x))(η − θ)(x). Since Eθ(�(θ, Y ) − �(η, Y )) = E(θ(X)−η(X))2

2σ2 , (2.1)–(2.2)
and B1)–B4) can be verified easily with πnθ = θ. For D1) and D2), note that

−Eθ(�
′
[η; η − θ;Y ]) = 2K(η, θ),

Eθ(�
′
[η; η − θ;Y ])2 = E[−(Y − η)(η − θ)]2 + Eθ(η − θ)4 − (E(η − θ)2)2

= 2K(η, θ) + E(η − θ)4.

By Theorems 4.17 and 5.4 of Adams (1975), we have ‖η−θ‖sup ≤ c1[E(η−θ)2]r/2

for some constants r > 0 and c1 > 0, so D1) and D2) hold. For D3), let
W = 1

σ2 (ε1 + 2L0) and ∆η(X) = (η − θ)(X). Clearly, the moment generating
function of W exists. Furthermore, E∆2

η(X) = 2k(η, θ). Hence, D3) is satisfied
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with β = r. D4) follows from H[ ](u,F (1)
n (θ),Pθ) ≤ cu−1/(p+m) for all small u > 0

(Kolmogorov and Tihomirov (1959)). Applying Theorem 4, we conclude that the
approximate MLE θ̂n defined in (1.2) generates asymptotically locally optimal
estimates in the sense of (1.12).

Example 4. Conditionally exponential family model (semiparametric model).
In semiparametric models, the parameter of interest takes values in a finite-
dimensional Euclidean space and the nuisance parameter takes values in an
infinite-dimensional space. More precisely, θ = (τ, λ) and Θ = A × Λ, where
A is an open subset of Rk and Λ is an infinite-dimensional set. For simplicity,
we assume that the dimension of A equals 1 in the following discussion.

Suppose that for each τ , there exists a real valued function Ψτ (Y ) such
that the conditional distribution of Y given X for τ ∈ A and λ ∈ Λ forms
a two-parameter family. Without loss of generality, we take λ to be the nat-
ural parameter. The conditional density of Y given X = x is of the form:
p(y; τ, λ|x) = exp(Ψτ (y)λ(x) − A(λ(x)) + Sτ (y)). We assume that A is a com-
pact set of R and Λ = {h ∈ Cp[0, 1] : ‖h(j)‖sup ≤ Lj, j = 0, . . . , p}, where Lj,
j = 0, . . . , p are fixed constants.

Let (Y1,X1), . . . , (Yn,Xn) be independent and identically distributed accord-
ing to the above model. We estimate g(θ) = τ . Let η = (τ1, λ1). Assume the
following:

(1) A(λ) is twice-continuously differentiable. Ψτ (y) and Sτ (y) are twice differen-
tiable with respect to η and τ for almost all y. Furthermore, the model is
identifiable.

(2) There exist random variables Zi(τ), i = 1, 2, 3, such that

|Ψ′
τ1(Y )|≤|τ−τ1|Z1(τ), |Sτ1(Y )|≤|τ−τ1|Z2(τ), and |Ψτ1(Y ))|≤|τ−τ1|Z3(τ),

for τ and τ1 ∈ A, and Eθ exp(tZi(τ)) is finite for |t| ≤ c, where c is a positive
constant.

(3) For almost all X, EθΨ
′′
τ1(Y )|X and EθSτ1(Y )|X are continuous with respect

to τ − τ1, and

|EθΨ
′
τ1(Y )|X − EθΨ

′
τ (Y )|X| ≤ c1|τ − τ1|EθΨ

′
τ (Y )|X

|EθSτ1(Y )|X − EθSτ (Y )|X| ≤ c1|τ − τ1|EθSτ (Y )|X

for some constant c1 > 0.

Here (2.1)–(2.2) and B1)–B4) can be verified by arguments similar to the
ones in Example 3 with πnθ = θ. Let Σθ = (Aij(θ, x))2×2, where A11(θ,X) =
−Eθ(Ψ

′′
τ (Y )λ + S

′′
τ (Y ))|X, A12(θ,X) = A21(θ,X) = −EθΨ

′
τ (Y )|X, A22(θ,X) =
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−A′′
(λ). Let ‖h‖θ = Eθ(τ − τ1, λ− λ1)Σθ(τ − τ1, λ− λ1)T . When X is fixed, the

underlying density follows a two-parameter distribution. Hence, we have

�
′
[η; η − θ;Y ] = [Ψ

′
τ1(Y )η1 + S

′
τ1(Y )](τ − τ1) + [Ψτ1(Y ) −A

′
(η1)](η − η1).

By (1)–(2) and a Taylor expansion, we have −Eθ�
′
[η; η − θ;Y ] = 2K(η, θ) +

o(K(η, θ)), Eθ(�
′
[η; η − θ;Y ])2 = 2K(η, θ) + o(K(η, θ)). Consequently, D1)-D2)

follow. Condition D3) can be verified using an argument similar to the one in
Example 3. By Kolmogorov and Tihomirov (1959), we have H[ ](F (1)

n (θ), u,Pθ) ≤
O(u−1/p), so D4) holds. We now calculate b(ε, θ) = inf{|τ−τ1|≥ε}K(η, θ) = iτ ε2

2 ,
where iτ = infλ�=λ1 ‖(1, λ − λ1)‖. Here iτ is the minimal Fisher information for
estimating the parametric component g(θ) = τ . The above notation agrees with
the usual definition of the minimal Fisher information as the squared length of
the residual of the τ -score after L2 projection into the space of the nuisance
parameter score.

By Theorem 4, θ̂n generates locally optimal estimates in the sense of (1.12).
In particular τ̂n ≡ g(θ̂n) is locally optimal for τ . In fact, the expansion (1.7)
holds with c(θ) = iτ/2.

For the model under consideration, the profile likelihood procedure can be
employed to carry out the maximization for τ and η simultaneously. Furthermore,
this can be reduced to the case of nonparametric regression. For more details,
see Severini and Wong (1992).

We examine some special cases.
(a) p(y; τ, λ) = λ√

2π
exp(−λ

2 (y − τ)2).

In this case, Ψτ (Y ) = − (Y −τ)2

2 , Sτ (Y ) = −1
2 log 2π and A(λ) = log λ. It

is easy to see that (1)-(3) hold. Furthermore, A11 = λ, A12 = A21 = 0, and
A22 = 1/λ2. Thus ‖h1‖θ = (τ2

1 Eθλ+Eθ(λ2
1/λ

2)), where h = (τ1, η1) ∈ Θ−{θ}.
Finally, iτ = infh �=0(Eθλ+ Eθh

2/λ2) = Eθλ.
(b) p(y, z; τ, λ) = 1√

2π
exp(−1

2 (y − τz − λ(x))2)f(X,Z)(x, z), where f(X,Z) is the
density of (X,Z) and is independent of (τ, η). Assume f(X,Z) is supported on
a compact set.
In this case, Ψτ (Y,Z) = Y −τZ, Sτ (Y,Z) = −1

2(Y −τZ)2+log
√

2πfZ(z) and
A(λ) = −1

2λ
2. Again, (1)-(4) hold. Furthermore, A11 = Z, A12 = A21 = EθZ|X,

and A22 = 1. Thus, ‖h1‖θ = (τ2
1 EθZ

2 +2τ1EθZλ1 +Eθλ
2
1), where h1 = (τ1, λ1) ∈

Θ − {θ}. Finally, iτ = infλ�=0 Eθ(Z + λ(X))2 = E(Z − EZ|X)2.

Example 5. Estimating functionals of a density. Let Θ = {θ : θ is a Lebesgue
density on [0, 1]}. Functionals g of interest are specified later.
Equicontinuous family. Suppose for all θ ∈ Θ, 0 < M1 ≤ θ(x) ≤ M2 and
|θ(x) − θ(y)| ≤ M3|x − y|γ for some positive constants Mi (i = 1, 2, 3) and γ.
Such a family of functions θ is called a Hölder γ family.
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Here �(θ, y) = log θ(y), �
′
[η; η−θ; y] = (η−θ)/η, and (2.1)–(2.2), B1)–B4) are

satisfied with πn(θ) = θ. By Theorem 2 the approximate MLE is LD-consistent.
We proceed to verify D1)-D4). By Lemma 7 of Shen and Wong (1994), for a

Hölder γ function, ‖h‖sup ≤ c1‖h‖
2γ

2γ+1 for some constant c1 > 0. Furthermore,
by a Taylor expansion, we have −Eθ(�

′
[η; η− θ;Y ]) = 2K(η, θ) + o(K(η, θ)), and

Eθ(�
′
[η; η−θ;Y ])2 = 2K(η, θ)+o(K(η, θ)), so D1) and D2) hold. D3) follows from

an argument similar to the one in Example 3 and Lemma 7 of Shen and Wong
(1994). Finally, D4) follows from H[ ](u,F (1)

n (θ),Pθ) ≤ cu−1/γ (Kolmogorov and
Tihomirov (1959)) and πnθ = θ.

(a) Information entropy. Let g(θ) =
∫
θ log θ. By Theorem 4 with πnθ =

θ, the approximate MLE
∫
θ̂n log θ̂n is asymptotically locally efficient. It fol-

lows by a Taylor expansion and Lemma 7 of Shen and Wong (1994) that, for
b(ε, θ) for this g, (1.7) holds with ν = 2 and c(θ) = 1/2‖g′

θ‖2, where ‖g′
θ‖2 =

sup{η∈Θ:η−θ �=0} |g′
θ[η − θ]|2/‖η − θ‖2 = Var(log θ), g

′
θ =

∫
(η − θ) log θ, and ‖η −

θ‖2 =
∫
(η − θ)2/θ is the Fisher norm. Here the fact that

∫
(η − θ) = 0 has been

used.
(b) The density at a given point. Take g(θ) = θ(1/2). By Theorem 4, we

conclude that the approximate MLE θ̂n(1/2) is locally efficient. For a Lipschitz γ
family, it can be shown that sup{η∈Θ:η−θ �=0} |g(η)−g(θ)|(2γ+1)/γ/‖η1/2 −θ1/2‖2

2 =
A(θ), where A(θ) is a positive constant depending only on θ(1/2). With this g,
(1.7) holds for b(ε, θ), with ν = (2γ + 1)/γ and c(θ) = 1/2A(θ).

5. Proofs

We begin with two lemmas concerning large deviations of a family of sample
means. Let F be a class of measurable real-valued functions f on the space Y of
points y. Let νn(f) = n−1∑n

i=1[f(Yi) − Ef(Yi)].

Lemma 1. Let Y1, . . . , Yn be independent and identically distributed random
variables. Suppose |f(Y1)| ≤W and E exp(AW ) is finite. Let σ2(f)=Var (f(Y1))
≤ α. Let λ = α+A·E(W+EW )3 exp(A(W+EW )). Then, for any f and M > 0
satisfying M

λ ≤ A, P (νn(f) ≥M) ≤ exp (−ψ(M,λ)), where ψ(M,λ) = nM2

2λ .

Proof. Without loss of generality, we assume that A is small and Ef(Y1) = 0.
Consider the quadratic Taylor expansion of exp(tf(Y1)) with respect to t around
0 and let rt3/6 be the remainder term in the expansion, i.e., for 0 ≤ t ≤ A,
exp(tf(Y1)) = 1 + f(Y1)t + f2(Y1)t2/2 + rt3/6. Then r = f3(Y1) exp(ξf(Y1))
(0 ≤ ξ ≤ t < A) . Since f3(Y1) exp(tf(Y1)) is increasing in t, it follows that
Er ≤ Ef3(Y1) exp(Af(Y1)). Hence we have

E exp(tf(Y1)) = 1+σ2(f)t2/2+Ert3/6 ≤ 1+αt2/2+Ef3(Y1) exp(Af(Y1))t3/6
≤ 1 + λt2/2.
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By Markov’s inequality,

P (νn(f) ≥M) ≤ inf
{0≤t≤A}

exp(−nMt)
n∏

i=1

E exp(tf(Yi))

≤ inf
{0≤t≤A}

exp(−nMt+ nλt2/2)

= inf
{0≤t≤A}

exp

(
nλ

2

[
t− M

λ

]2
− nM2

2λ

)
.

Choosing t = M
λ ≤ A completes the proof.

The inequality for the event {νn(f) ≤ −M}, and the generalization to the
non-i.i.d. case, can be obtained in a similar manner.

In the setting of Lemma 1, define t0 = t0(δ) = inf{t : H[ ](t,F ,P) ≤
δ
2ψ(M,λ)}, and s = s(δ) = min(δα1/2, δM/4) for small 0 < δ < 1/4.

Lemma 2. Let Y1, . . . , Yn be independent and identically distributed. Assume
that E exp(AW ) < ∞ for some A > 0, where W = supF |f(Y1)|. If t0 ≤ s and
0 < M/λ ≤ A, then

P∗
(

sup
F
νn(f) ≥M

)
≤ exp(−(1 − 4δ)ψ(M,λ)), (5.1)

where P∗ denotes outer probability measure.

Proof. For given F with finite bracketing L2-entropy, take δ0 = t0. Then
there exists F0 with |F0| = N[ ](δ0,F) such that for each f ∈ F , there exist
fL
0 (f), fU

0 (f) ∈ F0 such that fL
0 (f) ≤ f ≤ fU

0 (f) a.e, with ‖fU
0 (f) − fL

0 (f)‖2 ≤
δ0. Without loss of generality, we assume that |fU

0 (f)| ≤ W . With P1 =
|F0| supF P(νn(fU

0 (f))>(1− δ/2)M), and P2 =P∗(supF νn(f − fU
0 (f))>δM/2),

we have P∗ (supF νn(f) > M) ≤ P1 + P2.
To bound P1, we note that δ0 = t0 ≤ s = min(δα1/2, δM/4). Hence for any

f ∈ F ,

Var (fU
0 (f)) = Var (fU

0 (f) − f + f)2 ≤ (δ20 + 2δ0α1/2 + α) ≤ (1 + δ)2α.

Since 0 < M/λ ≤ A, 0 < (1 − δ/2)M/(1 + δ)2λ ≤ A. By Lemma 1,

P1 = |F0| sup
F

P(νn(fU
0 (f)) > (1 − δ/2)M)

≤ exp(H[ ](t
0,F)) exp

(
−ψ((1 − δ

2
)M, (1 + δ)2λ)

)

≤ exp

(
δ

2
ψ(M,λ) − (1 − δ/2)2

(1 + δ)2
ψ(M,λ)

)

≤ exp(−(1 − 4δ)ψ(M,λ)).
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We observe next that for any f ∈ F , fL
0 (f) ≤ f ≤ fU

0 (f) and ‖fU
0 (f)−fL

0 (f)‖2 ≤
δ0 ≤ s = δM/4. Hence, by the Cauchy-Schwarz inequality,

νn(f − fU
0 (f)) ≤ n−1

n∑
i=1

(f − fU
0 (f)) + E(fU

0 (f) − f)

≤ sup
F

‖fU
0 (f) − fL

0 (f)‖2 ≤ δM

2
.

Hence P2 = 0. This completes the proof.

Lemma 3. Let Y1, . . . , Yn be independent and identically distributed. Suppose
there exist random variables Xi and Wi (independent of η) such that |fη(Yi)| ≤
|∆η(Xi)|Wi for η ∈ G, where Xi and Wi are independent. Let α1 ≥ sup{η∈G} E∆2

η

(X1). Assume that supη∈G ‖∆η‖sup ≤ c1α
β/2
1 for some constants c1 > 0 and

β > 0, where ‖∆η‖sup = supx∈X |∆η(x)| and X is the support of X. Additionally,
E exp(AW ) < ∞ for some constant A > 0. Let ψ∗(M,α1) = nM2

2α1(1+c∗) , where c∗

is a positive constant that tends to zero as α1 → 0. Let F = {∆η : η ∈ G}. If
t0 = inf{t : H[ ](t,F ,P) ≤ δ

2ψ
∗(M,α1)} ≤ s and M/α1(1 + c∗) ≤ A, then

P∗
(

sup
{η∈G}

νn(f) ≥M

)
≤ exp(−(1 − 4δ)ψ∗(M,α1)). (5.2)

Proof. The result follows from the same argument as in Lemma 2, with some
modifications. Let (∆L

0 ,∆
U
0 ) be the upper and lower bracketing functions for F

such that for each ∆η ∈ F ∆L
0 (f) ≤ ∆η ≤ ∆U

0 (f) a.e, with ‖∆U
0 (f)−∆L

0 (f)‖2 ≤
δ0. Since supη∈G ‖∆η‖sup ≤ c1α

β/2
1 , without loss of generality, we assume that

max(‖∆U
0 ‖sup, ‖∆L

0 ‖sup) ≤ c1α
β/2
1 . (Note that one can always choose the smallest

and largest possible upper and lower brackets that satisfy ‖∆U
0 (f) − ∆L

0 (f)‖2 ≤
δ0.)

Let fU
0 be max(|∆U

0 |, |∆L
0 |)W . Using the same argument as in the proof of

Lemma 2, we have

E(∆U
0 )2 = E(∆U

0 − ∆ + ∆)2 ≤ (δ20 + 2δ0α
1/2
1 + α1) ≤ (1 + δ)2α1,

where the fact that δ0 ≤ δα1/2 has been used. Similarly, E(∆L
0 )2 ≤ (1 + δ)2α1.

Therefore, E(fU
0 )2 ≤ E max(∆U

0 ,∆
L
0 )2EW 2 ≤ c2(1+δ)2α1 for c2 = 2EW 2. With-

out loss of generality, we assume that c1α
β/2
1 ≤ 1/2. By assumption and Hölder’s

inequality, we have

E|fU
0 (Y1)|3 exp(A|fU

0 (Y1)|) ≤ E max(∆U
0 (Z1),∆L

0 (Z1))|3W 3 exp(Ac1α
β/2
1 W )

= E|max(∆U
0 (Z1),∆L

0 (Z1))|3EW 3 exp(Ac1α
β/2
1 W )

≤ 2c1α
β/2
1 (1 + δ)2α1EW 3 exp(Ac1α

β/2
1 W )

≤ 2c1(1 + δ)2α1+β/2
1 EW 3 exp(AW/2) = c3α

1+β/2
1 .
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Let G = c
1/2
2 (1 + δ)α1/2

1 . The following bounds can be derived.

E|fU
0 (Y1) − EfU

0 (Y1)|3 exp(A(fU
0 (Y1) − EfU

0 (Y1)))|
≤ E(|fU

0 (Y1)| +G)3 exp(A(|fU
0 (Y1)| +G))

≤ 4 exp(AG)[E|fU
0 (Y1)|3 exp(A|fU

0 (Y1)|) +G3E exp(AW )]

≤ 4 exp(AG)[c3α
β/2
1 + c

3/2
2 (1 + δ)3α1/2

1 E exp(AW )]α1 = c∗α1.

The rest of the proof is the same as that of Lemma 2.

Proof of Theorem 1. The proof is essentially the same as the proof in Bahadur
(1960, pp.246-247) and so is omitted.

Proof of Theorem 2. For any 0 < ε < ε0,

Pθ

(
d(θ̂n, θ)≥ε

)
≤P ∗

θ

(
sup

{η∈Θn: d(η,θ)≥ε}
[Ln(η)−Ln(πnθε)]≥−an

)
≤P1+P2, (5.3)

where P1 = P ∗
θ (sup{η∈Θn: d(η,θ)≥ε}[Ln(η)−Ln(θε)] ≥ − c2

2 −an P2 = Pθ([Ln(θε)−
Ln(πnθε)] ≥ c2

2 ), and c2 = inf{η∈Θn:d(η,θ)>ε}Eθ [�(θε, Y ) − �(η, Y )] > 0.
To bound P1, let P = Pθ, fη(y) = �(η, y) − �(θε, y), and F = Fn = {fη(y) :

η ∈ Θn} in Lemma 2. By Condition B2), λ as defined in Lemma 1 is uniformly
bounded by a constant. Now choose d1 > 0 such that c2/d1 ≤ A. Taking
M = c2

2 − an and λ = d1. Then M/λ = ( c2
2 − an)/d1 ≤ A for large n. Note that

s, as defined in Lemma 2, is a constant independent of n, and H[ ](u, ·) is non-

increasing with respect to u. Hence, by Condition B3), t0 = H−1
[ ]

(
δ
2ψ(M,α)

)
→

0 as n→ ∞, where ψ(M,α) → ∞ as n→ ∞. Thus, for large n, we have t0 < s.
It follows from (5.1) that, for sufficiently large n and 0 < δ < 1/4,

P ∗
θ

(
supFn

νn(f) ≥ c2 − ( c2
2 +an)

)
≤ exp(−(1−4δ)ψ(M,α)) ≤ exp

(
−n(1−

4δ)( c2
2 − an)2/(2d1)

)
≤ rn

1 ,

where 0 < r1 < 1 is a constant independent of n.
To bound P2, we apply Markov’s inequality. For sufficiently large n, by

Condition B4), we have

P2 ≤
n∏

i=1

Eθ[p(Yi; θε)/p(Yi;πnθε)]α exp(−c2α
2
n)

= exp(n log(1 + ρα(θε, πnθε)) − c2α

2
n)

≤ exp(nρα(θε, πnθε) − c2α

2
n) = exp(−n[

c2α

2
− ρα(θε, πnθε)]) ≤ rn

2 ,

where 0 < r2 < 1 is a constant independent of n.
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It now follows from (5.3) that (2.4) holds with ρ = max{r1, r2}. This com-
pletes the proof.

Proof of Theorem 3. Theorem 3 is an extension of the result of Bahadur
(1960, 1967) for g(θ̂n) with θ̂n being the exact MLE and g real valued with finite
Fisher information for g; we omit the proof.

Proof of Theorem 4. To prove (1.11) for Un = θ̂n, let 0 < ε ≤ min(ε0, 1/2)
and fix θ. For 0 < t < ε,

Pθ(K(θ̂n, θ) ≥ t) ≤ Pθ(K(θ̂n, θ) ≥ ε) + Pθ(t ≤ K(θ̂n, θ) < ε). (5.4)

The second probability in (5.4) does not depend on t, and it tends to 0 exponen-
tially fast by the LD-consistency assumption. It therefore suffices to show that
the third probability in (5.4) satisfies (1.11).

First we derive some results concerning K(·, θ). For sufficiently large n,
K(πnθ, θ) ≤ (1−ε)t sinceK(πnθ, θ) → 0 as n→ ∞. For θ̂n with ε > K(θ̂n, θ) ≥ t,
let θ̃(t) = πnθ+t(θ̂n−πnθ) for 0 ≤ t ≤ 1. By assumption, K(θ̃(t), θ) is continuous
in t with K(θ̃(0), θ) = K(πnθn, θ) ≤ (1 − ε)t and K(θ̃(1), θ) = K(θ̂n, θ) ≥
t > (1 − ε)t. By the Mean Value Theorem, there exists 0 ≤ u < 1 such as
K(θ̃(u), θ) = (1 − ε)t. Let t∗ be the largest u satisfying the above equality and
denote θ̃n by θ̃(t∗) = πnθ + t∗(θ̂n − πnθ) ∈ Θn. By the definition of t∗, we know
that t∗ is bounded away from 1 uniformly over n and K(θ̃(u), θ) > (1 − ε)t for
any t∗ < u ≤ 1, since K(θ̃(t∗), θ) = (1 − ε)t is bounded away from t uniformly
over n.

We now establish the connection between the event {t ≤ K(θ̂n, θ) < ε} and
the derivative of the log-likelihood. Let L

′
n[η; ξ] = 1

n

∑n
i=1 �

′
[η; ξ;Yi]. By the

Mean Value Theorem, we have

Ln(θ̂n) − Ln(θ̃n) =
d

dt
Ln(θ̃n + t(θ̂n − θ̃n))|t=h

=
d

dt
Ln(θ̃n + tk(ζ − πnθ))|t=h = kL

′
n[ζ; ζ − πnθ],

where ζ = θ̃n + h(θ̂n − θ̃n) for some h ∈ (0, 1) and k = (1−t∗)
h+(1−h)t∗ . In the above

calculations, the fact that ζ = πnθ+(h+(1−h)t∗)(θ̂n−πnθ) = θ̃n(h+(1−h)t∗) ∈
Θn has been used. By (2.1), Ln(θ̂n)−Ln(θ̃n) ≥ −an implies that L

′
n[ζ; ζ−πnθ] ≥

−an/k ≥ −an/(1−t∗). Furthermore, using the fact that ζ = θ̃n(h+(1−t)t∗) ∈ Θ0
n

and t∗ < h+ (1 − h)t∗ ≤ 1, we have K(ζ, θ) ≥ (1 − ε)t.
For 0 < δ < 1/4 and i = 0, 1, . . ., let Gi

n = {η ∈ Θ0
n : t̃i ≤ K(η, θ) < t̃i+1},

and let Gn = {η ∈ Θ0
n : t̃ ≤ K(η, θ) < ε}, where t̃ = (1 − ε)t and t̃i = (1 + iδ)t̃.

Then

{t ≤ K(θ̂n, θ) < ε} ⊂ {L′
n[ζ; ζ − πnθ] ≥ −an/(1 − t∗)}

⊂ { sup
η∈Gn

L
′
n[η; η − πnθ] ≥ −an/(1 − t∗)}.
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To apply Lemma 3 to the above event, we bound the corresponding means
and variances of �

′
[η; η−πnθ;Y ]. By D1) and D2), infGi

n
−Eθ(�

′
[η; η−πnθ;Y ]) ≥

2t̃i(1−h1(ε))−bn(ε, θ), and supGi
n
Eθ(�

′
[η; η−πnθ;Y ])2 ≤ αi, where αi = 2t̃i+1(1+

h2(ε)) + cn(ε, θ). Let M i = 2t̃i(1 − h1(ε)) − bn(ε, θ) − an/(1 − t∗). Hence,

Pθ(t ≤ K(θ̂n, θ) < ε) ≤ Pθ

(
sup
Gn

L
′
n[η; η − πnθ] ≥ −an

)

≤
[(ε−t̃)/δt̃]∑

i=0

Pθ

(
sup
Gi

n

L
′
n[η; η − πnθ] ≥ −an/(1 − t∗)

)

≤
[(ε−t̃)/δt̃]∑

i=0

Pθ

(
sup
Gi

n

νn(�
′
[η; η − πnθ;Y ]) ≥M i

)
.

We now apply Lemma 3 to bound Pθ(θ̂n ∈ Gi
n) with M = M i, α1 = αi, f(y) =

�
′
[η; η − πnθ;Y ], A = t0, and c∗ = c∗(ε) = O(εmin(β/2,1/2)). By Condition D4),

t0, as defined in Lemma 3, is less than s for large enough n. By Condition D3),
the required assumption in Lemma 3 is satisfied. An application of Lemma 3,
together with the fact that [M i]2

2αi is increasing with respect to i for sufficiently
large n and small ε, leads to

Pθ

(
t ≤ K(θ̂n, θ) < ε

)
≤

[(ε−t̃)/δt̃]∑
i=0

exp
(
− (1 − 4δ)n[M i]2

2αi[1 + c∗(ε)]

)

≤ [(ε− t̃)/δt̃] exp
(
− (1 − 4δ)n[(1 + δ)2t̃(1 − h1(ε)))−bn(ε, θ) − an/(1 − t∗)]2

2[(1 + 2δ)2t̃(1 + h2(ε)))+cn(ε, θ)][1 + c∗(ε)]

)
,

where 0 < δ < 1/4. Hence, by (5.4),

lim sup
t→0

lim sup
n→∞

1
nt

log Pθ(K(θ̂n, θ) ≥ t) ≤ − (1 − 4δ)(1 + δ)2(1 − h1(ε))
(1 + 2δ)(1 + h2(ε))(1 + c∗(ε))

.

By letting ε→ 0 and δ → 0, we have (1.11) for θ̂n. This completes the proof.
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