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1. Introduction

Linearity of regressions for observations preserving some type of ordering
has been of interest since Ferguson (1967), where all continuous distributions
satisfying such a property for adjacent order statistics were identified. An anal-
ogous problem in the continuous case for adjacent record statistics was solved in
Nagaraja (1977). However no major progress for non-adjacent order or record
statistics in the continuous case was made until the 1990’s - consult the mono-
graphs by Arnold, Balakrishnan and Nagaraja (1992, 1998). Both problems have
been finally settled in Dembińska and Weso�lowski (1998, 2000).

The discrete case for adjacent order statistics was investigated thoroughly in
Nagaraja (1988). He considerably improved earlier results of Kirmani and Alam
(1980) (see also the comments in Rao and Shanbhag (1986)), and raised some
serious reservations about the validity of linearity of regression for non-adjacent
order statistics in the discrete case. No progress has been done in this area
(consult for instance Nagaraja (1992)), except for the recent paper by López-
Blázquez and Salamanca-Miño (1998) which characterizes the geometric law for
specially chosen adjacent order statistics.

Characterizations based on properties of records for discrete distributions are
commonly concentrated not on the distributions themselves but rather on their
tails. In an early paper Srivastava (1979) proved that geometric tail distribu-
tions are the only ones that exhibit the constancy of regression for the difference
of adjacent records (for a further development and comments see Ahsanullah
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and Holland (1984), Rao and Shanbhag (1986) and Nagaraja, Sen and Srivas-
tava (1989)). Korwar (1984) extended this result by considering a more general
condition of linearity of regression, and characterized additionally negative hy-
pergeometric tail distributions. The third distribution, claimed to be determined
in Korwar (1984), has a bounded support, and in this case the statement of the
problem is meaningless. This fact has been noted only recently in Arnold, Bal-
akrishnan and Nagaraja (1998), which can be consulted for a wider review of the
subject (an alternative reference is Ahsanullah (1995)). A characterization given
by Balakrishnan and Balasubramanian (1995), using higher conditional moments,
will be discussed in details in the sequel. Related problems were considered in
Stepanov (1990), Huang and Li (1993) and Huang and Su (1999).

Vervaat (1973) modified the concept of records for discrete distributions to
weak records. Let X1,X2, . . . be a sequence of independent observations on X

and let U(1) = 1, U(n) = inf{j > U(n − 1) : Xj ≥ XU(n−1)}, n = 2, 3, . . ..
Then the rv Rn = XU(n) is called the n-th weak (upper) record for (Xn)n=1,2,....
Recall that for regular records the second inequality in the definition of U(n) is
sharp and consequently no ties among regular records are allowed. This results
in a meaningful definition of regular records for discrete distributions only in the
case where X has unbounded support. However weak records are also defined
for distributions with bounded discrete supports. Observe that if X is of the
continuous type, then weak and regular records are essentially indistinguishable.

Since ties are permitted using weak records, characterizations of the whole
distributions, not only of the tails, can be obtained. To some extent this was ex-
ploited for linearity of regression for adjacent weak records in Stepanov (1994). A
generalization to any regression function in the adjacent case was given in Aliev
(1998). However these papers suffer from unnecessary assumption of unbound-
edness of the support.

The main aim of the present paper is to provide a complete characterization
of the discrete distributions with linearity of regression for future weak records
with spacing equal to two. The family includes geometric and negative hyper-
geometric distributions of the first (beta-binomial) and second (beta-negative
binomial) type. This is done in Section 3 together with derivation of the general
difference equation for any regression function, while in Section 2 direct results
are given. In Section 4 we give some comments concerning the case of adjacent
weak records, completing the results of Stepanov (1994), Aliev (1998), Balakr-
ishnan and Balasubramanian (1995) and Nagaraja, Sen and Srivastava (1989).

Observe, adopting for instance the discussion in Nagaraja (1988), that the
problems of linearity of regressions reviewed above can be rephrased in a more
applied language as: identifying families of distributions with the property that
the best unbiased predictor of the order (record, weak record) statistic, based on
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another order (record, weak record) statistic, is equal to its best linear unbiased
predictor.

Finally let us point out that there are efforts to build a universal approach
for treating distributional properties of order statistics and records together -
see Deheuvels (1984), Kamps (1995) or Huang and Su (1999), which concen-
trated almost exclusively on absolutely continuous distributions. A fairly recent
contribution by Asadi, Rao and Shanbhag (1999) brings a possible unified ap-
proach without restricting to absolutely continuous distributions. However such
approaches fail for linearity of regression for discrete distributions. For order
statistics it does not hold except for some special cases with spacing equal to
one (see for instance Nagaraja (1988) or López-Blázquez and Salamanca-Miño
(1998)), while this property holds in general for weak records with spacing equal
to one or two, as observed for instance in the present paper.

Throughout this paper, assume that supp(X) = {0, . . . , N}, N ≤ ∞, where
if N = ∞, then N − k = ∞, k = 0, 1, . . ..

2. Regressions of Weak Records for Selected Distributions

In this section we study discrete distributions that have a property of linear-
ity of regression of weak records with spacing equal to two, i.e. E(Rn+2|Rn) =
aRn + b, for some real numbers a and b and any natural number n. To this end,
first we introduce some basic distributional properties of weak records.

The joint probability mass function (pmf) for the first n weak records can
easily be determined as

P (R1 = k1, . . . , Rn = kn) =

(
n−1∏
i=1

pki

qki

)
pkn , (1)

for any 0 ≤ k1 ≤ · · · ≤ kn ≤ N (if N = ∞ the last inequality is, obviously,
sharp), where pk = P (X = k), qk =

∑N
j=k pj = P (X ≥ k), k ∈ {0, . . . , N}. The

conditional distribution of Rn+2 given Rn is defined by P (Rn+2 = k|Rn = l) =
P (R3 = k|R1 = l) = pk

ql

∑k
r=l

pr

qr
, l ≤ k ≤ N . Hence, the regression of Rn+2 on

Rn (if it exists) can be computed (upon changing the order of summation) by

E(Rn+2|Rn = l) =
1
ql

N∑
r=l

pr

qr

N∑
k=r

kpk = s(l), l ∈ {0, . . . , N}. (2)

Now let us define the distributions we are going to work with.

(1) Denote by ge(p) the geometric distribution defined by the pmf pj = P (X =
j) = pqj, j = 0, 1, . . ., where p = 1 − q ∈ (0, 1). Then qj = qj, j = 0, . . ..
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(2) Denote by nhI(α, β,N) the negative hypergeometric distribution of the first
type (also known as beta-binomial) defined by the pmf

pj =

(
α + j − 1

j

)(
β − α + N − j

N − j

)(
β + N

N

)−1

, j = 0, . . . , N,

where α and β are real numbers such that β + 1 > α > 0, and N is a positive
integer - see Johnson, Kotz and Kemp (1992). Specifically for the nhI(1, β,N)
distribution it follows that β > 0 and

pj =

(
β + N − j − 1

N − j

)(
β + N

N

)−1

, j = 0, . . . , N.

Consequently

qj =

(
β+N

N

)−1 N−j∑
k=0

(
β+k−1

k

)
=

(
β+N−j

N − j

)(
β + N

N

)−1

, j = 0, . . . , N.

(3) Denote by nhII(α, β, γ) the negative hypergeometric distribution of the second
type (also known as beta-negative binomial), defined by the pmf

pj =
γ

γ + j

(
β

γ

)(
α + j − 1

j

)(
α + β + j

γ + j

)−1

, j = 0, 1, . . . ,

where α, β and γ are real numbers such that α > 0, β + 1 > γ > 0 - see
Johnson, Kotz and Kemp (1992).

Specifically for the nhII(1, β, γ) distribution with β > γ (this additional restric-
tion implies existence of the first moment), it follows that

pj =
γ

γ + j

(
β

γ

)(
β + j + 1

γ + j

)−1

, j = 0, 1, . . . .

Then by the summation rule for nhII(1, β + j, γ + j),

qj =γ

(
β

γ

) ∞∑
i=0

(γ+j+i)−1

(
β + j + 1 + i

γ + j + i

)−1

=
γ

γ + j

(
β

γ

)(
β + j

γ + j

)−1

, j =0, 1, . . . .

It is shown in the Appendix that for the above three distributions the relation
E(Rn+2|Rn) = aRn + b a.s. holds, where
(1) for the ge(p) distribution, a = 1, b = 2q/p;
(2) for the nhI(1, β,N) distribution, a = β2(β +1)−2 ∈ (0, 1), b = N(2β +1)(β +

1)−2;
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(3) for the nhII(1, β, γ) distribution and δ = β − γ > 0, a = (1 + δ−1)2 > 1,
b = γ(2δ + 1)δ−2.

The main result of this paper, considered in the next section, lies in proving that
these are the only distributions with such a property. It is possible that linearity
of regression, E(Rn+k|Rn) = aRn + b, holds only for these three distributions
for any k = 1, 2, . . . . Here we checked it for k = 2 (for the case k = 1 see
the comments in Sections 1 and 4). While the direct result for any k seems to
be within reach, the converse looks rather difficult and possibly requires new
techniques.

3. Characterization by Linearity of Regression of Rn+2 on Rn

Denote for any l = 0, . . . , N , s(l) = E(Rn+2|Rn = l). Then by (2) one
gets s(l)ql =

∑N
r=l

pr

qr

∑N
k=r kpk, l = 0, . . . , N . Hence, upon taking the first order

differences, it follows that

s(l)
q2
l

pl
− s(l + 1)

qlql+1

pl
=

N∑
k=l

kpk, l = 0, . . . , N − 1. (3)

Again taking the difference we have

s(l)q2
l −s(l+1)qlql+1

pl
− s(l + 1)q2

l+1−s(l+2)ql+1ql+2

pl+1
= lpl, l=0, . . . , N−2.

Now divide both sides of the above equation by ql+1. Denoting r(l) = ql/ql+1,
we obtain

s(l)r2(l)−s(l+1)r(l)
r(l)−1

− s(l+1)r(l+1)−s(l+2)
r(l+1)−1

=l[r(l)−1], l = 0,. . ., N − 2.

Now for h(l) = 1/(r(l) − 1) it follows that

h(l + 1) =
s(l)−s(l+1)

s(l+1)−s(l+2)
(h(l)+2)+

s(l)−l

s(l+1)−s(l+2)
1

h(l)
, l=0, . . . , N−2.

The general solution of the above equation for h seems to be difficult to derive.
However in the linear case, i.e. for s(l) = al + b, l = 0, . . . , N , where a and b are
some real numbers, it simplifies to

h(l + 1) = h(l) + 2 − (a − 1)l + b

a

1
h(l)

, l = 0, . . . , N − 2. (4)

On the other hand, from (3) we see that

lql ≤
N∑

k=l

kpk = (al + b)
ql(pl + ql+1)

pl
− (al + a + b)

qlql+1

pl

= (al + b)ql − a
qlql+1

pl
, l = 0, . . . , N − 1.
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Since h(l) = ql+1/pl, l = 0, . . . , N − 1, it follows that

(a − 1)l + b > ah(l), l = 0, . . . , N − 1. (5)

In this case we are able to solve (4) and, consequently, to obtain the characteri-
zation result.

Theorem 1. Let X be a rv with a nondegenerate distribution concentrated on
{0, . . . , N}, N ≤ ∞. Assume that

E(Rn+2|Rn) = aRn + b, a.s., (6)

for some real numbers a and b. Then a > 0, b > 0, and only the following cases
are possible:

(i) 0 < a < 1, b/(1 − a) is a positive integer and X ∼ nhI(1,
√

a/(1 −√
a),

b/(1 − a)); (7)
(ii) a = 1 and X ∼ ge(b/(2 + b)); (8)

(iii) a > 1 and X ∼ nhII(1, (b +
√

a + 1)/(a − 1), b/(a − 1)). (9)

Proof. Observe first that since s(l) = E(Rn+2|Rn = l) cannot be a strictly
decreasing or constant function on supp(X), a has to be positive. Since X is a
nondegenerate rv, b = s(0) also has to be positive.

Observe also, from the obvious inequality Rn ≤ Rn+2 a.s. and the fact that
the supports of X and weak records coincide, that N = inf{l = 0, 1, . . . : s(l) =
l}. Consequently

N = inf{l = 0, 1, . . . : al + b = l} =




b/(1 − a), if 0 < a < 1,

∞, if a ≥ 1.

(10)

Case 0 < a < 1.
Define β =

√
a/(1 − √

a) > 0. Observe that, by (10), N = b/(1 − a) is a
positive integer and supp(X) = {0, . . . , b/(1 − a)}. Consequently equation (4)
can be rewritten as

h(l + 1) = h(l) + 2 − 2β + 1
β2

N − l

h(l)
, l = 0, . . . , N − 2. (11)

Take first h(0) = N/β. Then, by (11), h(l) = N−l
β , l = 0, . . . , N − 1. Hence

r(l) = h(l)+1
h(l) = N−l+β

N−l , l = 0, . . . , N − 1. Now by the definition of r one easily
gets, since P (X ≥ 0) = 1,

ql =

(
β + N − l

N − l

)(
β + N

N

)−1

, l = 0, . . . , N.
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Hence X ∼ nhI(1, β,N) and (7) holds.
Assume now that h(0) > N/β. Then by (11) it follows inductively that

h(l) > (N − l)/β for any l = 0, . . . , N − 1. Consequently h(N − 1) > 1/β.
Similarly, h(0) < N/β implies that h(N − 1) < 1/β.

Substituting l = N −1 in (3) with linear s, we get (N −a)
q2
N−1

pN−1
−N

qN−1qN

pN−1
=

(N−1)pN−1+NpN = NqN−1−pN−1. Hence a(pN−1+pN)2 = p2
N−1 and since, by

definition, h(N −1) = qN/pN−1 (observe that qN = pN ), we get h(N −1) = 1/β.
Conseqently the assumption h(0) �= N/β is contradicted.

Case a = 1.
By (10), supp(X) = {0, 1, . . .}, and (4) takes a simple form

h(l + 1) = h(l) + 2 − b/h(l), l = 0, 1, . . . (12)

First assume that h(0) = b/2. Then (12) implies that h(l) = b/2 for all l =
0, 1, . . . . Hence, coming back to r, one gets ql/ql+1 = (b + 2)/b, l = 0, 1, . . ., and
finally ql = (b/(b + 2))l, l = 0, 1, . . ., which gives (8).

Take h(0) < b/2. Then (12) implies that the sequence (h(l))l=0,1,... is decreas-
ing. Since it is bounded from below by 0, α = liml→∞ h(l) exists. Consequently,
by passing to the limit (as l → ∞) on both sides of (12), it follows that α = b/2,
which is a contradiction.

Consider now the case h(0) > b/2. Then by (12), (h(l))l=0,1,... is increasing
and, since it is bounded from above by b/a (see (5)), it follows that the limit α =
liml→∞ h(l) exists. Again α = b/2, which contradicts the assumption h(0) > b/2.

Case a > 1.
Define γ = b/(a− 1), β = (b +

√
a + 1)/(a− 1), δ = β − γ > 0. Then N = ∞

by (10), and (4) takes the shape

h(l + 1) = h(l) + 2 − 2δ + 1
(δ + 1)2

γ + l

h(l)
, l = 0, 1, . . . (13)

Define a sequence (t(l))l=0,1,... by t(l) = (δ + 1)h(l)/(γ + l), l = 0, 1, . . .. Then
(13) can be rewritten as

t(l + 1) =
(γ + l)t(l) + 2(δ + 1) − (2δ + 1)/t(l)

γ + l + 1
, l = 0, 1, . . . . (14)

Define a sequence of functions (fl)l=0,1,... on (0,∞) by

fl(t) =
(γ + l)t + 2(δ + 1) − (2δ + 1)/t

γ + l + 1
, t > 0, l = 0, 1, . . . .

Observe that fl is strictly increasing, fl(1) = 1, fl(2δ + 1) = 2δ + 1 for any
l = 0, 1, . . .. Hence for A = [1, 2δ + 1] we have fl(A) = A, l = 0, 1, . . .. Further
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we can determine the set Al = {t : fl(t) ≥ t}, for any l = 0, 1, . . ., by solving the
inequality 2(δ + 1) − (2δ + 1)/t ≥ t in (0,∞). We easily get Al = [1, 2δ + 1] = A
independent of l.

Suppose t(0) = 1. Since (4) can be rewritten as t(l+1) = fl(t(l)), l = 0, 1, . . .,
and 1 is a fixed point of fl for any l = 0, 1, . . ., one gets h(l) = (γ + l)/(δ + 1),
l = 0, 1, . . ., and consequently ql/ql+1 = (γ + δ + l + 1)(γ + l), l = 0, 1, . . ..

Finally

ql =
γ

γ + l

(
γ + δ

γ

)(
γ + δ + l

γ + l

)−1

, l = 0, 1, . . . ,

the negative hypergeometric distribution given at (9).
Now we have to show that other choices for t(0) are impossible. Suppose

t(0) ∈ (1, 2δ + 1] ⊂ A. Then t(l + 1) = fl(t(l)) ∈ [t(l), 2δ + 1], l = 0, 1, . . . and
consequently the sequence (t(l))l=0,1,... is nondecreasing and bounded from above
by 2δ + 1. Hence it converges for l → ∞. Denote its limit by α. Rewrite (14) as

l[t(l+1)−t(l)]+γ[t(l+1)−t(l)]+t(l+1) = 2(δ+1)− 2δ + 1
t(l)

, l = 0, 1, . . . . (15)

Since (t(l))l=0,1,... converges, liml→∞ l[t(l + 1) − t(l)] = 0. Consequently (15)
implies that α = 2δ+1 since the other solution α = 1 contradicts the assumption
t(0) > 1. To see that α = 2δ + 1 is also contradictory, take ε > 0 such that δ > ε
and t(l) > 2δ + 1− ε for l > L sufficiently large. Then h(l) > l + 2δ+1−ε

δ+1 γ + δ−ε
δ+1 l,

l > L, which contradicts (5) since δ − ε > 0.
Let t(0) > 2δ + 1. Since fl((2δ + 1,∞)) = (2δ + 1,∞), l = 0, . . ., 2δ + 1 <

t(l + 1) < t(l), ∀ l = 0, 1, . . . . Consequently α = liml→∞ t(l) exists, and by (15)
α = 1 or α = 2δ + 1, both contradictory as was observed above.

Take finally 0 < t(0) < 1. Then, similarly, (t(l))l=0,1,... is a decreasing
sequence bounded from below by 0. Again (15) yields possible limits of 1 or
2δ + 1, and both the possibilities yield contradictions.

4. The Adjacent Case - Comments and Complements

4.1. On Stepanov (1994) and Aliev (1998)

In the adjacent case, essentially resolved in Stepanov (1994) and Aliev (1998),
the formulas for the conditional pmf and regression are much simpler: for any
n = 1, 2, . . .

P (Rn+1 = k|Rn = l) = P (R2 = k|R1 = l) = pk/ql, k ≥ l, (16)

and consequently E(Rn+1|Rn = l) = q−1
l

∑N
k=l kP (X = k) = s1(l), l = 0, . . . , N .

Here we do not follow the approach of these two papers. Taking the first differ-
ences in the above identity we get

ql

ql+1
=

s1(l + 1) − l

s1(l) − l
, l = 0, . . . , N − 1.
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Hence it follows immediately that

pl =
s1(l + 1) − s1(l)

s1(l + 1) − l

l−1∏
j=0

s1(j) − j

s1(j + 1) − j
, l = 0, . . . , N. (17)

A version of this formula was obtained in Aliev (1998) in the case of unbounded
support. Similarly one can approach the problem by considering E(H(Rn+1)|Rn

= l) = sH(l) for some functions H. Observe that, as in the non-adjacent case,
we have N = inf{l = 0, 1, . . . : s1(l) = l}. Consequently the main result of Aliev
(1998) about unique determination of the distribution of X by the function s1

holds without the restriction of unboundedness of support.
If it is assumed that s1(l) = al + b, l = 0, . . . , N , then the following complete

version of Stepanov’s (1994) result can be easily derived from (17).

Theorem 2. Assume that X has a non-degenerate distribution and E(Rn+1|Rn)
= aRn + b, a.s., where a and b are some real constants. Then a > 0, b > 0, and
one of the following holds:

(i) 0 < a < 1, b/1−a is a positive integer and X ∼ nhI(1, a/(1−a), b/(1−a));
(ii) a = 1 and X ∼ ge(1/(1 + b));
(iii) a > 1 and X ∼ nhII(1, (b + 1)/(a − 1), b/(a − 1)).

The case (i) is missing in Stepanov (1994).

4.2. On Balakrishnan and Balasubramanian (1995)

These authors considered the problem of charactrizing discrete distributions
with the property E((R̃2 − R̃1)2|R̃1) = const, a.s., where R̃n denotes the regular
nth record. They claim to obtain characterization of the geometric distribution,
while essentially the distribution is a geometric tail distribution of the form αδ0 +
(1−α)ge(p), for any α ∈ [0, 1], where δ0 denotes the unit mass concentrated at 0.
Also in that paper a lot of effort is devoted to proving that the distribution of X

has unbounded support (a necessary condition for introducing regular records).
A much simpler derivation of this fact in the case of weak records will be given
in the sequel. Observe that geometric tail distributions can be characterized
by E((R̃n+1 − R̃n)2|R̃n) = const, a.s.; only then the distribution has the shape
α0δ0 + · · · + αn−1δn−1 + αnge(p), where δk is a unit mass concentrated at k,
k = 0, . . . , n − 1, and α0, . . . , αn are positive numbers summing to one.

Here we study an analogoue of Balakrishnan and Balasubramanian’s (1995)
result for weak records. First we observe that if X ∼ ge(p) then E((Rn+1 −
Rn)2|Rn = l) =

∑∞
k=l(k − l)2qkp/ql = 2(q/p)2 + q/p = c, where q = 1 − p. Now

we derive the converse of this statement.
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Theorem 3. Assume that X has a discrete non-degenerate distribution concen-
trated on {0, . . . , N} such that E((Rn+1 − Rn)2) < ∞. If

E((Rn+1 − Rn)2|Rn) = c, a.s., (18)

where c is a real number, then c > 0 and X ∼ ge
(√

8c+1−3
2(c−1)

)
.

Proof. Assume N < ∞. Then E((Rn+1 − Rn)2|Rn = N) = 0, which is possible
only in the case N = 0 and P (X = 0) = 1. Since we consider only non-degenrate
distributions, N = ∞. By (16) and (18) we have

∑∞
k=l(k−l)2pk = cql, l = 0, 1, . . ..

Now, repeating the argument from Balakrishnan and Balasubramanian (1995),
i.e., taking the difference operator with respect to l on the above equation twice,
one arrives at cpl − (2c + 1)pl+1 + (c − 1)pl+2 = 0, l = 0, 1, . . .. (Balakrishnan
and Balasubramanian (1995) derived an analoguous equation: (c − 1)pl − (2c +
1)pl+1 + cpl+2 = 0, l = 1, 2, . . .) Since this is a linear difference equation of the
second order, we first solve its characteristic equation (c−1)r2−(2c+1)r+c = 0,
which has solutions r1,2 = 2c+1±√

8c+1
2(c−1) . Since r1 > 1 and 0 < r2 < 1 we must have

pl = αrl
2, l = 0, 1, . . .. Since

∑∞
l=0 αrl

2 = 1 we get α = 1 − r2 =
√

8c+1−3
2(c−1) ∈ (0, 1).

Observe that c < 1 is allowed.

4.3. On Nagaraja, Sen and Srivastava (1989)

These authors characterized geometric tail distributions for X by the condi-
tion E(R̃n+2 − R̃n+1|R̃n) = b, a.s. Here a version of this result for weak records
is given.

Observe first that if X ∼ ge(p), E(Rn+2 − Rn+1|Rn) = E(Rn+2|Rn) −
E(Rn+1|Rn) = (Rn + 2q/p)− (Rn + q/p) = q/p, a.s. Now we consider a converse
of this observation.

Theorem 4. Let X be a non-degenerate rv concentrated on {0, . . . , N} and
E(Rn+2) < ∞. Assume that

E(Rn+2 − Rn+1|Rn) = c, a.s. (19)

Then X ∼ ge(1/(1 + c)).

Proof. As in the proof of Theorem 3, it follows that if N < ∞ then c = 0, which
is contradicts the non-degeneracy assumption. Hence supp(X) = {0, 1, . . .}.

By the formulas derived in Section 3 and in the section above, it follows that
(19) can be rewritten in the form cql =

∑∞
r=l

pr

qr

∑∞
k=r kpk−

∑∞
k=l kpk, l = 0, 1, . . ..

Taking differences one gets
∑∞

k=l kpk = (c + l)ql, l = 0, 1, . . .. Again taking
differences it follows that pl(1 + c) = ql, l = 0, 1, . . ., which implies (1 + c)pl+1 =
cpl, l = 0, 1, . . .. The latter identity immediately yields the final result.
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Appendix. The Direct Results

Here we present details of the computations leading to the results of Section
2.

(1) For the ge(p) distribution we have pj/qj = p, j = 0, 1, . . . . Now (2)
implies that for any l = 0, 1, . . . E(Rn+2|Rn = l) = p2

ql

∑∞
r=l

∑∞
k=r kqk, and

routine technique leads to E(Rn+2|Rn = l) = l + 2q/p, l = 0, 1, . . . .

(2) For the nhI(1, β,N) distribution we have pj/qj = β/(β +N − j), j =
0, . . . , N . Applying (2) one gets, for any l = 0, . . . , N ,

E(Rn+2|Rn = l) =

(
β + N − l

N − l

)−1 N∑
r=l

β

β + N − r

N∑
k=r

k

(
β + N − k − 1

N − k

)
.

Observe that
N∑

k=r

k

(
β + N − k − 1

N − k

)
=

N−r∑
i=0

(N − i)

(
β + i − 1

i

)

= N
N−r∑
i=0

(
β + i − 1

i

)
−

N−r∑
i=1

i

(
β + i − 1

i

)

= N
N−r∑
i=0

(
β + i − 1

i

)
− β

N−r−1∑
j=0

(
β + j

j

)
.

Now by summation rules for nhI(β, β,N − r) and nhI(β + 1, β + 1, N − r − 1),
respectively, for r = 0, . . . , N − 1 and for r = N directly, it follows that

N∑
k=r

k

(
β + N − k − 1

N − k

)
=

N + rβ

β + 1

(
β + N − r

N − r

)
.

Consequently

E(Rn+2|Rn = l) =
β

(β + 1)

(
β + N − l

N − l

)−1 N∑
r=l

N + rβ

β + N − r

(
β + N − r

N − r

)
.

But
N∑

r=l

N + rβ

β + N − r

(
β + N − r

N − r

)
=

N∑
r=l

N + rβ

β

(
β + N − r − 1

N − r

)
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=
(

N

β
+

N + lβ

β + 1

)(
β + N − l

N − l

)
, l = 0, . . . , N.

Finally one gets E(Rn+2|Rn = l) = (β/(β + 1))2l + (2β + 1)N/(β + 1)2, l =
0, . . . , N .

(3) For the nhII(1, β, γ) distribution with β > γ, it follows that pj/qj =
(β − γ + 1)/(β + j + 1), j = 0, 1, . . . . For any r = 0, 1, . . . we have

∞∑
k=r

kP (X =k)

=
∞∑

j=0

γ(r + j)
γ + r + j

(
β

γ

)(
β + r + j + 1

γ + r + j

)−1

=
γ(r − 1)
γ + r

(
β

γ

)(
β + r

γ + r

)−1 ∞∑
j=0

γ + r

γ+r+j

(
β+r

γ + r

)(
β+r+j+1

γ+r+j

)−1

+
γ

γ+r

(
β

γ

)(
β+r−1
γ + r

)−1∞∑
j=0

γ + r

γ+r+j

(
2 + j − 1

j

)(
β+r−1
γ + r

)(
2+(β+r−1)+j

γ+r+j

)−1

=
γ(r − 1)
γ + r

(
β

γ

)(
β + r

γ + r

)−1

+
γ

γ + r

(
β

γ

)(
β + r − 1

γ + r

)−1

=
γ[r(β − γ + 1) + γ]

(γ + r)(β − γ)

(
β

γ

)(
β + r

γ + r

)−1

,

which follows by summation rules for the nhII(1, β + r, γ + r) and nhII(2, β +
r − 1, γ + r) distributions, respectively.

Plugging the above expression into (2), one gets for any l = 0, 1, . . .,

E(Rn+2|Rn = l)

=
1
ql

∞∑
r=l

(β − γ + 1)γ[r(β − γ + 1) + γ]
(β + r + 1)(γ + r)(β − γ)

(
β

γ

)(
β + r

γ + r

)−1

=
1
ql

(
β

γ

)β−γ + 1
β − γ

∞∑
r=l

r
γ

γ+r

(
β + r + 1

γ + r

)−1

+
γ

β−γ

∞∑
r=l

γ

γ + r

(
β + r + 1

γ + r

)−1



=
1
ql

[
(β − γ + 1)[l(β − γ + 1) + γ]

(β − γ)2
ql +

γ

β − γ
ql

]
.

Finally E(Rn+2|Rn = l) =
(
1 + 1

δ

)2
l + 2δ+1

δ2 γ, l = 0, 1, . . ., where δ = β − γ > 0.
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