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Abstract: Orthogonality is considered to be one of the most important features for

design of experiment. In this paper, we investigate orthogonal main-effect designs

with cyclic structure in order to ensure the balance among all design columns. We

show that such designs exist for any number of factors (k) and moreover, they

are not unique. An explicit form for D-efficiency of cyclic orthogonal designs is

derived. It is shown that D-optimal cyclic design essentially involves minimizing

the tightness of the experimental range. The minimum tightness D-optimal cyclic

orthogonal designs are presented and tabulated for k < 10.
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1. Introduction

The first-order design has great value in response surface methodology at the
initial stage; for example, screening input variables or estimating the direction
of steepest ascent. The construction of first-order response surface designs which
are optimal in some sense has received a great deal of attention in the literature
(see Lin (1993) and references therein). The saturated design which investigates
k variables in n = k + 1 runs is commonly employed. Although orthogonality is
one of the most important features in selecting a design, it is in general not possi-
ble. For example, in the case of a two-level design, the Plackett and Burman type
orthogonal design is only available when n is a multiple of four. On the other
hand, some first-order orthogonal designs, such as regular simplex designs (Box
(1952)), are presented in an asymmetric manner, which may create problems in
practice (for instance, allocating factors to design columns or determining the
experimental regions which suitably fit the coded variables). In this paper, we
consider first-order orthogonal design with cyclic structure. The cyclic structure
has been adapted to generate symmetry among all design columns. Here, “sym-
metry” refers to identical experimental range and the common structure of all
design columns.

Consider the first-order polynomial model in k variables:

Y = Xβ + ε = β0 + β1ξ1 + β2ξ2 + · · · + βkξk + ε, (1)
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where Y is the response variable and ξi’s are the independent variables. A cyclic
design in k variables with first row [x1, x2, . . . , xk] can be constructed by cyclically
permuting the values in the first row to create k − 1 more rows and then adding
a row of all −1’s as the final row. Thus, the design matrix X for a cyclic design
in k variables can be written in the general form as

X =

[
1kx1 Γ0X1 Γk−1X1 · · · Γ1X1

1 −1 −1 · · · −1

]
, (2)

where X1 = [x1, xk, xk−1, . . . , x2]′, 1k×1 is the k×1 vector of ones and Γh is a cir-
culant matrix whose first row has l in the (h+1)th column and zero elsewhere (see
John and Williams (1995)). A first-order design is orthogonal if the inner product
of any two columns of the X matrix equals zero. Namely, (ΓiX1)′(ΓjX1) = −1
for all i, j = 0, . . . , k − 1 and i �= j. Adding the initial condition 1′X1 = 1, the
conditions for a cyclic orthogonal design yield a set of (Ck

2 + 1) equations to be
solved. As we shall see, however, the total number of equations can be reduced
to [k2 ] + 1.

2. Cyclic Orthogonal Designs

It follows easily that ΓhΓs = Γh+s, and Γ′
h = Γk−h, where h + s is reduced

mod k. Consequently, Γ′
k−iΓk−i−s = ΓiΓk−i−s = Γk−s. Using the fact that these

are equations in scalars, we have

X ′
1Γk−sX1 = X ′

1Γ
′
sX1 = X ′

1ΓsX1. (3)

Thus, there are at most k different equations to be solved to obtain a cyclic
orthogonal design:

k∑
i=1

xi = 1, (4a)

X ′
1ΓsX1 = −1, s = 1, . . . , k − 1. (4b)

In fact, we can further reduce the total number of equations to [k2 ]+1 for obtaining
a cyclic orthogonal design, as shown below.

Proposition 2.1. There are exactly [k2 ] + 1 independent equations in solving a
cyclic orthogonal design system (4a, 4b).

Proof. Applying Equation (3), we have X ′
1ΓsX1 = X ′

1Γk−sX1 for s = 1, . . . , [k2 ].
These equations, together with the initial independent equation (4a), imply that
there are at most [k2 ] + 1 independent equations. On the other hand, the first
s = 1, . . . , [k2 ] equations in (4b) involve products of all possible pairs among
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x1, . . . , xk. Each product appears in exactly one equation. Thus, by adding
equation (4a), there are at least [k2 ] + 1 independent equations. This completes
the proof.

3. Existence Properties and Design Efficiency

A cyclic orthogonal design with the form (2) exists for any positive integer
k. This can be seen by taking z = x1 = x2 = · · · = xk−1 and w = xk =
1 − (k − 1) · z in equation (4a); then, all of the equations in (4b) reduce to the
equation k · z2 − 2 · z − 1 = 0. The roots for such a quadratic equation are

(z,w) =
(1 ± (k + 1)

1
2

k
,
1 ∓ (k − 1)(k + 1)

1
2

k

)
.

Besides the solution above, other solutions are also possible. (All possible solu-
tions for k = 2, 3, and 4 are given in Lin and Chang (1999).) Further, optimality
criteria can be imposed to choose among them.

Since cyclic orthogonal designs have X ′X = (k+1)I, the determinant of X ′X
is always a constant, ||X ′X || = (k +1)k+1. This can be seen by noting x2

1 + · · ·+
x2

k = k (see Appendix of Lin and Chang (1999)). For a fair comparison on design
efficiency, we re-scale all values of design points into the range [−1, 1]. Namely,
we code x(k+1) to 1 and x(1) to −1, where x(k+1) and x(1) are the maximum and
minimum values, respectively, among all xi’s and −1. To standardize the design
points, we let α = (x(k+1) + x(1))/2 be the center and let β = x(k+1) − x(1) be
the scale; then the coded variables are yi = 2(xi − α)/β, i = 1, . . . , k, k + 1,
where xk+1 = −1. The standardized cyclic orthogonal design matrix, similar to
equation (2), is now

S =

[
1kx1 Γ0Y1 Γk−1Y1 · · · Γ1Y1

1 Yk+1 Yk+1 · · · Yk+1

]
, (5)

where Y1 = [Y1,Yk,Yk−1, . . . ,Y2]′. It can be further shown that ||S′S|| = 4k(k +
1)k+1/β2k (see Lin and Chang (1999) for the proof).

It is clear now that maximizing ||S′S|| is equivalent to minimizing β =
x(k+1)−x(1), the tightness of the experimental range. Designs satisfying equations
(4a, 4b) with minimal tightness are called T-optimal cyclic orthogonal designs.
For a T-optimal design, we solve the following optimization problem: minimize
y subject to [k2 ] + 1 independent equations (4a) and (4b); |xi − xj| ≤ y, for all
i �= j ∈ {1, 2, . . . , k + 1}.
The T-optimal designs for k < 10 are tabulated in Table 1. The d-efficiencies and
tightness values are also provided. Here, we have used the d-efficiency defined
||S′S||1/n

n as in Lin (1993). For larger values of k, the T-optimal designs can be
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obtained in a similar manner. The d-efficiencies for regular simplex designs, after
re-scaling to the (−1, 1) range, are (0.4204, , 0.3482, 0.2970, 0.2588, 0.2293, 0.2057,
0.1866) for k = 3, . . . , 9 respectively. It is clear that the T-optimal designs
dominate the regular simplex designs in terms of d-efficiency. Note that when
the T-optimal designs are used in practice, one first looks up Table 1 to generate
the X matrix in (2) and then converts the X matrix into the S matrix in (5). It
is the re-scaled S matrix that is used for design of experiments.

Table 1. T-optimal designs for k < 10.

k (x1, . . . , xk) β d-efficiency

1 (1.000) 2.0 1.0

2 (1.367,−0.367) 2.3666 0.7990

3 (−1.000, 1.000, 1.000) 2.0 1.0

4 (0.809,−1.427, 0.809, 0.809) 2.2361 0.8365

5 (−0.787, 0.202,−1.000, 1.292, 1.292) 2.2923 0.7966

6 (−1.061, 0.608,−1.061,−0.084, 1.299, 1.299) 2.3595 0.7532

7 (1.000,−1.000,−1.000, 1.000, 1.000, 1.000,−1.000) 2.0 1.0

8 (−1.009, 0.398,−1.009, 0.438,−0.578,−0.431, 1.596, 1.596) 2.605 0.6251

9 (−1.120,−0.069,−1.120,−0.069, 1.242,−1.120, 0.774, 1.242, 1.242) 2.3621 0.7412
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