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Abstract: In the context of a general two-level structural equation model with an

unbalanced design and small samples at the individual levels, maximum likelihood

theory is developed for estimation of the unknown parameters subject to functional
constraints. It is shown that the constrained maximum likelihood estimates are

consistent and asymptotically normal. A goodness-of-fit statistic is established to

test the validity of the constraints. The asymptotic results are illustrated with an

example.
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1. Introduction

Structural equation modelling (Jöreskog (1978), Bentler (1983)) is a mul-
tivariate technique for studying covariances and other relationships among ob-
served and latent variables. Based on the assumption that observed data are inde-
pendent, it has been applied widely in behavioral, medical and social sciences; see,
for example, Cuttance and Ecob (1987), and citations in the well-known packages
LISREL 8 (Jöreskog and Sörbom (1996)) and EQS (Bentler (1992)). However
in practice, data commonly have a hierarchical structure: students are nested
within schools, workers within factories, patients within hospitals, etc. Because
individuals within a group are expected to share certain influencing factors and to
produce correlated observations, the assumption of independence among obser-
vations is violated. In recent years, to take into account the correlated structure
of the data, theoretical and computational results of some multilevel models have
been established. Theoretically, the maximum likelihood (ML) theory for various
special cases with balanced designs and invariance within group structures was
developed by McDonald and Goldstein (1989), and Muthèn (1989). Statistical
properties of the generalized least squares (GLS) and ML estimation for models
with unbalanced designs were established by Lee (1990). Computationally, for
some specific models, Lee and Poon (1992) showed that the “multi-sample” op-
tion of LISREL 8 or EQS can be used to obtain a consistent estimate which is less
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efficient than the GLS or the ML estimate. Longford and Muthèn (1992) derived
a scoring-type algorithm to obtain the ML estimator in a special case. Recently,
Lee and Poon (1998) formulated the ML estimation of the general model as
an incomplete-data problem by treating the random vectors at the group level
as hypothetical missing data, and a procedure based on the EM algorithm was
developed.

On the other hand, the use of equality constraints on the unknown parame-
ters plays an important role even in the analysis of single level structural equation
models. Appropriate constraints help to identify the model, give more freedom in
defining the covariance structures and provide more meaningful interpretation.
See, for example, Lee (1985). LISREL 8 and EQS have options to estimate pa-
rameters subject to linear constraints. In the analysis of multilevel models that
involve between-group and different within-group structures, the importance of
constraints is more significant because relationships of parameters across and
among the between-group and various within-group structures can be assessed.
However, statistical theory for multilevel models with constraints is still not es-
tablished. The asymptotic properties developed in Lee (1990) are based on the
assumption that the sample size in each group is sufficiently large. In some
practical applications, due to the nature of the study or the sampling scheme,
available observations in some of the groups may be small.

Our main objective is to develop constrained ML theory for general two-
level structural equation models with unbalanced designs. Asymptotic results
are established based on a large number of groups, but the sample sizes in the
groups can be large or small. Our development will be concentrated on two-level
models, but it can be generalized to higher-level models via similar reasoning.

The paper is organized as follows. The main theory will be developed in
Section 2, an example is given in Section 3, and a discussion is given in Section
4. Proofs are in the Appendix.

The following notation will be used. If A = (aij) is an m × m symmetric
matrix, V ec(A) is the m2×1 column vector formed by stacking the columns of A,
λmin(A) represents the minimal eigenvalue of A, and ‖A‖ = (

∑m
i=1

∑m
j=1 a2

ij)
1
2 .

For symmetric matrices A1 and A2, A1 > A2 if and only if A1 − A2 is positive
definite. An identity matrix of order m is denoted by Im. For simplicity, we
denote constants by “a”, they may differ at different places.

2. Constrained ML Estimation of Two-level Structural Equation Model

Consider the following general two-level model:

xgi = ug + vgi, g = 1, . . . , G, i = 1, . . . , Ng, (2.1)
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where xgi is a p × 1 observed random vector, ug is a latent random vector at
the group level, and vgi is a latent random vector varying at the individual
level. In this model, the random vectors ug, g = 1, . . . , G, are independently and
identically distributed (i.i.d.) as N [0,ΩB(θ0)]; for each g, the random vectors
vgi, i = 1, . . . , Ng, are i.i.d. as N [0,Ωgw(θ0)] and independent of ug, where θ0 is
a q × 1 vector of true parameters. Based on the assumption that G and the Ng

are sufficiently large, asymptotic properties of the ML and the GLS estimators
of θ0 have been established by Lee (1990). In this article, we first derive the
asymptotic properties of the unconstrained ML estimator without assumptions
on the Ng. Based on these preliminary results, we study the constrained ML
estimation with the following constraints:

h(θ0) = (h1(θ0), . . . , hr(θ0)) = 0, (2.2)

where h1, . . . , hr are differentiable functions.
Let θ be the vector of unknown parameters associated with θ0. The follow-

ing regularity conditions about the covariance models and the constraints are
assumed.

(c1) Let ∆gw(θ) = ∂Ωgw(θ)/∂θ, ∆B(θ) = ∂ΩB(θ)/∂θ, Ωg(θ) = Ωgw(θ) +
NgΩB(θ), ∆g(θ) = ∂Ωg(θ)/∂θ, and

HG(θ) =
G∑

g=1

{
(Ng − 1)∆gw(θ)

[
Ω−1

gw(θ) ⊗ Ω−1
gw(θ)

]
∆gw(θ)′

+∆g(θ)
[
Ω−1

g (θ) ⊗ Ω−1
g (θ)

]
∆g(θ)′

}
.

There exist matrices Σ(θ) and Σ∗∗ such that G−1HG(θ) → Σ(θ) > Σ∗∗ > 0
as G → ∞, in some neighbourhood of θ0. (The matrix HG(θ) can be
interpreted as the Fisher information matrix (see Lee (1990)).

(c2) There exists a constant M such that

‖∂2∆B(θ)
∂θ∂θ′

‖ ≤ M, ‖∆gw(θ)‖ ≤ M, ‖∂∆gw(θ)
∂θ

‖ ≤ M,

and ‖∂2∆gw(θ)
∂θ∂θ′

‖ ≤ M

in some neighbourhood of θ0.
(c3) All elements in the matrix ∂h(θ)/∂θ are continuous in an open neighbour-

hood of θ0.
(c4) The rank of the matrix ∂h(θ)/∂θ|θ=θ0 is r.
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Let Zg = (x′
g1, . . . , x

′
gNg

)′. From the definition of the model, maximizing
the log-likelihood function based on {Zg, g = 1, . . . , G} is equivalent to min-
imizing the discrepancy function: F (θ) =

∑G
g=1{(Ng − 1) log |Ωgw(θ)| + (Ng −

1)tr[Ω−1
gw(θ)Sg]+log |Ωg(θ)|+Ngtr[Ω−1

g (θ)x̄gx̄
′
g]}, where x̄g and Sg are the sample

mean and the sample covariance matrix of the gth group, respectively. Hence,
the constrained ML estimate θ̃ of θ0 is defined as the vector that minimizes F (θ)
subject to h(θ) = 0. Differentiate F (θ) with respect to θ twice to find

Ḟ (θ) = −
G∑

g=1

{(Ng − 1)∆gw(θ)[Ω−1
gw(θ) ⊗ Ω−1

gw(θ)]V ec[Sg − Ωgw(θ)]

+∆g(θ)[Ω−1
g (θ) ⊗ Ω−1

g (θ)]V ec[Ngx̄gx̄
′
g − Ωg(θ)]},

F̈ (θ) = −
G∑

g=1

{(Ng − 1)Ag(θ)[Iq ⊗ V ec(Sg − Ωgw(θ))]

+Bg(θ)[Iq ⊗ V ec(Ng x̄gx̄
′
g − Ωg(θ))]} + HG(θ),

where Ag(θ) = ∂[∆gw(θ)(Ω−1
gw(θ) ⊗ Ω−1

gw(θ))]/∂θ, Bg(θ) = ∂[∆g(θ)(Ω−1
g (θ) ⊗

Ω−1
g (θ))]/∂θ.

For simplicity ∆gw = ∆gw(θ0), Ωgw = Ωgw(θ0), Ωg = Ωg(θ0), ∆g = ∆g(θ0),
and HG = HG(θ0). When Ng is large, the positive definite matrix HG is a good
approximation to the Hessian matrix F̈ (θ0) because Sg − Ωgw and Ngx̄gx̄

′
g − Ωg

are small. We now consider a less straightforward situation without assumptions

on the Ng. Let DG(δ) = {θ : ‖H
1
2
G(θ − θ0)‖ ≤ δ}, and ∂DG(δ) = {θ :

‖H
1
2
G(θ − θ0)‖ = δ}.

Lemma 1. For any δ > 0, supθ∈DG(δ) ‖H
− 1

2
G F̈ (θ)H

− 1
2

G − Iq‖ P−→ 0, where H
− 1

2
G

is the inverse square root of HG.

Corollary 1. For all δ > 0, P{F̈ (θ) − 2−1HG ≥ 0, for all θ ∈ DG(δ)} −→ 1.

Corollary 2. If {θG, G = 1, 2, . . .} is any sequence of random vectors such

that ‖H
1
2
G(θG − θ0)‖ = OP (1), we have ‖H− 1

2
G F̈ (θG)H

− 1
2

G − Iq‖ P−→ 0.

Let θ̂ be the ML estimate of θ0 without constraints. The consistency of θ̂ is
a consequence of the following lemma, and also useful in deriving our results on
constrained estimation.

Lemma 2. ‖H
1
2
G(θ̂ − θ0)‖ = OP (1).

Results on the asymptotic distribution of θ̂ are essential to constructing
confidence intervals and to testing various hypotheses concerning θ0. In contrast
to Lee (1990), the asymptotic normality of θ̂ will be derived below without any
assumption on the Ng.
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Lemma 3. The asymptotic distribution of H
− 1

2
G Ḟ (θ0) is N(0, 2Iq).

Theorem 1. The asymptotic distribution of H
1
2
G(θ0)(θ̂ − θ0) is N(0, 2Iq).

Proofs for the lemmas and corollaries are omitted, they are available from the
authors. The proofs for the main theorems are given in the Appendix. Lemmas
2 and 3, and Theorem 1 on the unconstrained ML estimation, are not given in
Lee (1990).

From the Implicit Function Theorem (see, e.g., Apostol (1973)), conditions
(c3) and (c4), it follows that there exists a function f and (q − r) subvectors θ∗

and θ∗0 of θ and θ0 respectively, such that θ = f(θ∗), and θ0 = f(θ∗0). Obviously,
the optimization problem of minimizing F (θ) subject to h(θ) = 0 is equivalent
to minimizing F (f(θ∗)) with respect to θ∗.

Let θ̂∗ be the minimum of F (f(θ∗)), it follows that θ̃ = f(θ̂∗). Let 2Φ be the
asymptotic covariance of θ̂∗. From the Delta Theorem and Theorem 1, we have

H
1
2
G(θ0)(θ̃ − θ0)

L−→ N [0, lim
G→∞

2H
1
2
G(θ0)ḟ(θ∗0)

′Φḟ(θ∗0)H
1
2
G(θ0)]. (2.3)

Sometimes it is difficult or impossible to obtain f(.). The following theorem gives
a more convenient expression for the asymptotic covariance matrix of θ̃ that does
not depend on f(.).

Let Q(θ, β) = F (θ) + β′h(θ), where β is the vector of Lagrange multipliers,
and let β̃ be its estimate. It follows from the first order necessary condition that
Q̇(θ̃, β̃) = 0, h(θ̃) = 0, where Q̇(θ, β) = ∂Q(θ, β)/∂θ.

Theorem 2. The joint asymptotic distribution of H
1
2
G(θ0)(θ̃ − θ0) and G− 1

2 β̃ is
N(0, 2B), where

B = lim
G→∞

(
Iq − H

− 1
2

G ḣ(ḣ′H−1
G ḣ)−1ḣ′H

− 1
2

G 0
0 G−1(ḣ′H−1

G ḣ)−1

)
,

with h = h(θ0) and ḣ = (∂h(θ)/∂θ)|θ=θ0 .

It is clear from Theorem 2 that H
1
2
G(θ̃ − θ0) and G− 1

2 β̃ are asymptotically
independent. The following theorem gives us the asymptotic distribution of the
goodness of fit test statistic about the constraints.

Theorem 3. The asymptotic distribution of F (θ̃) − F (θ̂) is chi-square with
degrees of freedom r.

Suppose h∗(θ) = (h1(θ), . . . , hj(θ)) is a subvector of h(θ) with j < r. Let
θ̃∗ be the constrainted ML estimate of θ0 subject to h∗(θ) = 0 only. Using the
technique in the proof of Theorem 3, we can obtain the following corollary.
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Corollary 3. The asymptotic distribution of F (θ̃)−F (θ̃∗) is chi-square with r-j
degrees of freedom.

3. An example

To provide an example with a large number of groups and small sample
sizes in some of the groups, we analyze a portion of the data in a study of
the relationship between AIDS and the use of condom (Morisky, Tiglao, Sneed,
Tempongko, Baltazas, Detels and Stein, (1998)). The data were collected from
female sexworkers in 97 establishments (nightclubs) in Philippine cities. The
questionnaire involves knowledge about AIDS; belief, attitudes and behaviors;
attitudes towards condoms; alcohol and drug use; etc. This is a two-level data
set with establishments at the group level and sexworkers at the individual level.
To illustrate the constrained ML estimation results, six variables were selected
from a total of 137. The questions corresponding to the first three variables are:
how great are the risks of getting AIDS or the AIDS virus from (1) kissing a
person with the AIDS virus on the cheek? (2) deep kissing with someone who
has the AIDS virus? and (3) having sexual intercourse with someone who has
the AIDS virus using a condom? The questions corresponding to the last three
variables are: (4) how much of a threat do you think AIDS is to the health
of people? (5) what are the chances that you yourself might get AIDS? (6)
how worried are you about getting AIDS? For brevity, observations with missing
entries were deleted. The different sample sizes at the individual level are given
in Table 1. The “Frequency” rows give the numbers of establishments with the
corresponding sample sizes. For example, there are 6 establishments with sample
sizes equal to 1, 3 establishments with sample sizes equal to 11, and so on. The
total sample size is 758. There are 97 groups and some of the group sizes are
small.

Table 1. The distribution of Ng in the AIDS data.

Ng 1 2 3 4 5 6 7 8 9 10 Subtotal
Frequency 6 11 13 6 5 6 11 7 7 2 74

Ng 11 12 13 15 16 17 19 28 59 Subtotal
Frequency 3 6 3 2 3 2 1 2 1 23

The raw data were standardized. Based on some exploratory analysis, the
data set was analyzed via the following two-level confirmatory factor analysis
model with invariant within-group covariance structure:

ΩB = ΛBΦBΛ′
B + ΨB ; Ωgw = Ωw = ΛwΦwΛ′

w + Ψw, g = 1, . . . , G, (3.1)
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where ΛB and Λw are the factor loading matrices, ΦB and Φw are the covariance
matrices of the factors, and ΨB and Ψw are the diagonal convariance matrices of
the error measurements, respectively. Moreover, the following specifications are
imposed on the parameter matrices in the estimation:

ΛB = [ΛB(1, 1) ΛB(2, 1) ΛB(3, 1) 0∗ ΛB(5, 1) 0∗]′, ΦB = 1.0∗,
ΨB = diag(ΨB(1, 1), . . . ,ΨB(6, 6))

Λw =

[
Λw(1, 1) Λw(2, 1) Λw(3, 1) 0∗ 0∗ 0∗

0∗ 0∗ 0∗ Λw(4, 2) Λw(5, 2) Λw(6, 2)

]′
,

Φw =

[
1.0∗ Φw(2, 1)

Φw(2, 1) 1.0∗

]
, Ψw = diag(Ψw(1, 1), . . . ,Ψw(6, 6)),

where parameters with an “∗” are treated as fixed parameters. Thus, the total
number of unknown parameters is 23. For the sake of illustration, the following
linear and nonlinear constraints are imposed:

(i) Λ2
B(k, 1) + ΨB(k, k) + Λ2

w(k, 1) + Ψw(k, k) = 1.0, for k = 1, 2, 3;

(ii) Λ2
B(k, 1) + ΨB(k, k) + Λ2

w(k, 2) + Ψw(k, k) = 1.0, for k = 4, 5, 6;

(iii) Λw(3, 1) =
1
3
Λw(1, 1) =

1
4
Λw(2, 1); Λw(4, 2) = Λw(5, 2) = Λw(6, 2).

(3.2)
The six nonlinear constraints were used to fix the diagonal of the covariance
matrix of the manifest variables to 1.0, while the four linear constraints specify
some relationships among the parameters in the loading matrix of the within-
group structure. According to the basic definition of the factor analysis model
(Jöreskog (1969); Mulaik (1972)), the relative sizes of the factor loadings as
specified in (iii) represent corresponding effects of the manifest variables on the
latent factors. These constraints are realistic and common in confirmatory factor
analysis. The unconstrained and the constrained ML estimates of the unknown
parameters were obtained via a modified EM algorithm as developed in Lee and
Tsang (1999). The results are presented in Table 2. Note that the constrained
ML estimates satisfy the constraints given in (3.2). Moreover, it can be seen from
this table that there are two non-overlapping factors in the invariant within-group
covariance structures. The first can be interpreted as a factor about the risk of
getting AIDS, the other as a factor about the worry of AIDS. The between-group
covariance structure is a single factor analysis model which basically describes
the influence of the establishments. The discrepancy function F (θ) evaluated at
the saturated model, Model (3.1) without any constraints, and Model (3.1) with
constraints (3.2) is equal to 3857.8, 3891.5 and 3894.2, respectively. The value
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of the goodness-of-fit statistic for Model (3.1) is about 33.7. On 19 degrees of
freedom, it seems that Model (3.1) barely fits the sample data. The goodness of
fit statistic, F (θ̃) − F (θ̂), for testing the constraints is about 2.7. On 10 degrees
of freedom, it can be concluded that these constraints are not rejected.

Some simulation studies have been conducted to study the empirical per-
formance of the constrained ML estimates. The results obtained indicate that
the ML estimates and their standard errors estimates are accurate, and that the
empirical distributions agree with the asymptotic theory developed.

Table 2. ML estimates of the AIDS data.
Parameter Unconstrained Constrained Parameter Unconstrained Constrained

Estimate Estimate Estimate Estimate

ΛB(1, 1) 0.279 0.265 Λw(1, 1) 0.579 0.590

ΛB(2, 1) 0.328 0.316 Λw(2, 1) 0.811 0.784

ΛB(3, 1) 0.200 0.196 Λw(3, 1) 0.203 0.196

ΛB(5, 1) -0.323 -0.329 Λw(4, 2) 0.461 0.370

ΨB(1, 1) 0.017 0.018 Λw(5, 2) 0.300 0.370

ΨB(2, 2) 0.026 0.025 Λw(6, 2) 0.361 0.370

ΨB(3, 3) 0.045 0.044 Ψw(1, 1) 0.581 0.560

ΨB(4, 4) 0.089 0.090 Ψw(2, 2) 0.227 0.258

ΨB(5, 5) 0.142 0.135 Ψw(3, 3) 0.880 0.876

ΨB(6, 6) 0.167 0.165 Ψw(4, 4) 0.704 0.770

Ψw(5, 5) 0.657 0.619

Ψw(6, 6) 0.708 0.697

Φw(2, 1) 0.259 0.250

4. Discussion

Consider the two-level structural equation models with large sample size Ng

in each group; as pointed out by a reviewer (see also Lee and Poon (1993)), the
statistical analysis of the within-group structures can be based on the marginal
sample covariance matrices Sg, g = 1, . . . , G. Then, since S1, . . . , SG are inde-
pendent, analysis of this kind reduces to the standard multisample analysis of
single-level models with constraints. Statistical theory for the latter is well es-
tablished; see, Lee and Tsui (1982), EQS (Bentler (1992)) and LISREL (Jöreskog
and Sörbom (1996)). However, many practical problems involve small Ng. These
situations are less straightforward because we cannot use the asymptotic proper-
ties of Sg and x̄g directly to establish the results. To analyze the between-group
structure and to achieve the asymptotic properties, we require a significantly
large number of groups to provide the required information.
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Let F+(θ) be the GLS function given in Lee (1990), Ḟ+(θ) and F̈+(θ) be the
corresponding gradient vector and the Hessian matrix, respectively, and θ̂+ and
θ̃+ be the unconstrained and the constrained GLS estimators of θ0, respectively.
It can be shown that lemmas, corollaries, and theorems about ML estimation
presented in Section 2 are also valid for the GLS estimation if F (θ), Ḟ (θ), F̈ (θ),
θ̂ and θ̃ are replaced by F+(θ), Ḟ+(θ), F̈+(θ), θ̂+ and θ̃+, respectively.
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Appendix. Proofs of theorems

Proof of Theorem 1. From the Mean Value Theorem, there exists a θ∗ between

θ0 and θ̂ such that −H
− 1

2
G Ḟ (θ0) = H

− 1
2

G F̈ (θ∗)H
− 1

2
G H

1
2
G(θ̂ − θ0). From Corollary 2

and Lemma 2, we have H
− 1

2
G F̈ (θ∗)H

− 1
2

G
P−→ Iq. So

H
1
2
G(θ̂ − θ0) + H

− 1
2

G Ḟ (θ0)
P−→ 0. (A.1)

It follows from Lemma 3 that H
1
2
G(θ̂ − θ0)

L−→ N(0, 2Iq).

Proof of Theorem 2. From the Mean Value Theorem, there exits a θ∗ between
θ0 and θ̃, such that

−Ḟ (θ0) = Q̈(θ∗, β̃)(θ̃− θ0)+ ḣβ̃ = F̈ (θ∗)(θ̃− θ0)+ ḣβ̃ + ḧ(θ∗)(Iq ⊗ β̃)(θ̃− θ0); and

−H
− 1

2
G Ḟ (θ0) = H

− 1
2

G F̈ (θ∗)H
− 1

2
G H

1
2
G(θ̃− θ0)+ H

− 1
2

G ḣβ̃ + H
− 1

2
G ḧ(θ∗)(Iq ⊗ β̃)(θ̃− θ0).

(A.2)
From Corollary 2, (2.3) and Theorem 1, we have

‖H− 1
2

G F̈ (θ∗)H
− 1

2
G − Iq‖ P−→ 0. (A.3)

Because Ḟ (θ̃) + ḣ(θ̃)β̃ = 0, we have G−1β̃ = −
[
ḣ(θ̃)′ḣ(θ̃)

]−1
ḣ(θ̃)′

[
G−1Ḟ (θ̃)

]
.

Similarly, from Corollary 2, Lemma 3 and Theorem 1, we have G−1[Ḟ (θ̃) −
Ḟ (θ0)]

P−→ 0, and G−1Ḟ (θ̃) P−→ 0. So G−1β̃ converges to zero in probability.
Because h(θ̃) = h(θ0) = 0, there exits a θ+ between θ0 and θ̃, such that 0 =



144 WENYANG ZHANG AND SIK-YUM LEE

G
1
2 [h(θ̃) − h] = G

1
2 ḣ(θ+)′H

− 1
2

G H
1
2
G(θ̃ − θ0). From (A.2), (A.3) and Theorem 1, it

can be shown that
H

1
2
G(θ̃ − θ0)
G− 1

2 β̃


+


Iq − H

− 1
2

G ḣ(ḣ′H−1
G ḣ)−1ḣ′H

− 1
2

G

G− 1
2 (ḣ′H−1

G ḣ)−1ḣ′H− 1
2

G


H

− 1
2

G Ḟ (θ0)
P−→ 0. (A.4)

On the basis of the result in Lemma 3, the proof is complete.

Proof of Theorem 3. There exists a θ∗ between θ0 and θ̃, and a θ∗∗ between
θ0 and θ̂ such that F (θ0)−F (θ̃) = 1

2(θ0− θ̃)′Q̈(θ∗, β̃)(θ0− θ̃), and F (θ0)−F (θ̂) =
Ḟ (θ̂) + 1

2(θ0 − θ̂)′F̈ (θ∗∗)(θ0 − θ̂). Since Ḟ (θ̂) = 0, we can obtain via Corollary 2,
Lemma 2 and Theorem 1 that

F (θ̃)−F (θ̂)−{1
2
(H

1
2
G(θ0− θ̂))′(H

1
2
G(θ0− θ̂))− 1

2
(H

1
2
G(θ0− θ̃))′(H

1
2
G(θ0− θ̃))} P−→ 0.

(A.5)

From (A.4), we have H
1
2
G(θ̃−θ0)+(Iq−H

− 1
2

G ḣ(ḣ′H−1
G ḣ)−1ḣ′H− 1

2
G )H

− 1
2

G Ḟ (θ0)
P−→ 0.

Using (A.1),

F (θ̃) − F (θ̂) − 2−1{(H− 1
2

G Ḟ (θ0))′H
− 1

2
G Ḟ (θ0)

−(H
− 1

2
G Ḟ (θ0))′[Iq − H

− 1
2

G ḣ(ḣ′H−1
G ḣ)−1ḣ′H− 1

2
G ]2H

− 1
2

G Ḟ (θ0)}
= F (θ̃) − F (θ̂) − [2−

1
2 H

− 1
2

G Ḟ (θ0)]′[H
− 1

2
G ḣ(ḣ′H−1

G ḣ)−1ḣ′H
− 1

2
G ]

·[2− 1
2 H

− 1
2

G Ḟ (θ0)]
P−→ 0. (A.6)

Since H
− 1

2
G ḣ(ḣ′H−1

G ḣ)−1ḣ′H
− 1

2
G is an idempotent matrix with rank r, it follows

from (A.6) that F (θ̃) − F (θ̂) L−→ χ2
r .
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Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis.

Psychometrika 34, 183-202.
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