
Statistica Sinica 11(2001), 97-120

MAXIMUM POSTERIOR ESTIMATION OF RANDOM EFFECTS

IN GENERALIZED LINEAR MIXED MODELS

Jiming Jiang, Haomiao Jia and Hegang Chen

Case Western Reserve University, University of Tennessee
and University of Minnesota

Abstract: Given a vector of observations and a vector of dispersion parameters

(variance components), the fixed and random effects in a generalized linear mixed

model are estimated by maximizing the posterior density. Although such estimates

of the fixed and random effects depend on the (unknown) vector of variance com-

ponents, we demonstrate both numerically and theoretically that in certain large

sample situations the consistency of a restricted version of these estimates is not af-

fected by variance components at which they are computed. The method is applied

to a problem of small area estimation using data from a sample survey.
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1. Introduction

Recently inference about generalized linear mixed models (GLMM) has re-
ceived considerable attention. These models take into account the fact that in
many practical problems responses are both discrete and correlated. One of the
early applications of GLMM was to salamander mating data, McCullagh and
Nelder (1989, §14.5). For applications of GLMM in medical research, sample
surveys and other fields, see Breslow and Clayton (1993), Lee and Nelder (1996),
and Malec, Sedransk, Moriarity and LeClere (1997).

For years the major difficulty in inference about GLMM has been com-
putational. Consider, for example, a logit model with crossed random effects:
pij = P (yij = 1|u, v),

logit(pij) = µ + ui + vj , (1.1)

i = 1, . . . ,m1, j = 1, . . . ,m2, where ui’s and vj ’s are independent random vari-
ables such that ui ∼ N(0, σ2), vj ∼ N(0, τ2). The log-likelihood for estimating
µ, σ2 and τ2 has the form

constant − m1

2
log σ2 − m2

2
log τ2 + µy..
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i=1

dui

m2∏
j=1

dvj , (1.2)

where y.. =
∑m1

i=1

∑m2
j=1 yij , yi· =

∑m2
j=1 yij , and y·j =

∑m1
i=1 yij. If m1 = m2 = 40,

as in the salamander mating problem mentioned above, then the integral in (1.2)
will be 80 dimensional. There is, of course, no analytic form for it, and it is not
feasible to evaluate such a high-dimensional integral by numerical integration.
Furthermore, the integrand in (1.2) involves a product of 1600 terms with each
term less than one. Such a product would be numerically zero, creating difficulties
for Monte-Carlo integration even with advanced techniques such as importance
sampling.

To overcome such difficulties, alternative methods have been proposed. One
approach is based on estimation of the random effects via maximization of the
joint density of the observations and random effects. The original idea goes
back to Henderson (1950) and is known as best linear unbiased prediction, or
BLUP (see Robinson (1991)). Such an approach avoids integration altogether
and therefore is computationally feasible. It has been used with different ad-
justments and approximations in making inference about GLMM (e.g., Schall
(1991), Breslow and Clayton (1993), McGilchrist (1994), Kuk (1995), and Lin
and Breslow (1996)). In a recent paper by Lee and Nelder (1996), the authors
have given the name “maximum hierarchical likelihood” for the extension of Hen-
derson’s approach to nonlinear models. In the following we take another look at
Henderson’s approach, and hence give a different justification of the BLUP in
nonlinear situations.

Suppose y is a vector of observations, γ a vector of unobservable “random
variables”, and θ a vector of parameters. For example, γ may be a vector of
random effects, or a vector of fixed effects and random effects. Correspondingly,
θ may represent a vector of fixed effects and variance components, or simply
variance components. Let f(y, γ|θ) be the joint density of y and γ given θ. Then

f(y, γ|θ) = f(y|θ)f(γ|y, θ) . (1.3)

The first factor on the RHS of (1.3) is the likelihood obtained by integrating
out γ, while the second factor represents the posterior density of γ given y and
θ. Henderson’s original approach was to find γ̂ = γ̂(y, θ) to maximize f(y, γ|θ).
From (1.3) we see this is equivalent to maximizing f(γ|y, θ). Thus the BLUP γ̂

may be regarded as the vector that maximizes the posterior density of γ given y

and θ. Note that, although under the linear mixed models γ̂ corresponds to the
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best linear unbiased predictor (e.g., Searle, Casella and McCulloch (1992, §7.4)),
there is indeed no special reason to maintain the term BLUP in the nonlinear
situation. Therefore we call γ̂ the maximum posterior estimate (MPE) of γ.

It should be pointed out that in many cases the random effects are treated
as nuisance parameters, while the fixed parameters, such as the variance com-
ponents, are of main interest. However, there are also many cases in which the
estimation or prediction of the random effects is of interest. Robinson (1991)
gives an excellent review on the estimation of random effects, with examples
and applications. In particular, the estimation of random effects is important to
small-area estimation (see Ghosh and Rao (1994) for a review).

Given y and θ, γ̂ is usually obtained by solving the system of equations

∂

∂γi
log f(y, γ|θ) = 0, i = 1, . . . , n, (1.4)

where n is the dimension of γ. Although in practice the number of fixed effects
is often fairly small, the number of random effects can be quite large. For exam-
ple, in the salamander mating problem mentioned earlier the number of random
effects corresponding to the female and male animals is 80; in the problem of
National Health Interview Survey discussed in Malec et al (1997) the number
of random effects corresponding to small areas is about 600. It is well-known
that standard methods of solving nonlinear systems, such as Newton-Raphson,
may be inefficient and extremely slow when the dimension of the solution is high.
Even in the linear case, directly solving the BLUP equation may involve inverting
a large matrix and this may be computationally burdensome. Jiang (2000) pro-
posed a Gauss-Seidel type recursive algorithm which effectively solves (1.4). It is
shown that the algorithm converges in virtually all typical situations of GLMM.

Although the MPE has been widely used in making inference about GLMM,
its theoretical properties are mostly unknown except in the linear case. In the
case of linear mixed models, Jiang (1998a) considers asymptotic properties of
the empirical best linear unbiased estimate (BLUE) and BLUP. As noted earlier,
the MPEs considered in this paper are natural generalization of the BLUE and
BLUP to nonlinear mixed models. Under the assumption that the unknown
variance components are estimated by restricted maximum likelihood (REML)
estimates (e.g., Searle, Casella and McCulloch (1992, §6)), Jiang (1998a) proves
the convergence of the empirical distribution of the empirical BLUPs to the true
distribution of the random effects. There is some discussion in Lee and Nelder
(1996) about the asymptotic properties of the MPE for the fixed effects. It
was questioned whether the asymptotics would apply when insufficient data was
available for estimating the individual random effects (Breslow (1996), Clayton
(1996)). In fact, even with “sufficient data” the problem is more complicated



100 JIMING JIANG, HAOMIAO JIA AND HEGANG CHEN

than it appears. The MPE depends on the vector θ. In the literature, whenever
γ̂ is treated as an estimate, θ is either assumed known or replaced by a consistent
estimate. For example in Jiang (1998a), θ is a vector of variance components, and
is asymptotically correctly specified because the REML estimates are consistent
(Jiang (1996)). Will the choice of θ affect the asymptotic behavior of γ̂? The
main goal of this paper is to answer the question from a consistency point of
view. Such results are not available for nonlinear (mixed) models even with
correctly specified (i.e., known) θ. See further discussion in the next section.
We show that, given sufficient information about the random effects, a restricted
version of the MPE is consistent no matter at which θ they are evaluated. This
may sound surprising, but it obviously has practical impact. In practice, θ may
consist of unknown variance components which (in nonlinear models) are difficult
to estimate. Furthermore, the computational difficulty in estimating the variance
components increases with the sample size. Now the good thing is that in some
large sample situations one does not have to worry too much about θ if the main
interest is to estimate γ, since it will make very little difference whether γ̂ is
evaluated at a consistent estimate of θ, or at any reasonable guess of it.

The paper is organized as follows. In Section 2 we introduce GLMM and
give some examples. The main result about asymptotic behavior of the MPE is
stated and explained in Section 3, with proofs given in Appendix. More examples
are considered in Section 4. In Section 5 we give some remarks about estimation
of the variance components based on the MPE. Finally, in Section 6, we apply
the method to a problem of small area estimation using data from the Behavioral
Risk Factor Surveillance System (BRFSS).

2. Generalized Linear Mixed Models, Examples, and Notation

Suppose that given a vector α of random effects, the observations y1, . . . , yN

are independent with conditional density

f(yi|α) = exp
{yiηi − bi(ηi)

ai(φ)
+ ci(yi, φ)

}
, (2.1)

i = 1, . . . , N , where bi(·)s and ci(·, ·)s are specific functions corresponding to the
type of exponential family, φ is a vector of dispersion parameters, and the ai(·)s
are some functions of weights. Quite often the functions bi(·) do not depend on
i. Furthermore, assume that the vector η = (ηi)1≤i≤N has the expression

η = Xβ + Zα , (2.2)

where X = (xij)1≤i≤N,1≤j≤p, Z = (zik)1≤i≤N,1≤k≤m are known design matrices,
and β = (βj)1≤j≤p is a vector of unknown constants (the fixed effects). WLOG,
we assume that rank(X) = p.
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We assume that the random effects α satisfy

E(α) = 0 , Var(α) = D , (2.3)

where D = D(θ) depends on a vector θ of variance components. In deriving the
MPE we need,

α ∼ N(0,D) . (2.4)

Under such an assumption, the log-joint density of y and α is given by

lJ = c(y; θ, φ) +
N∑

i=1

yiηi − bi(ηi)
ai(φ)

− 1
2
αtD−1α , (2.5)

where c(y; θ, φ) = −(m/2) log 2π+
∑N

i=1 ci(yi, φ)−(1/2) log det(D) (det(D) is the
determinant of D). Let

l(β, α) = l(β, α|y, θ, φ) =
N∑

i=1

yiηi − bi(ηi)
ai(φ)

− 1
2
αtD−1α . (2.6)

We consider the combined vector (β, α) as the vector of “random variables” γ

in (1.3). Then maximizing lJ over (β, α) is equivalent to maximizing l over
(β, α). If we let ξ = (a−1

i (φ)(yi − b′i(ηi)))1≤i≤N , then the maximizer (β̂, α̂), where
β̂ = β̂(y, θ, φ) and α̂ = α̂(y, θ, φ), satisfies

∂l

∂β
= Xtξ = 0, (2.7)

∂l

∂α
= Ztξ − D−1α = 0. (2.8)

According to properties of the exponential family, we have

E(yi|α) = b′i(ηi) , var(yi|α) = ai(φ)b′′i (ηi) . (2.9)

We assume the model is nondegenerate in the sense that b′′i (·) > 0, 1 ≤ i ≤ N .

Lemma 2.1. If the solution to (2.7) and (2.8) exists, it is unique and is equal
to (β̂, α̂), the MPE.

This follows directly from the strict concavity of l (see Haberman (1977)).
One difficulty with inference about random effects is that the number of the

random effects in a GLMM is typically increasing with the sample size. Large
sample performance of estimates of the fixed parameters, not the random effects,
has been considered. Jiang (1998b) proposed a method of simulated moments
(MSM) approach to estimation of the fixed effects and variance components in
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a GLMM, and proved consistency of the MSM estimates. However, the MSM
cannot deal with random effects. In linear mixed models, Jiang (1998a) studied
large sample properties of the empirical BLUP (see discussion in Section 1). In
the case of (fixed effects) generalized linear models, Haberman (1977) considered
large sample properties of the maximum likelihood estimates (MLE) when the
number of parameters increases with the sample size. Similar problems were also
studied by Portnoy (1988). It is important to note that in problems involving
random effects, there is often insufficient information in the data for asymptot-
ically consistent estimation of all individual random effects. For example, in
our Example 4.2, it is not true that ni → ∞ for every i. In such cases, unlike
Haberman (1977) and Portnoy (1988), one cannot expect the MPE of every in-
dividual random effect to be consistent (e.g., in Example 4.2, α̃i − αi

P−→ 0 may
not hold for every i). However, in many cases, it is true that m/N → 0, i.e.,
the total number of random effects is small compared with the total sample size.
For example, in Malec et al (1997), the number of small areas, m, is about 600,
while the total sample size, N , is about 120, 000; in the BRFSS data considered
in Section 6, the number of HSA’s is 118, while the total sample size is 29, 505.
Therefore, it is reasonable to expect the MPE of the fixed effects to be consistent,
and the MPE of the random effects to be consistent in some overall sense. The
large sample performance of the MPE will be studied in Section 3. First consider
some simple examples to see what to expect.

m=5,n=2 m=20,n=6 m=40,n=20 m=40,n=100 m=5,n=2 m=20,n=6 m=40,n=20 m=40,n=100

M
S
E

M
S
E

0
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.0

1
.2

A

A

A

A

AA

A

A

B

B

B

B

BB
B

B

C

C

C

C

CC

C

C

D

D

D

D

DD

D

D

MPE for mu

0
.5

1
.5

MPE for alpha

Figure 2.1.



MAXIMUM POSTERIOR ESTIMATION OF RANDOM EFFECTS 103

Example 2.1. Consider the linear mixed model yij = µ + αi + εij , i = 1, . . . ,m,
j = 1, . . . , n, where the α’s are independent random effects with Eαi = 0 and
var(αi) = σ2

α, the ε’s are independent errors with Eεij = 0 and var(εij) = σ2
ε .

The MPE for µ and α are the BLUE and BLUP, given respectively by

µ̂ = ȳ.. = µ + ᾱ. + ε̄.. ,

α̂i =
λn

1 + λn
(ȳi. − ȳ..) =

λn

1 + λn
(αi − ᾱ. + ε̄i. − ε̄..) , i = 1, . . . ,m ,

where λ = σ2
α/σ2

ε . It is clear that for any λ > 0, as both m and n → ∞, µ̂ and
α̂i, 1 ≤ i ≤ m, converge to the true µ and αi.

Example 2.2. Suppose that yij is binary with logit(P (yij = 1|α)) = µ +
αi, 1 ≤ i ≤ m, 1 ≤ j ≤ n, where the α’s are independent and ∼ N(0, σ2).
Figure 2.1 shows the simulated MSE, i.e., E(µ̂−µ0)2 and E( 1

m

∑m
i=1(α̂i −α0i)2)

under different sample sizes, where µ0 = 0, and the true random effects α0i’s are
generated from N(0, σ2

0) with σ2
0 = 1. The MPE µ̂ and α̂i’s are computed at σ2 =

0.2 (A), 1.0 (B), 4.0 (C), and 9.0 (D). Each MSE is based on 100 simulations.
Note that as long as m and n are reasonably large, there is not much difference
whether µ̂ and α̂ are computed at the right (B) or wrong (A, C, D) σ2! It
should be pointed out that for the MPE in the above examples to be consistent
it is necessary that both m and n go to infinity. For example, in Example 2.1
if m → ∞ but n remains bounded, the BLUP will not be consistent even if
evaluated at the true variance components. It will be seen that worse things
happen in Example 2.2: if m → ∞ but n remains bounded, the MPE of µ is not
consistent even if evaluated at the true σ2 (see Example 4.3).

Notation

Let v1, . . . , vn be column vectors and G1, . . . , Gn be matrices. We use the
symbol (v1, . . . , vn) for the vector (vt

1 · · · vt
n)t. To avoid confusion, a row vector

will be written as (λ1 · · ·λn), i.e., without commas between the components. Let
diag(G1, . . . , Gn) be the block-diagonal matrix with Gi being its ith diagonal
block, 1 ≤ i ≤ n. We use In (1n) to represent the n-dimensional identity matrix
(vector of 1’s). Let v = (vl)1≤l≤n be a vector and G = (gij)1≤i≤m,1≤j≤n be a ma-
trix. Define |v| = (

∑n
l=1 v2

l )
1/2, ‖v‖ = max1≤l≤n |vl|; λmax(G) (λmin(G)) = the

largest (smallest) eigenvalue of G, |G| = (tr(GtG))1/2, ‖G‖ = (λmax(GtG))1/2.
Let V be a vector space. Define λmin(G)|V = infv∈V\{0}{vtGv/vtv}.

Define P ∗
1 : α → α∗ by α∗ = argmin{atD−1a : Za = Xb + Zα for some b},

and P ∗: (β, α) → (β∗, α∗) by α∗ = P ∗
1 α and β∗ = β + (XtX)−1XtZ(α − α∗).

The following notation will be used throughout: H = (X Z)t(X Z); Xj =
the jth column of X (1 ≤ j ≤ p) and Zk = the kth column of Z (1 ≤ k ≤ m);
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W = diag(|X1|, . . . , |Xp|, |Z1|, . . . , |Zm|). Let S = P ∗Rp+m, the range of P ∗, and
WS = {W (β, α) : (β, α) ∈ S}. Denote r = rank(X Z), and s = p + m − r.

Let Θ and Φ be the parameter space for θ and φ, respectively; θ0, β0 =
(β0j)1≤j≤p, and α0 = (α0k)1≤k≤m be the true vectors θ, β, and α, respectively.
Write D0 = D(θ0), η0 = (η0i)1≤i≤N = Xβ0 + Zα0. Let {a(N)} and {b(N)} be
sequences of numbers such that a(N), b(N) → ∞, and

RN = {(β, α) : |ηi| ≤ MN,i, 1 ≤ i ≤ N} , (2.10)

where MN,i = b(N)
∑p

j=1 |xij | + a(N)
∑m

k=1 |zik|. Let Θ0 ⊂ {θ ∈ Θ : lim infλmin
(D) > 0 , lim supλmax(D) < ∞}, Φ0 ⊂ {φ ∈ Φ : lim supmax1≤i≤N{a−1

i (φ)
Eb′′i (η0i)} < ∞}, and

ρN = min
1≤i≤N

{
inf

|λ|≤MN,i

b′′i (λ)/ai(φ)
}

. (2.11)

3. Large Sample Performance of the MPE

In this section, we specify the conditions under which one can expect the
MPE to be asymptotically accurate, and interpret these conditions. For the
most part, the assumptions needed for the asymptotics may be classified into
three groups.

Assumption 1. The design matrix Z for the random effects satisfies

min
1≤k≤m

|Zk| ≥ c0 , (3.1)

where c0 is a positive constant.
Note that this condition is satisfied if the model has standard design matrices

for the random effects in the following sense: η in (2.2) can be expressed as

η = Xβ + Z(1)α(1) + · · · + Z(q)α(q)

for some fixed number q, where each Z(u), 1 ≤ u ≤ q, consists only of 0’s and
1’s and there is exactly one 1 in each row and at least one 1 in each column.
Let Zuv be the vth column of Z(u) and nuv = |Zuv |2, the number of appearances
of the vth component of α(u), 1 ≤ v ≤ mu, 1 ≤ u ≤ q. Note that in this case,
α = (α(1), . . . , α(q)). It follows that, under standard design, |Zk| ≥ 1.

Assumption 2. Asymptotic identifiability. This means that the following three
conditions hold:

lim inf λmin(W−1HW−1)|WS > 0 , (3.2)
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(s/N)‖Z‖2 −→ 0 , (3.3)

0 < lim inf λmin(XtX)/N ≤ lim supλmax(XtX)/N < ∞ . (3.4)

We now give some interpretations of these conditions. The basic idea of our
proof for the asymptotic accuracy of the MPE seems quite natural. Let λ(η) be
the first term on the RHS of (2.6), and (β∗, α∗) be some point close to (β0, α0).
Consider

d= l(β, α)−l(β∗, α∗)=λ(η)−λ(η∗)+
1
2
(αt

∗D
−1α∗−αtD−1α)=d1+d2. (3.5)

Note that d1 = λ(η) − λ(η∗) does not depend on θ. If, for a certain large
sample, d1 is the dominant factor for maximizing l, the asymptotic behavior of
the MPE would not be affected by θ. However it is not true, even within a
bounded range of α, that d1 will dominate d2. The reason for this is simple: the
vector (β, α) may not be identifiable by η, there may be many vectors such that
η = Xβ + Zα = Xβ∗ + Zα∗ = η∗. To solve this problem, we recall notation.
Since α∗ is the minimizer of the norm ‖a‖D = {atD−1a}1/2 in the hyperplane
α + {a : Za = Xb for some b}, P ∗

1 is an orthogonal projection in the norm ‖a‖D

and D−1/2α∗ is the projection of D−1/2α in the Euclidean norm |a|. Also, since
X is of full rank, Xβ∗ +Zα∗ = Xβ +Zα and (β∗, α∗) minimizes ‖a‖D among all
(b, a) satisfying Xb+Za = Xβ+Zα, and we have rank(P ∗) = rank(X,Z) = r and
rank(P ∗

1 ) = r − p. It follows that l(β∗, α∗) ≥ l(β, α) with equality iff (β, α) ∈ S.
We thus conclude the following.

Lemma 3.1. The MPE (β̂, α̂) ∈ S, therefore sup l(β, α) = sup(β,α)∈S l(β, α).

From Lemma 3.1 we see that maximizing l is equivalent to maximizing l over S

and, restricted on S, (β, α) is uniquely determined by η. This means λmin(H)|S
> 0. Asymptotically, it is more appropriate to consider a normalized limiting
version of the above, and a natural set of normalizing constants are the diagonal
elements of H. Therefore, we assume (3.2).

Note 1. (3.2) indicates that the eigenvalues of H jump from zero to a large
number. This is typical when considering asymptotics in a mixed model. For
example, consider Example 2.2. It is easy to show that

H = n
( m 1t

m

1m Im

)
,

thus the eigenvalues of H are 0, n, . . . , n︸ ︷︷ ︸
m−1

, n(m + 1). If both m and n → ∞, the

eigenvalues of H jump from zero to a large number. Even if n is fixed, say, n = 2,
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but m → ∞, the eigenvalues of H still jump from n = 2 to 2(m + 1). Therefore,
one needs to normalize H, and this is (3.2).

Note 2. We consider consistency of the MPE as N → ∞, and such a result
holds if it holds for each sequence with N strictly monotone. Therefore, WLOG,
we regard the matrices X and Z as depending on N , and the numbers p and m

as functions of N . Limiting processes are understood as asymptotic in N .
To see what (3.3) means, suppose that the model has standard design ma-

trices. Note that Zt
(u)Z(u) = diag(nuv, 1 ≤ v ≤ mu). It follows that ‖Z‖2 ≤∑q

u=1 λmax(Z(u)Z
t
(u)) ≤ q max1≤u≤q max1≤v≤mu nuv. Thus, (3.3) is satisfied pro-

vided (s/N)max1≤u≤q max1≤v≤mu nuv → 0. Furthermore, suppose that Z(u)’s
are balanced in the sense that nu1 = · · · = numu. Then (3.3) is satisfied provided
s/min1≤u≤q mu → 0. This indicates that the matrix (X Z) is asymptotically
nearly of full rank. Note that quite often s does not grow with N .

Finally we require that the fixed effects β be asymptotically identifiable,
which is necessary for the consistency of the MPE. For fixed sample size, the
identifiability of β is equivalent to λmin(XtX) > 0. Note that even though
we have assumed rank(X) = p, the matrix X may still be “asymptotically not

of full rank”. For example, consider Xt =
( 1 1 · · · 1
1 − 1/N 1 · · · 1

)
2×N

. In this case

β = (β1, β2) is asymptotically not identifiable. A further observation shows in
this example that λmin(XtX)/N → 0. This suggests, as before, that one should
consider a normalized limiting version of λmin(XtX) > 0. If the fixed effects
include an intercept, then the first column of X is 1N and hence the first diagonal
element of XtX is N . Therefore, Assumption (3.4) is a natural requirement for
β to be asymptotically identifiable.

Note 3. In linear regression identifiability in the weakest sense means that
λmin(XtX) → ∞ (e.g., Lai and Wei (1982)). The reason we require stronger
conditions is that one has to consider identifiability of both fixed and random
effects (while X only corresponds to the fixed part), and the random effects
cannot be treated the same way. Furthermore, in a mixed model there may be
other quantities that go to infinity in addition to the sample size N . For example
m, the number of random effects, is assumed to go to ∞. Thus, one needs to
specify the rates at which different quantities go to ∞. In many cases, (3.4) gives
the right rate at which λmin(XtX) → ∞. See the discussion above and Example
4.2 in the sequel.

Assumption 3. The number of effects grows at a slower rate than the sample
size. This means that

(p + m)/N = o(ρ2
N ) , (3.6)
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and ρN → 0 as N → ∞, where ρN is as in (2.11).
Note that we do not assume that p, the number of the fixed effects, is fixed

or bounded. Of course the number m typically converges to infinity as N → ∞.
Such conditions as (3.6) are considered necessary when the number of parameters
to be estimated is growing with the sample size (e.g., Portnoy (1988)). To see
what (3.6) means, suppose first that the fixed and random effects are bounded,
and bi(·) = b(·). Then there is a positive lower bound for the b′′i (ηi)’s. Therefore,
assuming the ai(φ)’s are bounded, ρN ≥ ρ > 0, thus (3.6) simply means that
(p+m)/N → 0. It follows that the coefficients of the quadratic terms in the Talor
expansion of l(β, α) (see the proof of Theorem 3.1) are bounded away from 0.
Thus, in a neighborhood near the true (β, α), l(β, α) is uniformly strictly concave.
This is a key condition for the consistency of the estimates. Now, suppose the
effects are not bounded but ‖β‖ ≤ b(N), ‖α‖ ≤ a(N), where a(N), b(N) → ∞.
Then |ηi| ≤ MN,i (see below (2.10)), but now ρN may approach 0. In this case,
(3.6) simply requires that (p + m)/N → 0 at a rate faster than ρ2

N to overcome
the decay of ρN . As will be seen (e.g., in Example 4.1), this only adds a minor
restriction to the way the sample size increases.

Finally, it should be pointed out that the conditions given here by no mean
are the weakest. However, going for the most generality is not the main goal of
this paper. We also would like to keep our conditions easy to interpret, and to
be associated with typical situations of GLMM.

We now define the estimate

(β̃, α̃) = the maximizer of l over RN (3.7)

(see (2.10)). Note that (β̃, α̃) may be regarded as a restricted version of the MPE
(see Remark 3 below). However, the following lemma states the relationship
between (β̃, α̃) and (β̂, α̂), the MPE.

Lemma 3.2. If ‖β̃‖ < b(N) and ‖α̃‖ < a(N), then (β̃, α̃) = (β̂, α̂).

This follows from Lemma 2.1. Note that {(β, α) : ‖β‖ < b(N), ‖α‖ <

a(N)} ⊂ the interior of RN .
Also, we note that for suitably chosen b(N) and a(N) the vector (β0, α0)

belongs to RN with probability → 1. For example, if p is fixed, then ‖β0‖/b(N) →
0 for any b(N) → ∞; if α0 satisfies (2.4) and lim supλmax(D0) < ∞, then
P (‖α0‖ ≤ a(N)) → 1 provided log m/a(N)2 → 0.

In the following theorem, p, the dimension of β, may be unbounded. As a
result, the coefficients βj are allowed to be dependent on p, and hence on N . But
the number q, which is the number of random factors in a model with standard
design, is assumed to be fixed.
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Theorem 3.1. Consider a GLMM (2.1)—(2.3). Suppose that (3.1) is satisfied,
lim supλmax(D0) < ∞, the model is asymptotically identifiable for the fixed and
random effects in the sense that it satisfies (3.2) for any θ ∈ Θ0, (3.3), and
(3.4). Furthermore, suppose that there are sequences {a(N)}, {b(N)} satisfying
P (‖β0‖ < b(N), ‖α0‖ < a(N)) → 1 such that (3.6) holds for any φ ∈ Φ0. Let
(β̃, α̃) be the estimate defined by (3.7). Then, for any θ ∈ Θ0, φ ∈ Φ0, we have

1
N

{ p∑
j=1

|Xj |2(β̃j − β0j)2 +
m∑

k=1

|Zk|2(α̃k − α0k)2
}

P−→ 0 (3.8)

and |β̃−β0| P−→ 0. In particular, if the model has standard design for the random
effects, then

( mu∑
v=1

nuv

)−1
mu∑
v=1

nuv(α̃uv − α0uv)2
P−→ 0 , 1 ≤ u ≤ q , (3.9)

where α̃ = (α̃(1), . . . , α̃(q)), α0 = (α0(1), . . . , α0(q)) with α̃(u) = (α̃uv)1≤v≤mu and
α0(u) = (α0uv)1≤v≤mu .

The proof of Theorem 3.1 is given in the appendix.

Remark 1. Although the MPE is derived under the normality assumption (2.4),
the above theorem does not require that the actual random effects be normally
distributed.

Remark 2. It is well known that in some cases, e.g., the Neyman-Scott problem
(Neyman and Scott (1948)), the MLEs are not consistent when the number of
nuisance parameters goes to infinity. This problem does not surface under the
conditions of Theorem 3.1.

Remark 3. Consistency is proved only for the restricted estimate (3.7). The
proof of Theorem 3.1 does not imply that P ((β̃, α̃) = (β̃, α̃)) → 1. However,
since P (‖β0‖ < b(N), ‖α0‖ < a(N)) → 1, it is natural to consider an estimate
in the same range as the true effects. Thus the restricted estimate (β̃, α̃) is not
unreasonable (see (3.7) and (2.10)).

4. More Examples

Example 4.1. Consider the logit random effects model defined by (1.1). Clearly,
the model has standard design with X = 1m1 ⊗ 1m2 , Z(1) = Im1 ⊗ 1m2 , Z(2) =
1m1 ⊗ Im2 , where ⊗ represents Kronecker product. It is easy to see that s =
2. Also, W =

√
m1m2diag(1, (1/

√
m1)Im1 , (1/

√
m2)Im2). For any (µ, a, b) ∈

S = {a· = b· = 0}, where x· means summation over the components of x, let
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(h, u, v) = W (µ, a, b). Then

(h, u, v)tW−1HW−1(h, u, v) = (µ, a, b)tH(µ, a, b) =
m1∑
i=1

m2∑
j=1

(µ + ui + vj)2

= m1m2µ
2 + m2

m1∑
i=1

u2
i + m1

m2∑
j=1

v2
j

= (h, u, v)t(h, u, v) .

Therefore, λmin(W−1HW−1)|WS = 1. We have (3.4) since XtX = N = m1m2,
and (3.3) is satisfied if m1 ∧ m2 → ∞.

Suppose m1,m2 → ∞ such that log m1/(log m2)2 → 0, log m2/(log m1)2 →
0. Let {dN}, {b(N)} be such that dN , b(N) → ∞, b(N)/ log(m1 ∧m2) → 0, and
dN

√
log(m1 ∨ m2)/ log(m1 ∧ m2) → 0. Let a(N) = dN

√
log(m1 ∨ m2), c(N) =

b(N) + 2a(N). Then, (‖a0‖ ∨ ‖b0‖)/a(N) → 0. Also, ρN = mini,j{inf |λ|≤MN,(i,j)

b′′i,j(λ)} ≥ inf |λ|≤c(N){eλ/(1 + eλ)2} ≥ (1/4)e−2c(N). Thus it is easy to show that
(3.6) is satisfied.

It follows from Theorem 3.1 that µ̃
P→ µ0, (1/m1)

∑m1
i=1(ũi − u0i)2

P→ 0, and
(1/m2)

∑m2
j=1(ṽj − v0j)2

P→ 0 no matter at which σ2 > 0, τ2 > 0 the µ̃, ũ, and ṽ

are computed.

Note. Haberman (1977) has studied a model initially considered by Rasch (1960,
1961) for educational tests. The Rasch model has similar structure as Example
4.1 but assumes that the effects ui and vj are fixed. Nevertheless, the method
of Haberman (1977) is applicable to Example 4.1. One finds improved results,
namely that maxi |ũi −u0i| P−→ 0 and maxj |ṽj − v0j| P−→ 0, under weaker condi-
tions on (m1,m2) and stronger conditions on the random effects. More specifi-
cally, Haberman (1977) has assumed that ui + vj is bounded. Although such an
assumption may seem reasonable for fixed parameters, it may not be so realistic
for random effects. It should also be noted that in many cases of GLMM, there
may not be sufficient information for each individual random effect.

Example 4.2. Suppose yij, 1 ≤ i ≤ m, 1 ≤ j ≤ ni are binary responses with
logit(P (yij = 1|α)) = ηij = β0 + β1xij + αi, where xij ’s are covariates and
α1, . . . , αm ∼ N(0, σ2). Then

X =




1n1 X1
...

...
1nm Xm


 , Z =




1n1

. . .
1nm


 , where Xi =




xi1
...

xini


 , 1 ≤ i ≤ m .

Let c = (1/N)
∑m

i=1

∑ni
j=1(xij − wi)2 and d = (1/N)

∑m
i=1

∑ni
j=1 x2

ij , where
N =

∑m
i=1 ni is the total sample size and wi = x̄i· =

∑ni
j=1 xij/ni. We assume
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c > 0, i.e., there is variation within cells. Note that in this case s = 1. Let

T =




1 w̄ 0 · · · 0
0 1 0 · · · 0
0 w̄1 − w̄ 1 · · · 0
...

...
...

. . .
...

0 w̄m − w̄ 0 · · · 1


 ,

where w̄ =
∑m

i=1 wi/m. For any number v > 0, define Wv =
√

Ndiag(1,
√

v,√
n1/N, . . . ,

√
nm/N ). For any (β0, β1, α) ∈ S = {α· = 0}, let (v0, v1, u) =

Wd(β0, β1, α), (β∗
0 , β∗

1 , α∗) = T (β0, β1, α). Then

(v0, v1, u)tW−1HW−1(v0, v1, u) =
m∑

i=1

ni∑
j=1

(β0 + β1xij + αi)2

= N [(β∗
0)2 + c(β∗

1)2] + 2β∗
0

m∑
i=1

(ni − λ)α∗
i +

m∑
i=1

ni(α∗
i )

2

≥ N [(β∗
0)2 + c(β∗

1)2] − 2κ
√

N |β∗
0 |

( m∑
i=1

ni(α∗
i )

2
)1/2

+
m∑

i=1

ni(α∗
i )

2 , (4.1)

where λ is an arbitrary number and κ = (N−1 ∑m
i=1 n−1

i (ni − λ)2)1/2. If we pick
λ to minimize κ, we find λ = m(

∑m
i=1 n−1

i )−1. With such a λ, κ = (1 − τ−1
N )1/2,

where τN = (
∑m

i=1 ni/m)(
∑m

i=1 n−1
i /m) ≥ 1. By Lemma 4.1 in the following

and the fact that Nw̄2 +
∑m

i=1

∑ni
j=1(xij − wi)2 +

∑m
i=1 ni(wi − w̄)2 = Nw̄2 +∑m

i=1

∑ni
j=1(xij − w̄)2 ≤ (2 + 3τN )

∑m
i=1

∑ni
j=1 x2

ij , it is easy to show that

λmin(W−1HW−1)|WS

≥
(
1 − (1 − τ−1

N )1/2
)( c

d

)
/
(
1 +

w̄2

d
+

c

d
+

m∑
i=1

(ni

N

)(wi − w̄√
d

)2)

≥ 1
3

(1 − (1 − τ−1
N )1/2

1 + τN

)( c

d

)
.

Thus (3.2) is satisfied provided

lim inf
∑m

i=1

∑ni
j=1(xij − x̄i·)2∑m

i=1

∑ni
j=1 x2

ij

> 0 , (4.2)

lim sup
( 1
m

m∑
i=1

ni

)( 1
m

m∑
i=1

1
ni

)
< ∞ . (4.3)

The equality (4.2) may be regarded as a normalized asymptotic version of our
earlier assumption that c > 0, i.e., asymptotically, there is variation within cells.
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To see what (4.3) means, imagine that a population consists of a large number of
subpopulations. Consider the following two-stage sampling scheme. In the first
stage a random sample of m subpopulations P1, . . . , Pm is picked. In the second
stage a sample of size ni is drawn from Pi, where ni is proportional to the size of
Pi, i.e., ni = pNi, where Ni is the size of Pi, and p is a fixed proportion. In this
case, we have (

∑m
i=1 ni/m)(

∑m
i=1 n−1

i /m) = (
∑m

i=1 Ni/m)(
∑m

i=1 N−1
i /m), which,

for large m, is close to E(ξ)E(ξ−1), where ξ is the size of a randomly picked
subpopulation. Therefore (4.3) may be understood as requiring E(ξ)E(ξ−1) to
be not large. To see one example in which this is true, suppose ξ = N0 + ζ,
where N0 is a fixed integer representing the smallest subpopulation size, and
ζ ∼ Poisson(λ). Then it is easy to show that E(ξ)E(ξ−1) ≤ 2 regardless of the
values of N0 and λ. As another example, suppose ξ is uniformly distributed over
the set of integers {N0[kq], 1 ≤ k ≤ K}, where N0 is a positive integer, 0 < q < 1,
and [x] represents the largest integer ≤ x. Then there is a constant c, depending
only on q, such that E(ξ)E(ξ−1) ≤ c regardless of the values of N0 and K.

Furthermore, suppose lim inf
∑

1≤i≤m

∑
1≤j≤ni

(xij − x̄··)2/N > 0, where x̄··
=

∑
1≤i≤m

∑
1≤j≤ni

xij/N , the xij’s are bounded, and max1≤i≤m ni/N → 0, log m

/(log(N/m))2 → 0. Then it is easy to show that (3.3), (3.4) and (3.6) are satisfied,
where for (3.6) we take b(N)∼√

log(N/m) and a(N)∼(log(N/m))1/2(log m)1/4.
It follows from Theorem 3.1 that β̃j

P→ β0j , j = 0, 1 and
∑m

i=1 ni(α̃i −
α0i)2/N

P→ 0 no matter at which σ2 > 0 the β̃ and α̃ are computed.

Lemma 4.1. Let

A =




1 a 0 · · · 0
a a2 + b +

∑m
i=1 c2

i c1 · · · cm

0 c1 1 · · · 0
...

...
...

. . .
...

0 cm 0 · · · 1


 ,

then λmin(A) ≥ b/(1 + a2 + b +
∑m

i=1 c2
i ).

This follows from the fact that det(λIm+2 − A) = (λ − 1)m[λ2 − (1 + a2 +
b +

∑m
i=1 c2

i )λ + b].
In some cases, the estimation of the fixed effects is the main concern. It is

interesting to know if the MPE for β will be consistent under weaker assumptions.
For example, in Example 2.2, if m → ∞ but n remains bounded will the MPE for
µ still be consistent regardless of the value of σ2 at which the MPE is computed?
Figure 2.1 seems to suggest something in this direction, but this is not correct.

Example 4.3. Consider Example 2.2. It can be shown that the MPE for µ is
inconsistent as m → ∞ and n remains bounded, even if it is evaluated at the
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true σ2 (see Jiang (1999)). This example shows that the asymptotic behavior of
the MPE in a GLMM may be quite different from that of the BLUE in a linear
mixed model. For example, in Example 2.1, β̂ is consistent even if n is fixed and
m → ∞.

A further topic of research in this regard is the asymptotic distribution of
the MPE. Such results would be useful in obtaining interval estimates for the
fixed and random effects. It is also of interest to know the convergence rates of
the MPE to the true fixed and random effects, and whether the rates are affected
by at which θ the MPE are evaluated.

5. Remarks on Estimation of Variance Components

Despite the results of Section 3, i.e., for certain large samples the consistency
of the MPE is not affected by the variance components, these results do not mean
to challenge the importance of the estimation of variance components. In fact,
in many cases (e.g., in genetics) the variance components are of main interest.
On the contrary, the MPE leads to an easy way of consistently estimating the
variance components when the sample size is large. Consider, for example, Ex-
ample 4.1. If the sample size is increasing in the specified way, it is easy to show
that σ̃2 = (1/m)

∑m
i=1 ũ2

i
P→ σ2

0, τ̃2 = (1/n)
∑n

j=1 ṽ2
j

P→ τ2
0 . However, things may

be different if the sample size is either not large or is large but not in a favorable
way (e.g., in Example 2.2, m large but n small).

In cases where the sample size is small, one may consider the following mod-
ified pseudo-profile likelihood approach. Let lP (θ) = log f(y, γ̂|θ), where γ̂ is
the MPE for γ. This may be regarded as a log-pseudo profile likelihood. If one
intends to estimate θ based on lP , one might pick θ = θ̂P to maximize lP , or
solve

∂lP
∂θi

= 0 , i = 1, . . . , q , (5.1)

where q is the dimension of θ. However these equations are biased in that
Eθ(∂lP /∂θi) 
= 0. Methods of adjusting the profile likelihoods have been studied
(e.g., McCullagh and Tibshirani (1990)). Here we consider modification of the
equations (5.1) instead of lP itself. Note that every modification of lP leads to a
change of equations, but the converse is not true (because the modified equation
may not correspond to a likelihood equation, if θ is multi-dimensional). The
modified equations are

∂lP
∂θi

= Eθ

(∂lP
∂θi

)
, i = 1, . . . , q . (5.2)

It should be pointed out that the computation of the expectation in (5.2) is
more complicated when the restricted estimate in Theorem 3.1 is used. Note
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that if lP were a log-likelihood, the RHS of (5.2) would be 0 and (5.2) would be
the maximum likelihood (ML) equations. In fact it can be shown that, under
linear mixed models, (5.2) reduces to the ML equations if γ consists of all the
random effects and θ the fixed effects and variance components, or to the REML
equations (e.g., Searle, Casella and McCulloch (1992, §6)) if γ consists of all the
fixed and random effects and θ the variance components. Note that the RHS of
(5.2) may be evaluated via Monte-Carlo methods.

6. An Application

One area of application of Theorem 3.1 is small area estimation. In sample
surveys, direct-survey estimates for small geographic areas or subpopulations are
likely to yield inaccurate results, because the sample sizes from such areas are
usually small. Therefore, it is necessary to “borrow strength” from related areas
to find more accurate estimates for a given area or, simultaneously, for several
areas. For continuous responses, such an idea has led to a linear mixed model
approach, treating the area effects as random (see Ghosh and Rao (1994) for a
review). For binary responses, Malec et al (1997) used a mixed logistic model for
inference about small areas.
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Figure 6.1. Figure 6.2.

Note that to apply Theorem 3.1, one does not have to assume that there are a
large number of repetitions for all the random effects (see Example 4.2). Instead,
it is important that the total number of random effects m be a small proportion
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of the total sample size N . Situations like this (i.e., with large N and m and
small m/N) are typical in small area estimation. In the following, we consider an
application of Theorem 3.1 to a data set from the BRFSS (see the end of Section
1). The BRFSS is a Centers for Disease Control and Prevention coordinated,
state-based random-digit-dialing telephone survey. The data we are particularly
interested in is for the use of mammography among women aged 40 or older, from
1993 to 1995, and for areas from three Federal Regional Offices. The regional
offices are Boston (Maine, Vermont, Mass., Conn., R.I., and N.H.), New York
(N.Y. and N.J.), and Philadelphia (Penn., Del., D.C., Maryland, Va., and W.Va.).
Our data suggests that mammography rates gradually increase from age groups
40-44 to 50-54, and then decrease. To catch this curvature phenomena, the use
of a quadratic model to describe the age effect seems appropriate. The following
model is proposed for the proportion p of women having had mammography:

logit(p)=β0+β1 ∗ age+β2 ∗ age2+β3 ∗ race+β4 ∗ edu %+HSA effect, (6.1)

where age is grouped as 40-44, 45-49, . . ., 75-79, 80 and over; race as white and
others; edu % means the percent of people in the HSA (Health Service Area)
aged 25 or older with at least high school education; and the additional HSA
effect is considered as random.

There are 118 HSA’s in the region. The total sample size is 29, 505, and the
sample sizes for the HSA’s range from 4 to 2301 (see Figure 6.1 for the histogram
of the sample sizes). The ratio of the number of HSA’s to sample size is 0.004, so
one would expect the MPE for the coefficients β’s to be accurate, and the mean
squared error of the MPE for the HSA effects to be small.

We compute the MPEs at σ = 0.1 (σ2 is the variance of the random effects).
By Theorem 3.1 this should not affect the accuracy of the MPE by much. The
MPE for the β’s are β̂0 = −0.421, β̂1 = 0.390, β̂2 = −0.047, β̂3 = −0.175, and
β̂4 = 2.155. A Q-Q plot of the MPE for the HSA effects is shown in Figure
6.2. Although the random effects do not seem to be normally distributed, such
an assumption is not required by Theorem 3.1. The MPE for both the fixed
and random effects are obtained by the Gauss-Seidel algorithm (Jiang (2000)),
which converges quickly in this case. Based on the MPE we obtain an estimate
of σ (see the first paragraph of Section 5) as σ̂ = 0.042. Finally, based on the
MPE for both the fixed and random effects, and the proportions for the age and
race groups in the HSA’s from the 1990 U.S. Census, we obtain estimates of the
proportion of women having had mammography in the HSA’s. A map is made
based on these estimates, see Figure 6.3.
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Appendix. Proof of Theorem 3.1

To make the proof easy-to-read, we split it into five steps.
Step 1. A Taylor series expansion. By the argument above Lemma 3.1 and the

fact that (β∗, α∗) ∈ S for any (β, α), it is easy to show that (β̃, α̃) ∈ S.
Again, recalling notation, let θ ∈ Θ0, φ ∈ Φ0. By (3.5) with (β∗, α∗)
replaced by (β∗

0 , α∗
0), a Taylor expansion of λ(·) at η∗0 = Xβ∗

0 + Zα∗
0,

and the fact that η∗0 = Xβ∗
0 + Zα∗

0 = Xβ0 + Zα0 = η0, we have

l(β, α) − l(β∗
0 , α∗

0) = λ(η) − λ(η∗0) + (1/2)(α∗t
0 D−1α∗

0 − αtD−1α)

=
N∑

i=1

∂λ

∂ηi
|η∗

0
(ηi − η∗0i)+

1
2

N∑
i=1

∂2λ

∂η2
i

|η∗(ηi − η∗0i)
2

+
1
2
(α∗t

0 D−1α∗
0 − αtD−1α)

=
N∑

i=1

yi − b′i(η0i)
ai(φ)

(ηi − η∗0i)+
1
2
(α∗t

0 D−1α∗
0 − αtD−1α)

−1
2

N∑
i=1

b′′i (η∗i)
ai(φ)

(ηi − η∗0i)
2

= I1 + (1/2)I2 − (1/2)I3, (A.1)

where η∗ = (1 − t)η∗0 + tη = (1 − t)η0 + tη for some 0 ≤ t ≤ 1. Note
that ∂2λ/∂ηi∂ηi′ = 0, i 
= i′.

Step 2. Bounds for I1, I2, and I3. By (2.9) we have

I1 =
p∑

j=1

( N∑
i=1

xij

ai(φ)
(yi − E(yi|α0))

)
(βj − β∗

0j)

+
m∑

k=1

( N∑
i=1

zik

ai(φ)
(yi − E(yi|α0))

)
(αk − α∗

0k),

E
{ p∑

j=1

1
|Xj |2

( N∑
i=1

xij

ai(φ)
(yi − E(yi|α0))

)2}

=
p∑

j=1

1
|Xj |2 E

(
E{(· · ·)2|α0}

)

=
p∑

j=1

1
|Xj |2 E

( N∑
i=1

x2
ij

a2
i (φ)

var(yi|α0)
)

≤ K2
Np ,
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where K2
N = max1≤i≤N a−1

i (φ)Eb′′i (η0), and similarly

E
{ m∑

k=1

1
|Zk|2

( N∑
i=1

zik

ai(φ)
(yi − E(yi|α0))

)2} ≤ K2
Nm .

By Hölder’s inequality we have

|I1| ≤ KN

{√
pO(1)

p (1)
( p∑

j=1

|Xj |2(βj − β∗
0j)

2
)1/2

+
√

mO(2)
p (1)

( m∑
k=1

|Zk|2(αk − α∗
0k)

2
)1/2}

, (A.2)

where the Op(1)’s do not depend on (β, α).
Now

E(α∗t
0 D−1α∗

0) ≤ rank(P ∗
1 ) sup

|v|=1
E|vtD−1/2α0|2

≤ (m − s)λ−1
min(D)λmax(D0) , (A.3)

and (α − α∗
0)

tD−1(α − α∗
0) ≤ λ−1

min(D)|α − α∗
0|2 ≤ c−2

0 λ−1
min(D)

∑m
k=1

|Zk|2(αk − α∗
0k)

2, by (3.1). Thus

I2 =−(α − α∗
0)

tD−1(α − α∗
0) − 2α∗t

0 D−1(α − α∗
0)

≤ 2(α∗t
0 D−1α∗

0)
1/2((α − α∗

0)
tD−1(α − α∗

0))
1/2

≤λ−1
min(D)λ1/2

max(D0)
√

m − sO(3)
p (1)

( m∑
k=1

|Zk|2(αk−α∗
0k)

2
) 1

2
, (A.4)

where the Op(1) does not depend on (β, α).
Since |η∗i| ≤ (1− t)|η0i|+ t|ηi| ≤ MN,i if both (β0, α0) and (β, α) are in
RN (see (2.10)) and (β∗

0 , α∗
0) ∈ S, we have, when (β, α) ∈ S ∩ RN and

(β0, α0) ∈ RN , that

I3≥ρN |η − η∗0 |2 =ρN

(β − β∗
0

α − α∗
0

)t
H

(β − β∗
0

α − α∗
0

)
≥ρNλNd2(β, α) (A.5)

(see (2.11)), where λN = λmin(W−1HW−1)|WS , d2(β, α) =
∑p

j=1 |Xj |2
(βj −β∗

0j)
2 +

∑m
k=1 |Zk|2(αk −α∗

0k)
2. Note that, by (3.2), λN is bounded

away from 0.
Step 3. That

N−1d2(β̃, α̃) P−→ 0 . (A.6)
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Combining (A.1), (A.2), (A.4), and (A.5) we have, whenever (β, α) ∈
S ∩ RN and (β0, α0) ∈ RN (see (2.10)), that

l(β, α) − l(β∗
0 , α∗

0) ≤ [KN (
√

pO(1)
p (1) +

√
mO(2)

p (1))

+ λ−1
min(D)λ1/2

max(D0)
√

m − sO(3)
p (1)]d(β, α)

− (1/2)ρNλNd2(β, α) . (A.7)

Let ε > 0, and EN = {d2(β, α) ≤ ε2N}. By (A.7) we see that, if
(β0, α0) ∈ RN , then

sup
(β,α)∈S∩RN∩Ec

N

{d−2(β, α)(l(β, α) − l(β∗
0 , α∗

0))}

≤ ε−1
{
KN

(√
p

N
O(1)

p +
√

m

N
O(2)

p (1)
)

+λ−1
min(D)λ1/2

max(D0)
√

m − s

N
O(3)

p (1)
}
− 1

2
λNρN

= [(1/ε)op(1) − (1/2)λN ]ρN , (A.8)

using (3.6) for the last step. Since P ((β0, α0) ∈ RN ) → 1 by (2.10) and
the conditions of the theorem, (A.8), (3.2) and the fact that (β̃, α̃) ∈ S
(see early result in Step I) imply that P ((β̃, α̃) ∈ EN ) → 1. (A.6) thus
follows by the arbitrariness of ε.

Step 4. That (3.8) holds. We have

‖(XtX)−1XtZ‖ ≤ ‖(XtX)−1/2‖‖(XtX)−1/2Xt‖‖Z‖
= λ

−1/2

min (XtX)‖Z‖ . (A.9)

It follows from (A.9), (3.3), and (3.4) that

s‖(XtX)−1XtZ‖2 −→ 0 . (A.10)

Finally, by the same argument as (A.3), we have E|α0−α∗
0|2 ≤ λmax(D)

E(α0 − α∗
0)

tD−1(α0 − α∗
0) ≤ sλmax(D0)λmax(D)λ−1

min(D). Thus,

1
N

{ p∑
j=1

|Xj |2(β̃j − β0j)2 +
m∑

k=1

|Zk|2(α̃k − α0k)2
}

≤ 2
N

{
d2(β̃, α̃) +

(
max
1≤j≤p

|Xj |2
)
|(XtX)−1XtZ(α0 − α∗

0)|2

+
(

max
1≤k≤m

|Zk|2
)
|α0 − α∗

0|2
}

≤ 2
{
(d2(β̃, α̃)/N) + [‖(XtX)−1XtZ‖2(‖X‖2/N)

+(‖Z‖2/N)]|α0 − α∗
0|2

}
= 2{N−1d2(β̃, α̃) + op(1)} , (A.11)
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using (A.10), (3.4), and (3.3). Then (3.8) follows from (A.11) and (A.6).
Step 5. The rest of the conclusions. The only thing one needs to note is that,

by (3.4),

1
N

p∑
j=1

|Xj |2(β̃j − β0j)2 ≥
[
λmin(XtX)

N

]
|β̃ − β0|2 ≥ δ|β̃ − β0|2

for some δ > 0, if N is large.
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