
Statistica Sinica 11(2001), 409-418

CHARACTERIZATION OF CONJUGATE PRIORS

FOR DISCRETE EXPONENTIAL FAMILIES
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Abstract: Let X be a nonnegative discrete random variable distributed according

to an exponential family with natural parameter θ ∈ Θ. Subject to some regularity

we characterize conjugate prior measures on Θ through the property of linear pos-

terior expectation of the mean parameter of X : E{E(X|θ)|X = x} = ax + b. We

also delineate some necessary conditions for the hyperparameters a and b, and find

a necessary and sufficient condition that 0 < a < 1. Besides the power series distri-

bution with parameter space bounded above (for example, the negative binomial

distribution and the logarithmic series distribution) and the Poisson distribution,

we apply the result to the log-zeta distribution and all hyper-Poisson distributions.
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conjugate priors, discrete exponential families, posterior expectations.

1. Introduction

Let X come from an exponential family with natural parameter θ and density

dPθ(x) = exθ−M(θ)dµ(x), (1.1)

where µ is a discrete measure with support {x0, x1, . . . , 0 ≤ x0 < x1 < x2 < · · ·}.
Let χ denote the interior of the convex hull of the support of µ, and let Θ be
the natural parameter space, i.e., Θ = {θ,

∫
eθxdµ(x) < ∞}. It is obvious that

χ = (x0, x
0) where x0 is the least upper bound of {x0, x1, . . .}, and that Θ is

convex and unbounded to the left since the xi, i = 1, 2, . . . , are nonnegative.
Throughout the paper we assume Θ is nonempty and open, and write Θ =
(−∞, θ0). By differentiation of

∫
dPθ(x) = 1, we find E(X|θ) = M ′(θ) and

Var (X|θ) = E(X −M ′(θ))2 = M ′′(θ), where M ′′(θ) is positive for any θ since χ

is nonempty and open. For some α, β, let π̃α,β be a measure on the Borel sets
of Θ according to

dπ̃α,β(θ) = eαθ−βM(θ)dθ, (1.2)

where dθ denotes Lebesgue measure. If
∫

dπ̃α,β < ∞, then π̃α,β can be normalized
to be a probability measure πα,β with

dπα,β(θ) = keαθ−βM(θ)dθ = fα,β(θ)dθ, (1.3)
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where k−1 =
∫
Θ eαθ−βM(θ)dθ. For any support point xi, eM(θ) =

∫
exθdµ(x) ≥

exiθµ(xi). Then for any prior measure τ on Θ with
∫
Θ dτ(θ) < ∞,

∫
Θ exiθ−M(θ)

dτ(θ) < ∞. Thus if a prior measure is proper, then all the posteriors are proper
and can be normalized to be probability measures. We take prior measures to
be proper here.

For the prior πα,β at (1.3) and any given x = xi, i = 0, 1, . . ., the pos-
terior has the form (1.3) with parameters α, β replaced by α + xi and β + 1.
Therefore the family {πα,β} of (1.3) is closed under sampling, and is termed a
distribution conjugate to the exponential family {Pθ} of (1.1) (Lindley (1972),
pp.22-23, or Raiffa and Schlaifer (1961), pp.43-57). If θ has the conjugate prior
distribution πα,β of (1.3), then E(M ′(θ)|X = xi) = 1

β+1xi + α
β+1 , i = 0, 1, . . .,

provided the posterior density fα+xi,β+1(θ) ∝ e(α+xi)θ−(β+1)M(θ) approaches zero
as θ approaches θ0 (Chou (1988)).

In this paper we consider the converse result: for any X with distribution
Pθ of (1.1), if

E(M ′(θ)|X = xi) = axi + b, i = 0, 1, . . . , (1.4)

then θ has a conjugate prior πα,β as at (1.3) with α = a−1b, β = a−1(1 − a).
We extend Diaconis and Ylvisaker’s (1979) result for a parameter space that is
bounded above, and Johnson’s (1957, 1967) result for the Poisson distribution.
We find necessary conditions on a and b in (1.4), a > 0 and b > (1 − a)x0, and
have 0 < a < 1 if and only if limθ→θ0 fα,β(θ) = 0, where fα,β is the prior density.
(An example with a > 1 and limθ→θ0 fα,β(θ) �= 0 is supplied in Section 2.1.)
Besides the well-known distributions, the negative binomial and the Poisson, we
introduce some interesting distributions, for example the zeta distribution, and
apply our results to them.

In Section 2 we define important functions at (2.2) and (2.3), and we prove
both of them are bounded and have infinitely many zeros. For any X with Pθ of
(1.1), if the support points are xi = i, i = 0, 1, . . ., and Θ = (−∞, θ0), θ0 < ∞,
Diaconis and Ylvisaker (1979) proved that the linearity at (1.4) characterizes
conjugate priors. In Section 2.1 we extend their result to X with support con-
taining x′

is where xi �= 0, i = 1, 2, . . ., and
∑∞

i=1
1
xi

= ∞. Therefore, besides
characterizing conjugate priors for any power series distribution with parameter
space bounded above, we can apply our result to non-power series distributions
such as the log-zeta. In Section 2.2, we deal with general Θ. Subject to the
condition that there exist a point θ∗ in Θ and a positive constant c such that
the mean parameter E(X|θ) > ceθ for all θ > θ∗, we prove that (1.4) implies Θ
has a conjugate prior πa−1b,a−1(1−a) at (1.3), with 0 < a < 1, b > (1 − a)x0. Our
condition is satisfied for the Poisson, so Johnson’s result (1957, 1967) is a special
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case of our result. Moreover, for all hyper-Poisson distributions, we can char-
acterize the conjugate prior information through the linearity of the posterior
expectation of the mean parameter.

2. Main Result

For achieving Theorem 2.1 and Theorem 2.2, we need the following Lemma.

Lemma 2.1. Let X have the distribution Pθ of (1.1) with x0 = 0. Suppose that
τ is a nondegenerate prior distribution on Θ = (−∞, θ0) and that

E(M ′(θ)|X = x) = ax + b for x = xi, i = 0, 1, . . . . (2.1)

Then there exists θ̃ ∈ Θ such that M ′(θ̃) = b > 0. Moreover, if a = 0, then

f(z) =
∫
Θ

e(θ−θ̃)z(M ′(θ) − b)e−M(θ)dτ(θ) (2.2)

is a bounded function in the region S = {z, z = x + iy, x ∈ χ, −∞ < y < ∞},
where χ is the interior of the convex hull of the support of X, and f(xi) = 0 for
all i = 0, 1, . . .. If a > 0 and θ0 < ∞, then

f̃(z) =
∫
Θ

e(θ−θ0)z
{
ae−M(θ)dτ(θ) −

[
−

∫ θ

−∞
(M ′(y) − b)e−M(y)dτ(y)

]
dθ

}
(2.3)

is a bounded function in the region S̃ = {z, z = x + iy, x > x∗, −∞ < y < ∞},
where x∗ is a fixed point with 0 < x∗ < x1, and f̃(xi) = 0 for all i = 1, 2, . . ..

Proof. See the Appendix.

2.1. The natural parameter space is bounded above

For any random variable X having distribution Pθ of (1.1) with natural
parameter space Θ bounded above, the following theorem generalizes and extends
the result of Theorem 4 of Diaconis and Ylvisaker (1979). Note that if Θ =
(−∞, θ0), θ0 < ∞, then it is obvious that the interior χ is not bounded above,
i.e., χ = (x0,∞).

Theorem 2.1. Let X have the distribution Pθ of (1.1) with 0 ≤ x0 < x1 < · · · ,∑∞
i=1

1
xi

= ∞ and Θ = (−∞, θ0), θ0 < ∞. Suppose θ has a nondegenerate prior
distribution τ . If

E(E(X|θ)|X = x) = ax + b for x = xi , i = 0, 1, . . . , (2.4)

then a > 0, b > (1 − a)x0, τ is absolutely continuous with respect to Lebesgue
measure, and dτ(θ) = cea−1bθ−a−1(1−a)M(θ)dθ. Moreover, 0 < a < 1 if and only
if the prior density approaches 0 as θ approaches θ0.
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Proof. See the Appendix.

Remark 2.1. In Theorem 2.1, 0 < a < 1 if and only if limθ→θ0 f(θ) = 0, f(θ)
the prior density. The following is an example where a ≥ 1 and the prior density
does not approach zero as θ → θ0. Let X have a negative binomial density

P (x) =
Γ (x + r)

Γ (x + 1) Γ (r)
λx (1 − λ)r ∝ eθx−M(θ), (2.5)

where x = 0, 1, . . . , r > 0, λ ∈ (0, 1), so θ = log λ ∈ (−∞, 1) = (−∞, θ0)
and M(θ) = − log(1 − λ)r. By applying Theorem 2.1, if λ has a nondegenerate
prior distribution and E(E(X|λ) = rλ

1−λ |X = x) = ax + b for any x = 0, 1, . . .,
then a > 0, b > 0 and θ has the conjugate prior density fa−1b,a−1(1−a)(θ) ∝
ea−1bθ−a−1(1−a)M(θ). Then λ has the conjugate Beta distribution Be(a−1b, a−1(1−
a)r + 1), with density b(λ) ∝ λa−1b−1(1 − λ)(a

−1(1−a)r+1)−1. Therefore we have
0 < a < r

r−1 if r > 1, or 0 < a < ∞ if r = 1. However limθ→θ0 fa−1b,a−1(1−a)(θ) �=
0 if a ≥ 1.

Remark 2.2. Let X1, . . . ,Xn be a sample of size n from X satisfying the
conditions of Theorem 2.1. Suppose τ is a nondegenerate prior distribution on
Θ with

E(E(X|θ)|X1, . . . ,Xn) = aX + b, (2.6)

where X is the sample mean. Consider the complete and sufficient statistic
S = X1 + · · · + Xn, which has the distribution from Pθ of (1.1) with x being
replaced by s, M(θ) by nM(θ) and, from (2.6), E(E(S|θ)|S = s) = as + (nb)
with s = si, i = 0, 1, . . . , 0 ≤ s0 = nx0 < s1 < · · ·. Applying Theorem 2.1, we
have a > 0, b > (1 − a)x0 and dτ(θ) = cena−1bθ−na−1(1−a)M(θ)dθ.

Example 2.1 (the power series distribution with parameter space bounded above).
Let X have the distribution Pθ of (1.1) with xi = i, i = m,m + 1,m + 2, . . . ,m
a nonnegative integer and the natural parameter Θ = (−∞, θ0), θ0 < ∞. Note
that with λ0 = eθ0

and λ = eθ ∈ (0, λ0) = Λ. The density of the power
series distribution X is usually in the form f(x) = axλx

η(λ) where ax = dµ(x),

η(λ) = eM(ln λ). If λ has a nondegenerate prior and if E(E(X|λ)|X = x) = ax+b

for x = m,m + 1,m + 2, . . ., then a > 0 and λ has a conjugate prior with
density g(λ) ∝ λab−1η(λ)−a−1(1−a). Two well-known examples are the negative
binomial distribution (see Remark 2.1), and the logarithmic series distribution
with density f(x) = (− log(1 − λ))−1 λx

x , x = 1, 2, . . . , and λ ∈ (0, 1) = Λ. For
analytic properties of the logarithmic series distribution, see Johnson, Kotz and
Kemp (1992).

Example 2.2. (the log-zeta distribution) Let Y be a random variable with
density f(y) = cy−ρ, y = 1, 2, . . . , ρ > 1 and c−1 =

∑∞
y=1 y−ρ = ξ(ρ), where
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ξ denotes the Riemann zeta function. The distribution of Y has been used
in linguistic studies by Estoup (1916) and Zipf (1949), and some interesting
properties and comments can be found in Kendall (1961). Let X = log Y . Note
that with θ = −ρ, the natural parameter space of X is Θ = (−∞,−1), and
the support xi = log i, i = 2, 3, . . . , satisfies

∑∞
i=2

1
xi

= ∞. Then if ρ has a
nondegenerate prior distribution and E(E(X|ρ)|X = x) = ax + b for x = log i,
i = 1, 2, . . ., we have a > 0, b > 0 and the density of the prior distribution on ρ

is g(ρ) ∝ ea−1bρξ(ρ)−a−1(1−a).

2.2. The natural parameter space is not bounded above

If X is Poisson variable, Johnson (1957, 1967) proved that linearity at (1.4)
implies the prior has a conjugate distribution. The following theorem generalizes
his result.

Theorem 2.2. Let X have the distribution Pθ of (1.1) with the natural parameter
space Θ = (−∞,∞) and support points xi = li + k, i = 0, 1, . . ., l > 0, k ≥ 0.
Suppose there exists some point in Θ, say θ∗, and some positive constant c such
that the mean parameter M ′(θ) ≥ ceθ for all θ ≥ θ∗. Assume that θ has a
nondegenerate prior distribution τ . If

E(E(X|θ)|X = x) = ax + b, x = xi, i = 0, 1, . . . , (2.7)

then 0 < a < 1, b > (1−a)x0, τ is absolutely continuous with respect to Lebesgue
measure and dτ(θ) ∝ ea−1bθ−a−1(1−a)M(θ)dθ.

Proof. See the Appendix.

Remarks 2.3. Let X1, . . . ,Xn be a sample of size n from X with distribution Pθ

of (1.1). If the conditions of Theorem 2.2. are satisfied and E(E(X|θ)|x1, . . . , xn)
= ax + b, x the sample mean, then 0 < a < 1, b > (1 − a)x0, the prior
distribution τ is absolutely continuous with respect to Lebesgue measure, and
f(θ) ∝ ena−1bθ−na−1(1−a)M(θ).

Example 2.3. (Johnson 1957, 1967) Let X be the Poisson variable with density
f(x) = e−λ xλ

x! , x = 0, 1, . . . , λ > 0. The natural parameter is θ = ln λ and
the mean parameter λ = eθ satisfies the condition in Theorem 2.2. Thus if
E(E(X|λ)|X = x) = ax+b for x = 0, 1, . . ., then 0 < a < 1, b > 0 and τ has the
Gamma distribution on λ with density

g(λ) =
1

Γ(a−1b)[a(1 − a)−1]a−1b
λa−1b−1e−a−1(1−a)λ.

Example 2.4. (the Hyper-Poisson distribution) Let X be a random variable
with density fλ(x) = c−1

λ,k
λx

k(k+1)···(k+x−1) , where x = 0, 1, . . . , λ > 0, k > 0,
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and cλ,k =
∑∞

x=1
λx

k(k+1)···(k+x−1) . Bandwell and Crow (1964) term this family of
distributions Hyper-Poisson. They classified them as sub-Poisson (0 < k < 1),
Poisson (k = 1) and super-Poisson (k > 1), and discuss some properties of the
distributions. Note that the natural parameter space Θ = {θ, θ = log λ, λ > 0} is
not bounded above and, from the recurrence relation ((k−1)+(x+1))fλ(x+1) =
λfλ(x), x = 0, 1, . . . , the mean parameter E(X|λ) = λ+(1−k)(1−fλ(0)) ≥ eθ −
|1−k|. Applying Theorem 2.2, if E(E(X|λ)|X = x) = ax+b for x = 0, 1, . . ., then
0 < a < 1, b > 0 and the prior density of λ ∈ (0,∞) is g(λ) ∝ λa−1b−1c

−a−1(1−a)
λ,k .
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Appendix

Proof of Lemma 2.1. From (2.1) with x = x0 = 0, E(M ′(θ)|X = 0) = b. Since
E(X|θ) = M ′(θ) is positive, strictly increasing and continuous on Θ, b ∈ M ′(Θ)
and there exists θ̃ ∈ Θ such that b = M ′(θ̃) > 0.

If a = 0, we have eθ̃xif(xi) = 0 from (2.1), and then f(xi) = 0 for all xi,
i = 0, 1, . . .. For any z = x + iy ∈ S,

|f(z)|≤
∣∣∣
∫ θ̃

−∞
e(θ−θ̃)z(M ′(θ) − b)e−M(θ)dτ(θ)

∣∣∣+
∣∣∣
∫ θ0

θ̃
e(θ−θ̃)z(M ′(θ)−b)e−M(θ)dτ(θ)

∣∣∣

≤
∫ θ̃

−∞
e(θ−θ̃)z(b−M ′(θ))e−M(θ)dτ(θ)+

∫ θ0

θ̃
e(θ−θ̃)z(M ′(θ)−b)e−M(θ)dτ(θ)≤2c

(A.1)

where c = bk−1
0 +

∫
Θ M ′(θ)e−M(θ)dτ(θ), k−1

0 =
∫
Θ e−M(θ)dτ(θ). The second

inequality in (A.1) uses |tz| = tx for any z = x + iy and t > 0 . For the last
inequality, since x ∈ χ, there exists a support point xi ≥ x for which
∫ θ0

θ̃
e(θ−θ̃)x(M ′(θ) − b)e−M(θ)dτ(θ) ≤

∫ θ0

θ̃
e(θ−θ̃)xi(M ′(θ) − b)e−M(θ)dτ(θ)

=
∫ θ̃

−∞
e(θ−θ̃)xi(b − M ′(θ))e−M(θ)dτ(θ) ≤ c.

The last equality in the above follows from f(xi) = 0.
Now assume that a > 0 and θ0 < ∞. From (2.1),

∫ θ0

−∞
eθx(M ′(θ) − b)e−M(θ)dτ(θ)=ax

∫ θ0

−∞
exθe−M(θ)dτ(θ), x = xi, i = 0, 1, . . . .

(A.2)
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The argument from (A.3) to (A.4) proceeds along the lines (4.5)-(4.6) of Theorem
4 of Diaconis and Ylvisaker (1979). Transform the left side of (A.2) as follows:

∫ θ0

−∞

[ ∫ θ

−∞
xexydy

]
(M ′(θ) − b)e−M(θ)dτ(θ)

=
∫ θ0

−∞
xexy

[ ∫ θ0

y
(M ′(θ) − b)e−M(θ)dτ(θ)

]
dy

= −
∫ θ0

−∞
xexθ

[ ∫ θ

−∞
(M ′(y) − b)e−M(y)dτ(y)

]
dθ. (A.3)

In (A.3) the interchange of integration can be easily checked and (A.2) has been
invoked with x = 0 to produce the final equality. From (A.2) and (A.3) we have

∫ θ0

−∞
exθ

[
−

∫ θ

−∞
(M ′(y) − b)e−M(y)dτ(y)

]
dθ

= a

∫ θ0

−∞
exθe−M(θ)dτ(θ) for x = xi, i = 1, 2, . . . . (A.4)

Multiply both sides of (A.4) by e−θ0xi to get f̃(xi) = 0 for x = xi, i = 1, 2, . . ..
Let h(θ) = − ∫ θ

−∞(M ′(y) − b)e−M(y)dτ(y). Since (M ′(y) − b) ≤ 0 if and only if
y ≤ θ̃, h(θ) is nondecreasing for θ ≤ θ̃ and nonincreasing for θ ≥ θ̃. From (2.1)
with x = x0 = 0, limθ→θ0 h(θ) = 0. So h(θ) is always nonnegative and achieves
the maximum value at θ = θ̃. For any z = x + iy ∈ S̃ = {z, z = x + iy, x > x∗,
−∞ < y < ∞},

|f̃(z)| ≤
∣∣∣∣
∫
Θ

e(θ−θ0)zae−M(θ)dτ(θ)
∣∣∣∣ +

∣∣∣∣
∫
Θ

e(θ−θ0)zh(θ)dθ

∣∣∣∣
≤

∫ θ0

−∞
e(θ−θ0)xae−M(θ)dτ(θ) +

∫ θ0

−∞
e(θ−θ0)xh(θ)dθ

≤ a

∫ θ0

−∞
e−M(θ)dτ(θ) +

∫ θ0

−∞
e(θ−θ0)x∗

h(θ̃)dθ

≤ a

∫ θ0

−∞
e−M(θ)dτ(θ) + h(θ̃)

1
x∗ ≤ c̃.

Therefore f̃(z) is bounded for all z ∈ S̃.

Proof of Theorem 2.1. First we show a > 0 if x0 = 0. If a is zero, define f(z)
as at (2.2) and Lemma 2.1 has f(z) bounded in the region S = {z, z = x + iy,

x ∈ χ = (0,∞),−∞ < y < ∞}. Moreover f is continuous and then analytic by
Moresa’s theorem (Rudin (1987), pp.208). For z ∈ u = {z, |z| < 1}, define g(z) =
f(1+z

1−z ). Then g is bounded, analytic and g(αi) = 0, αi = xi−1
xi+1 , i = 1, 2, . . .. Since
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∑∞
i=1

1
xi

= ∞ implies
∑∞

i=1(1 − |αi|) = ∞, g ≡ 0 on u (Rudin (1987), pp.312),
and then f ≡ 0 on S. Therefore

∫
Θ(M ′(θ) − b)exθ−M(θ)dτ(θ) = 0 for all x ∈ χ,

an open interval in R1. It follows that M ′(θ) − b vanishes on the support of τ ,
violating the strictly increasing property of M ′(θ). So a �= 0. If a < 0, choose
xj ∈ χ = (0,∞) with axj + b < 0. Then E(M ′(θ)|X = xj) = axj + b < 0, which
violates the fact that M ′(θ) = E(X|θ) > 0 for any θ. Therefore a > 0.

Suppose 0 < x∗ < x1 and let f̃(z) and S̃ be as given in (2.3). Define
g̃(z) = f̃(1+z

1−z + x∗). As before we can prove g̃(z) ≡ 0 on u = {z, |z| <

1}, and then f̃(z) ≡ 0 on S̃ = {z, z = x + iy, x ∈ (x∗,∞),−∞ < y <

∞}. In particular f̃(x) = 0 for all x ∈ (x∗,∞), an open interval of R, so
{ae−M(θ)dτ(θ) − [− ∫ θ

−∞(M ′(y) − b)e−M(θ)dτ(y)]dθ} is a zero measure on Θ.
Therefore ae−M(θ)dτ(θ) = [− ∫ θ

−∞(M ′(y)− b)e−M(θ)dτ(y)]dθ and τ is absolutely
continuous (dθ) with density f which satisfies the differential equation af ′(θ) −
aM ′(θ)f(θ) = −(M ′(θ) − b)f(θ) for any θ ∈ Θ. Solving the equation, we have
dτ(θ) = f(θ)dθ = cea−1bθ−a−1(1−a)M(θ)dθ.

For the general case x0 ≥ 0, let X̃ = X − x0, x̃i = xi − x0. Since
X̃ is also from Pθ of (1.1) with x being replaced by x̃, M(θ) by M̃(θ) =
M(θ)−x0θ, (2.4) implies E[E(X̃ |θ)|X̃ = x̃] = ax̃+ b′, where x̃ = x̃i, i = 0, 1, . . .,
b′ = b + (a − 1)x0. Applying the previous result for the first support point
x̃0 being zero, we have a > 0 and τ is absolutely continuous with dτ(θ) =
f(θ)dθ = cea−1(b+(a−1)x0)θ−a−1(1−a)(M(θ)−x0θ)dθ = cea−1bθ−a−1(1−a)M(θ)dθ. For
any θ, E(X|θ) ∈ χ = (x0,∞), E(E(X|θ)|X = x) = ax + b ∈ χ for any
x = x0, x1, . . .. Therefore ax0 + b ∈ χ, i.e., b > (1 − a)x0. Moreover, since
f(θ) ∝ ea−1bθ−a−1(1−a)M(θ), a > 0 , b > (1− a)x0, x0 ≥ 0 and eM(θ) =

∫
exθdµ(x)

(which approaches infinite as θ approaches θ0 < ∞), it is obvious that 0 < a < 1
if and only if limθ→θ0 f(θ) = 0.

Proof of Theorem 2.2. For l = 1, k = 0, i.e., xi = i, i = 0, 1, . . . , we first prove
a > 0 in (2.7). If a = 0, define f(z) as at (2.2) and follow the same argument as
that in the proof of Theorem 2.1 to get a > 0. From (2.7), by the argument for
(A.3) and (A.4), we have

∫ θ0

−∞
exθ

[
−

∫ θ

−∞
(M ′(y)−b)e−M(y)dτ(y)

]
dθ=a

∫ θ0

−∞
exθe−M(θ)dτ(θ), for x=1, 2, . . . .

(A.5)
Let t = eθ and define a probability distribution m on (0, eθ0

) (eθ0 ≡ ∞ if θ0 = ∞)
according to

∫
E dm(t) =

∫
h−1(E) keθ−M(θ)dτ(θ), where k−1 =

∫
θ eθ−M(θ)dτ(θ), E

is any Borel set of (0, eθ0
) and h(θ) = eθ = t. Let µn denote the nth moment of
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m. For n = 0, 1, . . . ,

µn+1

µn
=

∫
tn+1dm (t)∫
tndm (t)

=

∫ θ0

−∞
e(n+1)θeθ−M(θ)dτ (θ)

∫ θ0

−∞
enθeθ−M(θ)dτ (θ)

≤

∫ θ∗

−∞
e(n+1)θeθ−M(θ)dτ (θ)

∫ θ0

−∞
enθeθ−M(θ)dτ (θ)

+

1
c

∫ θ0

θ∗
e(n+1)θM ′ (θ) e−M(θ)dτ (θ)
∫ θ0

−∞
enθeθ−M(θ)dτ (θ)

≤ eθ∗ +
1
c

(a (n + 1) + b) = αn + β, (A.6)

where α = a
c , β = eθ∗ + a

c + b. The inequalities of (A.6) follow from the fact that
M ′(θ) > ceθ for all θ > θ∗, and (2.7). Since µ0 = 1, it follows that µ1 ≤ β, µ2 ≤
β(β+α), . . . , µn ≤ β(β+α) · · · (β+(n−1)α). Hence µn ≤ (β+(n−1)α)n, and then∑∞

n=0 µ
− 1

2n
2n = ∞. From Carleman’s Uniqueness Theorem (Akhiezer (1965, pp.85-

86)), the distribution m is uniquely determined by its moments µn, n = 0, 1, . . . ,
and then (A.5) implies aeθ−M(θ)dτ(θ) = −eθ[

∫ θ
−∞(M ′(y)− b)e−M(y)dτ(y)]dθ. By

the same argument as in Theorem 2.1, we have τ is absolutely continuous with
density f(θ) ∝ ea−1bθ−a−1(1−a)M(θ).

For the general case that l > 0, k ≥ 0, we consider X̃ = l−1(X − k). Since
X̃ is also from Pθ of (1.1) with X being replaced by X̃ , the natural parameter θ

by lθ, and M(θ) by M(θ)− kθ, (2.7) implies E(E(X̃ |θ)|X̃ = x̃) = ax̃ + b′, where
x̃ = 0, 1, . . ., b′ = l−1[b + (a − 1)k]. Applying the previous result, we have a > 0
and dτ(θ) ∝ ea−1b′(lθ)−a−1(1−a)(M(θ)−kθ)dθ ∝ ea−1bθ−a−1(1−a)M(θ)dθ.

Since M ′ (θ) > ceθ for all θ > θ∗, from the Mean Value Theorem, M (θ)
approaches infinity as θ → θ0 = ∞. Note that the prior density f (θ) approaches
zero as θ → ∞. Therefore by the same argument as in the proof of Theorem 2.1,
we find 0 < a < 1, and b > (1 − a) x0.
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