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Abstract: Four powerful generalizations of the usual local polynomial nonparamet-

ric regression methodology are (a) local polynomial methods in generalized linear

models; (b) varying coefficient generalized linear models, where the possibly multi-

variate coefficients in a generalized linear model are estimated nonparametrically;

(c) local likelihood methods; and (d) local estimating equations, which generalize

nonparametric regression to the estimating equation context. We construct boot-

strap confidence intervals for the nonparametrically estimated functions in all four

contexts.
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1. Introduction

Ordinary local polynomial nonparametric regression function estimation
(Fan and Gijbels (1996) is a convenient reference) has undergone active devel-
opment recently. Confidence sets for the nonparametrically estimated function
have been developed: Härdle and Marron (1991) use a bootstrap approach while
Eubank and Speckman (1993) use asymptotics. Regression function estimation
has been generalized considerably in the past few years, to generalized linear
models (Fan, Heckman and Wand (1995)), to varying coefficient models and lo-
cal likelihood (Tibshirani and Hastie (1987), Kauermann and Tutz (1999)), and
to estimating equations (Carroll, Ruppert and Welsh (1998)). However, to the
best of our knowledge, bootstrap–type confidence sets have not been developed
for these useful generalizations. The purpose of our article is to provide one such
approach, which applies in all the contexts described above.

Our method combines the ideas from the wild–bootstrap of Härdle and Mar-
ron (1991) (see Wu (1986) for the parametric version) with the estimating func-
tion bootstrap, suggested in a technical report by Kauermann and Tutz, to form
a new and asymptotically justified bootstrap procedure. Our bootstrap is dif-
ferent from either: the former is restricted to ordinary kernel regression, while
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the latter is restricted to ordinary kernel regression in varying coefficient gener-
alized linear models. Our method improves upon that of the latter by having
asymptotically correct coverage.

Local estimating functions are the most general version of these approaches,
and we briefly review the ideas and develop some necessary notation. If the
data (which might involve responses and covariates) are independent observations(
Ỹ1, Ỹ2, . . . , Ỹn

)
, with the Ỹ ’s possibly vector-valued, then a parameter Θ is

estimated by solving the estimating equation

0 =
n∑

i=1

ψ(Ỹ i, Θ̂). (1)

The function ψ(·, ·) is called an estimating function. We allow Θ to be vector-
valued and ψ must have the same dimension as Θ.

In what follows, if A is � × q and B is r × s, then A ⊗ B is the Kronecker
product defined as the �r× qs matrix which is formed by multiplying individual
elements of A by B, e.g., if A is a 2 × 2 matrix,

A⊗ B =
[
a11 a12

a21 a22

]
⊗ B =

[
a11B a12B
a21B a22B

]
.

As is standard, in nonparametric regression we wish to allow a parameter
to depend on a predictor. Thus, we have the parametric problem of estimating
a mean, while the nonparametric function analogue allows the mean to depend
upon a predictor. In making this transition, we will refer to the function so
obtained as Θ(x).

The local estimating function method for estimating Θ(·) can involve local
polynomials. With superscript (j) denoting a jth derivative with respect to x

and with bj = Θ(j)(x0)/j!, the local polynomial of order p ≥ 0 in a neighborhood
of x0 is Θ(x) ≈ ∑p

j=0 bj(x − x0)j . The local weight for a value of x near x0 is
denoted by wh(x, x0), where h is a tuning constant. For example, the weights
wh(X,x) can be the nearest neighbor weights with span h of loess (Chambers and
Hastie (1992)) or kernel weights with kernel density function K(·), bandwidth h
and weights wh(X,x) = h−1K{(X − x)/h} = Kh(X − x). Carroll, et al. (1998)
propose to solve in (b0, . . . ,bp) the q × (p+ 1) equations

0 =
n∑

i=1

wh(Xi, x0)[Gp (Xi − x0) ⊗ψ{Ỹ i,
p∑

j=0

bj (Xi − x0)
j}], (2)

where Gt
p(v) =

(
1, v, v2, . . . , vp

)
. The final estimates are Θ̂(x0) = b̂0. Usually,

only a scalar function of Θ(·) is of interest.
A few examples illustrate the generality of the approach.
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1. In ordinary nonparametric regression, the response is Ỹ = Y and ψ(Ỹ ,v) =
Y − v.

2. In generalized linear models, the mean function is µ(x), the variance is pro-
portional to V (x), the response is Ỹ = Y , and ψ(Ỹ ,Θ) = {Y − µ(Θ)}µ(1)

(Θ)/V (Θ), where µ(1)(Θ) = (∂/∂Θ)µ(Θ).
3. In varying coefficient generalized linear models, Ỹ = (Y,Z), Θ = (θ0,Θt

1)t

and the mean function is µ(θ0 + Θt
1Z), where Z is some design matrix. The

estimating function is

ψ(Ỹ ,Θ) =
[
{Y − µ(θ0 + Θt

1Z)}µ(1)(θ0 + Θt
1Z)/V (θ0 + Θt

1Z)
]
(1,Z)t.

Let χ(ỹ,v) = (∂/∂vt)ψ(ỹ,v). Then, for constants c(n, p) defined below, the
asymptotic covariance matrix of (b̂0, . . . , b̂p) is estimated by {Bh(x0)}−1Ch(x0)
{Bt

h(x0)}−1, where

Ch(x0) = c(n, p)
n∑

i=1

w2
h(Xi, x0)

[{
Gp(Xi − x0)Gt

p(Xi − x0)
}
⊗ (ψ̂iψ̂

t

i)
]
; (3)

Bh(x0) =
n∑

i=1

wh(Xi, x0)
[{

Gp(Xi − x0)Gt
p(Xi − x0)

}
⊗ χ̂i

]
, (4)

where ψ̂i = ψ{Ỹ i, Θ̂(Xi)} and analogously for χ̂i. The covariance estimate is
a nonparametric version of the sandwich estimate (often known as the robust
covariance matrix estimator). An asymptotic argument justifying these formula
is given by Carroll, et al. (1998). In some cases, e.g., local likelihood, it is known
that E(ψiψ

t
i|X = x) = E(χi|X = x), in which case one would replace ψ̂iψ̂

t
i by

χ̂i in (3).
The usual sandwich formula (Huber (1967), White (1982), Diggle, Liang and

Zeger (1994)) sets c(n, p) = 1, and the confidence intervals are formed in the usual
way by comparing to a standard normal distribution. In ordinary parametric
linear regression, we have found that such a procedure can have poor coverage
probabilities, even for samples sizes up to 30. For example, with a sample size
of 20 and normally distributed predictors, the coverage is only 92%. When
the predictors have a Laplace distribution the coverage falls to 90%. Ordinary
bootstrap–t confidence intervals based on this sandwich estimator have coverage
probabilities of only 94% and 92% respectively.

In unpublished work, we have found that in simple linear regression, the
combination of setting c(n, p) = n/(n−p−3), adjusting the terms ψ̂i for leverage,
and comparison with the tn−p−3 distribution instead of the standard normal
distribution, markedly improves coverage — to 95% for normal predictors and
94% for Laplace predictors in the case of a sample size of 20. The net effect is



124 C. D. GALINDO, H. LIANG, G. KAUERMANN AND R. J. CARROL

to replace ψ̂i by c1/2(n, p)ψ̂i/l̂
1/2
i , where l̂i is the leverage adjustment. In this

paper, we suggest versions of c(n, p) and leverage adjustments, while letting the
wild–bootstrap take the place of the tn−p−3 distribution.

The outline of this paper is as follows. In Section 2, we describe the algo-
rithm. A small simulation is given in Section 3. Section 4 contains an example
from nutritional epidemiology. Concluding remarks are given in Section 5.

2. Algorithm

To motivate the algorithm, we briefly describe the wild–bootstrap of Härdle
and Marron (1991) and the estimating function bootstrap suggested in a technical
report by Kauermann and Tutz. The combination of the two methods is new.

In ordinary kernel regression of scalar random variables Y on X, the wild–
bootstrap works as follows. Let Θ̂h(x) be the kernel regression estimator based on
a bandwidth h, and let Θ̂g(x) be based on a larger bandwidth g (see below). The
residuals are ε̂i = Yi − Θ̂h(Xi). Härdle and Marron generate a wild–bootstrap
distribution of ε∗i , which is defined precisely below but is in general a 2–point
distribution with mean zero, variance ε̂2i , and third moment ε̂3i . Then the boot-
strap observations are Y ∗

i = Θ̂g(Xi) + ε∗i . The bootstrapped function is Θ̂
∗
h(x),

i.e., ordinary kernel regression with bandwidth h applied to the bootstrap data.
Although we can use a distribution with more than two points from which to con-
duct the bootstrap, simulation results not reported here indicate no appreciable
benefit in doing so.

In local estimating equations, the major modification of this algorithm that
is necessary is to define an appropriate “residual” to which the wild–bootstrap
can be applied. Let ei,j be a 1 × j vector of zeros with a one in the ith position,
and Ei,j,q = ei,j⊗Iq. Then we propose that the “residual” in estimating functions
is {E1,p+1,qBh(Xi)Et

1,p+1,q}−1ψ{Ỹ i, Θ̂h(Xi)}.
What Kauermann and Tutz suggest is to fix the first term and bootstrap only

the second, in our case by the wild–bootstrap. The algorithm is thus defined as
follows.
(a) Let Θ̂h(·) be the local estimating equation estimator based on local polyno-

mials of order p with tuning constant h. Let Θ̂g(·) be the same estimator but
with a larger tuning constant g. In kernel regression, one asymptotically jus-
tifiable choice for g is g = h(2p+3)/(2p+5) when p is odd and g = h(2p+5)/(2p+7)

when p is even. Of course, it is asymptotically justifiable to add constant
multipliers in front of these default choices.

(b) Let Bh(·) be defined by (4).
(c) Let ε∗i be the wild–bootstrap version of ε̂i = c(n, p, h,Xi)ψ{Ỹ i, Θ̂h(Xi)},

where c(n, p, h,Xi) is analogous to c(n, p) in (3) and is meant to be an
empirical adjustment to improve coverage probability. In our simulations,
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we used c(n, p, h,Xi) = [nh(Xi)/{nh(Xi) − (p + 3)}]1/2, where nh(Xi) =
K−1

h (0)
∑n

j=1Kh(Xj − Xi), the sum of standardized weights. In our simu-
lations, we had no cases that nh(Xi) ≤ p + 3, but if this were to happen
one could either bound c(n, p, h,Xi) by an arbitrary number or follow the
suggestion of a referee: nh(Xi) = {∑j Kh(Xj −Xi)}2/

∑
j K

2(Xj −Xi). Let
a = ε̂i(1 − 51/2)/2, b = ε̂i(1 + 51/2)/2, c = (5 + 51/2)/10. Then ε∗i equals a
with probability c and equals b with probability (1 − c). This distribution
has mean zero and covariance matrix ε̂iε̂ti.

(d) Define Ỹ∗
i = Θ̂g(Xi) + {E1,p+1,qBh(Xi)Et

1,p+1,q}−1ε∗i .
(e) The bootstrap function estimate is Θ̂

∗
h(·), the standard local polynomial re-

gression estimator of order p with tuning constant h when the response is
Ỹ∗

i . It is important to emphasize that the regression being done is simply a
standard local polynomial regression function estimate. Thus, it is a solution
to (2), but with ψ(y, v) = y − v.

(f) Finally, apply a confidence interval construction algorithm such as that of
Härdle and Marron (1991, p.785), although note that they have a typograph-
ical error: in their equation (2.6), the sets Ij,k(βj) should be -Ij,k(βj), while
the term Θ̂g should not be subtracted. Thus, if the upper and lower bounds
of a 1 − α interval for the bootstrap distribution of Θ̂

∗
h(·) − Θ̂g are a and b,

respectively, a pointwise confidence interval is Θ̂g − b to Θ̂g − a.
In the appendix, we give a proof for kernel weights that the bootstrap con-

fidence intervals achieve asymptotically their nominal level.
To handle leverage, the estimator ψ̂ can be constructed to have a variance

approximating that of ψ. For example, when ψ is scalar, (2) can be written as

0 =
n∑

i=1

wh(Xi, x0)ψ
{
Ỹ i,

p∑
j=0

bj (Xi − x0)
j
}
Gp (Xi − x0) .

Using a Taylor’s series expansion, Θ̂h(x0) ≈ Θ(x0) − e1,p+1B−1
h (x0)Ah,p(x0)ψ,

where ψ = (ψ1, . . . ,ψn)t, and Ah,p(x) is the (p+ 1) × n matrix defined by

Ah,p(x) =




wh(X1, x) · · · wh(Xn, x)
... · · · ...

wh(X1, x)(X1 − x)p · · · wh(Xn, x)(Xn − x)p


 .

Thus, by defining Sh(Xi) = χie1,p+1B−1
h (Xi)Ah,p(Xi), we see ψ̂i ≈ {ei,n −

Sh(Xi)}ψ. In order to equate the variance of the residual with its estimate, we
suggest replacing ψ̂i with ch(Xi)−1/2ψ̂i, where ch(Xi) = {ei,n − Sh(Xi)}{ei,n −
Sh(Xi)}t. Change part (c) of the algorithm to let ε∗i be the wild–bootstrap version
of the modified residual estimate, ε̂i,new = [nh(Xi)/{nh(Xi) − (p + 3)}]1/2ch(Xi

)−1/2ψ̂i.
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This residual modification can be extended analogously to multivariate ψ. In
this instance ψ̂i ≈ {Ei,n,q − Sh(Xi)}ψ, with Sh(Xi)=χiE1,p+1,qB−1

h (Xi)A∗
h,p,q(

Xi), A∗
h,p,q(Xi) = Ah,p(Xi) ⊗ Iq, and ψ = (ψt

1, · · · ,ψt
n)t. Now set Ch(Xi) =

{Ei,n,q−Sh(Xi)}{Ei,n,q−Sh(Xi)}t, estimate ψi by C−1/2
h (Xi)ψ̂i, and once again

use ε̂i,new in place of ε̂i.

3. Simulation

To check the methods, we performed several small local linear regression sim-
ulations. Given X, Y is simulated to follow a normal distribution with unit vari-
ance and a mean of eitherm1(X) = 2X+sin 8X or m2(X) = (2π)−1/24(X−0.5)+
4exp[−2{4(X −0.5)}2]. The latter function, m2(·), is the one used in the simula-
tions of Härdle and Marron but translated and rescaled to the (0, 1) domain. The
distribution of X is set to either Uniform(0, 1) or Normal(0.5, 0.25). We consider
the construction of 95% pointwise confidence intervals using both unmodified
and modified residuals. All simulations use a fixed bandwidth (h = 0.175 and
0.125 for n = 100 and 200 respectively), though similar results are achieved using
Ruppert’s (1997) empirical-bias bandwidth selection method (EBBS). Figure 1
graphs the data along with m(X) and its estimates, based on the bandwidths h
and g, for a typical simulation. Note how m̂g(X) is over-smoothed compared to
m̂h(X).

E(Y |X) with estimates based on bandwidths h and g
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Figure 1. True value of E(Y |X) = m2(X) = (2π)−1/24(X−0.5)+4exp[−2{4(
X − 0.5)}2], denoted by the solid line, along with the estimates m̂2h(X) and
m̂2g(X), in dotted and dashed lines respectively.
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Denote the unmodified residuals by ε̂i = Yi − m̂h(Xi), and the modified
residuals by ε̂i,new = [nh(Xi)/{nh(Xi) − (p + 3)}]1/2ch(Xi)−1/2ε̂i. Empirical
coverage rates are calculated using 200 simulations, each with 500 bootstraps.

Table 1 summarizes the results of the simulation. We see that the computed
intervals fall substantially below the targeted confidence levels when using ε̂i to
form the bootstrap residuals, even with a sample size of 200 observations. The
pointwise intervals at the boundaries cause concern, with low coverage compared
to the center.

Table 1. Empirical coverage rate comparison of confidence intervals using
unmodified residuals estimates, ε̂i = Yi − m̂h(Xi), versus modified resid-
ual estimates, ε̂i,new = [nh(Xi)/{nh(Xi) − (p + 3)}]1/2ch(Xi)−1/2ε̂i. Target
confidence levels for pointwise intervals are 95%.

Comparison of confidence intervals using
unmodified versus modified residual estimates

Sample Size 100 200
ε̂i ε̂i,new ε̂i ε̂i,new

X ∼ Uniform(0, 1)

m1(X)
X = 0 0.835 0.895 0.880 0.925
X = 0.5 0.930 0.960 0.960 0.965
X = 1 0.835 0.930 0.885 0.935

m2(X)
X = 0 0.815 0.875 0.855 0.920
X = 0.5 0.800 0.840 0.925 0.955
X = 1 0.840 0.920 0.900 0.950

X ∼ Normal(0.5, 0.25)

m1(X)
X = 0 0.620 0.880 0.730 0.885
X = 0.5 0.870 0.925 0.940 0.965
X = 1 0.610 0.875 0.725 0.915

m2(X)
X = 0 0.630 0.885 0.730 0.885
X = 0.5 0.765 0.905 0.920 0.935
X = 1 0.605 0.885 0.745 0.910

Now consider the use of the estimates ε̂i,new, which are greater in magnitude
than ε̂i, allowing for wider intervals and increased coverage rates. The correction
factors are largest in areas with the least information, and reduce the effects of
imprecision by widening the confidence intervals. When X follows a uniform
distribution the estimation of m(X) uses approximately half the observations on
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the boundary of the unit interval than at the center. Accordingly, the confidence
intervals on the endpoints of X are wider than those at the center, as illustrated
in Figure 2 with a set of data from a run different from that of Figure 2. This phe-
nomenon is more extreme when X follows a normal distribution, with even fewer
observations at the boundaries when compared to internal regions. Consequently,
we would not expect the simulations to perform as well at the endpoints when X
is normal than when X is uniform — precisely what occurs in the simulations.
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Figure 2. Confidence band constructed using wild–bootstrap method with
modified residuals, ε̂i,new . The dashed line represents the true function
m2(X) = (2π)−1/24(X − 0.5) + 4exp[−2{4(X − 0.5)}2].

Unlike the outcome of bootstrapping off ε̂i, the modified residual construct
reduces the coverage disparity between pointwise confidence intervals at the
boundary points and internal points. Also, with a sample size of 100 the confi-
dence intervals are, in most instances, nearer nominal levels than the results for
ε̂i with a sample size of 200, see Table 1.

We also computed nominal 80% global confidence intervals for the function
m1(x) when X was uniformly distributed, using the Härdle–Marron construc-
tion. As in their paper, using the unmodified residuals results in considerable
undercoverage, with the actual level being 60% with n = 200. Using modified
residuals, the actual level with n = 200 is 76%, much closer to the nominal level.

4. Example

Here we reconsider an example from nutritional epidemiology discussed in
detail by Carroll, et al. (1998). The instrument of choice in large nutritional
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epidemiology studies is the Food Frequency Questionnaire (FFQ). For proper
interpretation of epidemiologic studies that use FFQ’s as the basic dietary in-
strument, one needs to know the relationship between reported intakes from the
FFQ and true usual intake, defined operationally below. Such a relationship is
ascertained through a substudy, commonly called a calibration study. Carroll,
et al. focus on the estimation of the correlation between FFQ intake and usual
intake, using the variable Percent of Calories from Fat. FFQ’s are thought to
often involve a systematic bias (i.e., under- or over-reporting at the level of the
individual). The other two instruments that are commonly used are the 24-hour
food recall and the multiple-day food record (FR). Each of these FR’s is more
work-intensive and costly, but is thought to involve considerably less bias than a
FFQ. Carroll, et al. comment on this and other issues in nutrition data.

For the ith individual (i = 1, . . . , n), let Qi denote the intake of a nutrient
reported on a FFQ. For the jth (j = 1, . . . ,m) replicate on the ith person, let
Fij denote the intake reported by a FR. Finally, long–term usual intake for the
ith person is denoted by Ti. A simple model relating these three is a standard
linear errors-in-variables model

Qi = β0 + β1Ti + εi;

Fij = Ti + Uij ; j = 1, . . . ,m. (5)

The Uij ’s are the within–individual variation in FR’s. All random errors, i.e., ε’s
and U ’s, are uncorrelated for purposes of this paper.

The Nurses’ Health Study (Rosner, Willett and Spiegelman (1989)), here-
after denoted by NHS, has a calibration study of n = 168 women, all of whom
completed a single FFQ and four multiple-day food diaries (m = 4 in our no-
tation). Our interest here is in estimating the quantity ρQT , the correlation
between the FFQ and usual intake. Carroll, et al. note that there appears to
be a relationship between ρQT and X = age, and it is this relationship which we
seek to estimate.

Nutrition data with repeated measurements typically have the feature of time
trends in total amounts and sometimes in percentages, so that, for example, one
might expect reported caloric intake (energy) to decline over time. To take this
into account, we ratio adjusted all measurements so that the mean of each FR
equals the first.

As described previously, i denotes the individual, Qi and Ti are the nutrient
intakes as reported on the FFQ and usual intake, respectively, and Fij is the
jth replicated FR for the ith individual. The mean of the replicated FR’s is F i.
The unknown parameters in the problem are characterized as Θ = (θ1, . . . , θ6),
where θ1 = E(Q), θ2 = E(F ) = E(T ), θ3 = E(Q2), θ4 = E(QF ) = E(QT ),
θ5 = var(U) and θ6 = E(T 2). Note that for any two replicates Fij and Fik,
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j �= k, θ6 = E(FijFik). Letting Ỹ i = (Qi, Fi1, . . . , Fim) be the observed data, the
usual method of moments estimating function is

ψ(Ỹ i,Θ) =




Qi

F i

Q2
i

QiF i

(m− 1)−1 ∑m
j=1(Fij − F i)2

{m(m− 1)}−1 ∑m
j=1

∑m
k �=j FijFik



− Θ. (6)

Numerically, the solution to (2) is easily obtained by direct local least squares
on each component of Θ, e.g., by regressing Qi on Xi to obtain θ̂1. The main
parameter of interest is the correlation between Q and T , ρQT (x0) = {θ4(x0) −
θ1(x0)θ2(x0)}[{θ3(x0) − θ2

1(x0)}{θ6(x0) − θ2
2(x0)}]−1/2.

For our illustration, we use kernel weighting with the Epanechnikov kernel
K(x) = (3/4)(1 − x2)I(|x| ≤ 1). The methods of Carroll, et al. suggest that the
bandwidth is well–approximated by h = 15 for x ≤ 35 and x > 55, h = 22 for
40 ≤ x ≤ 53 and with smooth interpolation in between.
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using local quadratic regression
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Figure 3. Nurses’ Health Study percent of calories from fat, estimating ρQT

using local quadratic regression, along with 95% wild–bootstrap pointwise
confidence intervals on the 10th, 25th, 50th, 75th, and 90th percentiles of
age.
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Figure 3 displays the estimated curve ρ̂QT (age) for NHS Percent of Calo-
ries from Fat, using local quadratic regression, along with 95% wild–bootstrap
pointwise confidence intervals at the 10th, 25th, 50th, 75th, and 90th sample
percentiles of age. An important characteristic of the graph is that correlations
are lower, in a practical sense, for those individuals under 50 years of age than
for those older than 50. To assess statistical significance, the data are split into
two populations on the basis of age (below 50 versus 50 or older) and ρ̂QT is com-
puted for both groups. The correlations are found to be significantly different at
level 0.02.

Table 2. Nurses’ Health Study percent of calories from fat, confidence in-
tervals and corresponding lengths on ρQT , using local mean, linear, and
quadratic regression. The sandwich intervals are computed by ρ̂QT,h(x) ±
tα/2,df σ̂(x), with df = n − (p + 1) and σ̂(x) determined from the sandwich
estimate of variance.

Confidence intervals on ρQT in NHS
using wild–bootstrap and sandwich methods

Percentile 10 25 50 75 90

Mean Bootstrap (0.284,0.640) (0.368,0.652) (0.399,0.671) (0.424,0.682) (0.467,0.742)

0.355 0.284 0.271 0.257 0.275

Sandwich (0.293,0.644) (0.372,0.648) (0.420,0.670) (0.446,0.689) (0.494,0.759)

0.351 0.276 0.250 0.243 0.265

Linear Bootstrap (0.161,0.704) (0.238,0.639) (0.416,0.662) (0.500,0.746) (0.561,0.897)

0.543 0.401 0.246 0.245 0.335

Sandwich (0.256,0.751) (0.263,0.660) (0.410,0.668) (0.499,0.753) (0.582,0.908)

0.494 0.397 0.257 0.254 0.326

Quadratic Bootstrap (0.244,0.743) (0.173,0.636) (0.222,0.648) (0.424,0.723) (0.528,0.889)

0.499 0.463 0.426 0.299 0.361

Sandwich (0.265,0.745) (0.203,0.667) (0.265,0.673) (0.443,0.742) (0.585,0.908)

0.479 0.464 0.408 0.299 0.323

Table 2 presents the endpoints and lengths of confidence intervals constructed
using the wild-bootstrap method, as well as with the sandwich formula estimate
of standard error presented in Section 1. Though the two methods do not con-
sistently share common endpoints (bootstrap intervals are not constructed to be
symmetric about the estimate), lengths are roughly the same. This (approxi-
mate) equivalence should not be of much surprise as both the bootstrap method
and sandwich formula asymptotically estimate the same measure of spread.
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5. Discussion

We have provided confidence sets and pointwise confidence intervals for non-
parametric function estimates based on local estimating equations. The meth-
ods are a generalization of the wild–bootstrap of Härdle and Marron (1991),
and are based on local polynomial methods. The coverage probabilities of the
wild–bootstrap can be far from nominal in moderately sized problems, and to
correct for this we suggest two finite–sample improvements. The first essentially
attempts to adjust the local estimating equation-based “residual” to have the
correct variance: this is just studentization in ordinary nonparametric regres-
sion. The second correction is to adjust the coverage probabilities formed by
sandwich-type methods, such as the wild–bootstrap, to be more nearly nominal.
In the linear regression case, the corrections had a substantial impact on coverage
probabilities.
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Appendix

In this section, we provide the asymptotic justification of our method for
kernel weights. In effect, the result follows by noting a known asymptotic expan-
sion equivalent to (4.2) of the proof of Härdle and Marron, From this, the details
follow essentially line–by–line.

Recall that the kernel function is K(·), Kh(v) = h−1K(v/h), and Gp(v) =
(1, v, . . . , vp)t. Let fX(·) be the density function of X.

The basic idea for construction of a wild–bootstrap confidence interval is
fairly simple and follows the outline in Härdle and Marron (1991, p.785). Suppose
that η̂1 is an estimate of a parameter η, and that for a sequence of constants
c(n) → ∞, c(n)(η̂1 − η) → Normal(µ,Σ). Suppose further that there is a
possibly different estimator η̂2 with the property that under bootstrap sampling,
c(n)(η̂∗−η̂2) → Normal(µ,Σ), see Härdle and Marron for more technical details.
Let η̂2 + Cn be the resulting (1 − α)100% bootstrap confidence set. Then η̂1 −
Cn is an asymptotic (1 − α)100% confidence set for η. To see this, note that
asymptotically Cn ≈ (µ+V)/c(n) where V is a set with probability 1−α under
the normal distribution with mean zero and covariance matrix Σ. Hence the
coverage probability of the set η̂1 − Cn is

pr{η ∈ η̂1 − (µ+ V)/c(n)} = pr[c(n){η̂1 − η − µ/c(n)} ∈ V] → 1 − α,
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as claimed.
This argument shows that what is required is that the limit distribution

of c(n){Θ̂h(x) − Θ(x)} in the sample and the bootstrap limit distribution of
c(n){Θ̂∗

h(x) − Θ̂g(x)} be the same, where c(n) is proportional to n(p+1)/(2p+3)

if p is odd and is proportional to n(p+2)/(2p+5) if p is even. For simplicity we
consider only the case that p is odd.

Let h = dn−1/(2p+3) and c(n) = n(p+1)/(2p+3). Recall that ψ(·) is a vector of
length q. Let sK(j) =

∫
zjK(z)dz and γK(j) =

∫
zjK2(z)dz. Let Dp(s) be the

(p+1)× (p+1) matrix with (j, k)th element equal to sK(j+k−2), Dp(γ) be the
(p+1)× (p+1) matrix with (j, k)th element equal to γK(j+k−2), and Ds(L) =
{sK(L), sK(L+ 1), . . . , sK(L+ p)}t. Define R(x) = E[χ{Ỹ ,Θ(X)}|X = x] and
C(x) = E[ψ{Ỹ ,Θ(X)}ψt{Ỹ ,Θ(X)}|X = x].

We now turn to the details of the proof. In our context, there is an equivalent
to equation (4.2) of Härdle and Marron. Indeed, for p odd, Carroll, et al. (1998)
show that

Θ̂(x) − Θ(x) ≈
{1 + op(1)} hp+1E1,p+1,q

{
D−1

p (s)Ds(p + 1) ⊗ Θ(p+1)(x)
}

(p+ 1)!

−E1,p+1,q{fX(x)}−1
{
D−1

p (s) ⊗ R−1(x)
}
n−1

n∑
i=1

Kh(Xi − x)

×
[
Gp{(Xi − x)/h} ⊗ψ{Ỹ i,Θ(Xi)}

]
{1 + op(1)} . (7)

Using the argument of Härdle and Marron essentially without change, their
Lemma 1 holds. In particular, the appropriate asymptotic distribution is

c(n)
{
Θ̂(x) − Θ(x)

}
→ Normal(µ,Σ), where (8)

µ = dp+1E1,p+1,q

{
D−1

p (s)Ds(p+ 1) ⊗ Θ(p+1)(x)
}
/(p + 1)!;

Σ = d{fX(x)}−1E1,p+1,q

{
D−1

p (s) ⊗ R−1(x)
}
{Dp(γ) ⊗ C(x)}

×
{
D−1

p (s) ⊗ R−1(x)
}t

Et
1,p+1,q

= d{fX(x)}−1E1,p+1,q

{
D−1

p (s)Dp(γ)D−1
p (s) ⊗R−1(x)C(x)R−t(x)

}
Et

1,p+1,q.

It is now important to remember exactly how we constructed the bootstrap
estimate, namely via ordinary local polynomial kernel regression. Thus, Lemma
2 of Härdle and Marron also follows routinely, and the only question is whether
the limit distribution is the same as calculated above. This easily follows by an
application of (7). Because the bootstrap estimate is a ordinary local polynomial
estimator, R(x) is replaced in (7) by the q × q identity matrix, Θ(·) is replaced
by Θ̂g(·) and the limit distribution is easily seen to equal (8), as required.
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