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TWO ROBUST DESIGN APPROACHES

FOR LINEAR MODELS WITH CORRELATED ERRORS
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Abstract: In this paper, infinitesimal and minimax approaches are used to construct

robust regression designs for linear models with correlated errors. We consider

IMSE (Integrated Mean Squared Error) as the loss function. Using an infinitesimal

approach, we minimize IMSE at the ideal model subject to two robust constraints

to derive M-robust designs. We also minimize the maximum of the IMSE to obtain

minimax designs. In particular, M-robust and minimax designs are constructed for

an approximately linear model with MA(1) errors. These designs are robust against

small departures from the assumed regression response and small departures from

the assumption of uncorrelated errors. It is interesting that M-robust and minimax

designs have the same form of density function, while M-robust designs require less

restrictive ordering of design points. Implementation is discussed and examples are

given.
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1. Introduction

In this paper we study two robust design approaches for the model:

yi = θ0 + θT
1 xi + f(xi) + εi, i = 1, . . . , n, (1.1)

where design points xi’s belong to a q-dimensional space S, and f is from a class
of functions F . Model departure from linear regression is reflected in the term
f . If f ≡ 0, the regression response degenerates to the linear case.

The assumption of uncorrelated errors is sometimes unrealistic. Successive
observations are likely to be correlated. The presence of serial correlation may
affect our design strategy. Throughout the paper we assume that errors follow
a first-order moving average (MA(1)) process. Specifically, εi = ei + aei−1, i =
1, · · · , n, where the ei are white noise variables with mean 0 and variance σ2

0 , and
a is the parameter of MA(1) process, −1 < a < 1. For this error model,

COV (ε) = σ2
ε P, (1.2)
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where σ2
ε = 2σ2

0/(1 +
√

1 − 4ρ2) with ρ = a/(1 + a2), and the autocorrelation
matrix P = (pi,j) has pi,i = 1, pi,i+1 = pi+1,i = ρ, and pi,j = 0 otherwise. For
−1 < a < 1, ρ2 is less than 1/4.

Let θ̂ be the least squares estimate of θ = (θ0,θ
T
1 )T , i.e., θ̂ =

(
XT X

)−1
XT

y, where the ith row of matrix X is (1,xT
i ) and y = (y1, . . . , yn)T . The loss func-

tion we consider is the Integrated Mean Squared Error (IMSE) of the estimated
response, i.e.,

IMSEn(f, ρ, ξ) = n

∫
S

E[(θ̂0 + θ̂
T
1 x− E[y|x])2]dx, (1.3)

where ξ is the design measure of x1, . . . ,xn on S.
A design ξ∗ is called a minimax design if it minimizes the maximum (over ρ

and f) of the IMSEn(f, ρ, ξ) asymptotically:

lim
n→∞ sup

ρ∈P
sup
f∈F

IMSEn(f, ρ, ξ∗) ≤ lim
n→∞ sup

ρ∈P
sup
f∈F

IMSEn(f, ρ, ξ) for all ξ, (1.4)

for a given class P of ρ.
A second approach to robust designs is to minimize IMSEn(f, ρ, ξ) at the

ideal model (f = 0, ρ = 0, i.e., the regression response is linear with uncorrelated
errors) subject to two constraints. One constraint guarantees a small change in
IMSEn if there is a small departure in the assumed regression response. Another
guarantees a small change in IMSEn if errors are correlated. Specifically, we call
ξM an M-robust design if it is a solution to

min
ξ

IMSEn(0, 0, ξ) (1.5)

s.t. lim
n→∞ sup

f∈F

{ ∂2

∂t2
IMSEn(tf, 0, ξ)|t=0

}
≤ α, (1.6)

lim
n→∞ sup

ρ∈P

{ ∂

∂s
IMSEn(0, sρ, ξ)|s=0

}
≤ β, (1.7)

where α > 0 and β > 0 are two constants. The second derivative is used in (1.6),
since IMSEn(tf, 0, ξ) is a quadratic function of t.

Minimax designs have received much attention. Examples of work in the
area are Huber (1975, 1981), Kiefer and Wynn (1984), Li and Notz (1982),
Wiens (1992), Sitter (1992), Wong (1992), and Wiens and Zhou (1996, 1998). In
Wiens and Zhou (1996), minimax designs are studied for (1.1) and (1.2) without
assuming any specific error structure, and a minimax design for uncorrelated
errors retains its optimality under autocorrelation if the design points are a ran-
dom sample, or a random permutation, of points from this distribution. The
result concludes that randomization is robust against autocorrelation of errors.
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However, if additional information is available about the error structure, one
could use the information to improve the designs. In Wiens and Zhou (1998) a
first-order autoregressive AR(1) process is considered, and the result shows that
the design points should be selected purposively and not randomly.

The infinitesimal approach to robust design was introduced by Wiens and
Zhou (1997). Their loss function is the determinant of the mean squared error
matrix, and various robust designs (V-robust, B-robust, and M-robust) are de-
fined and studied. These designs minimize the loss function at the ideal model
subject to some robustness constraints formulated in terms of boundedness of
the Gateaux derivatives of the loss function in the directions of a contaminating
response function and/or autocorrelation structure. The theory of the infinitesi-
mal approach to robust statistics in general can be found in Hampel, Ronchetti,
Rousseeuw and Stahel (1986).

In this paper we derive minimax and M-robust designs for MA(1) error pro-
cesses comparing to designs for the AR(1) error processes in Wiens and Zhou
(1998), and to the designs for a general stationary error process in Wiens and
Zhou (1996). We also provide a detailed comparison of minimax and M-robust
designs. Our results suggest that the two design approaches yield similar distri-
butions of design points but that M-robust designs require less restriction to the
order in which they are taken.

In Section 2, we derive minimax (ξ∗) and M-robust (ξM ) designs. In Section
3, we compare M-robust designs with minimax designs, and discuss how to im-
plement them in practice. Guidelines are given to select finite design points from
ξ∗ and ξM . The proofs of some Theorems are presented in the Appendix.

2. Minimax Design ξ∗ and M-robust Design ξM

The following class of disturbance functions is considered in this paper: F .=
{f | ∫S f(x)dx = 0,

∫
S xf(x)dx = 0,

∫
S f2(x)dx ≤ η2

n}. This ensures the identi-
fibility of regression parameter in model (1.1). For the design space S, we use
the sphere with volume 1 and radius (Γ(0.5q + 1))1/q/

√
π, denoted r. Define A=∫

S

(
1
x

)
( 1 xT )dx=1⊕γ0Iq, γ0 =r2/(q+2), B(ξ)=

∫
S

(
1
x

)
( 1 xT )dξ(x), D(ξ, ρ)

= XT PX/n,bf,ξ =
∫
S f(x)

(
1
x

)
dξ(x). Then the integrated mean squared error

can be decomposed into three terms

IMSEn(f, ρ, ξ) = nbT
f,ξB

−1(ξ)AB−1(ξ)bf,ξ

+σ2
ε trace(B−1(ξ)D(ξ, ρ)B−1(ξ)A) + n

∫
S

f2(x)dx. (2.1)
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The first term arises from the bias of regression estimates, the second from the
covariance matrix, and the third from model misspecification.

To derive minimax and M-robust designs, we assume (A1) ξ has a density
function m(x); (A2) ξ is spherically symmetric; (A3) limn→∞ nη2

n exists and
equals τ2 > 0. Assumption A1 is necessary for supf∈F IMSEn(f, ρ, ξ) < ∞,
see Lemma 1 in Wiens (1992). Spherically symmetric designs have nice prop-
erties such as orthogonality and rotatability. Under A2, B(ξ) is diagonal, and
the term trace(B−1(ξ)D(ξ, ρ)B−1(ξ)A) in (2.1) can be simplified. Assumption
A3 is needed in order that bias and variance are of the same magnitude in
IMSEn(f, ρ, ξ).

Under A2, the density function m(x) can be written as g(‖ x ‖), where g(u)
satisfies ∫ r

0

quq−1

rq
g(u)du = 1. (2.2)

The density function for U =‖ x ‖ is h(u) = (quq−1/rq)g(u). Let γ = E[X2
j ] =∫ r

0
uq+1

rq g(u)du and J0(g, γ) =
∫ r
0

quq−1

rq (g(u) − 1)2du. Applying Theorem 1 in
Wiens (1992), we get

sup
f∈F

IMSEn(f, ρ, ξ)=nη2
nJ0(g, γ)+σ2

ε trace(B−1(ξ)D(ξ, ρ)B−1(ξ)A)+nη2
n. (2.3)

To analyze the second term in (2.3), we introduce lag-1 autocorrelation for
each regressor xj: rj,n =

∑n
i=2 xijx(i−1),j/

∑n
i=1 x2

ij, j = 1, . . . , q, where xij is the
value of xj from ith design point. Let rj = limn→∞ rj,n for all j = 1, . . . , q, then

trace(B−1(ξ)D(ξ, ρ)B−1(ξ)A) = 1 + q
γ0

γ
+ 2ρ

(n − 1
n

+
γ0

γ

q∑
i=1

ri,n

)
. (2.4)

Therefore from (2.3),

sup
f∈F

IMSEn(f, ρ, ξ)

= nη2
n + nη2

nJ0(g, γ) + σ2
ε (1 + q

γ0

γ
) + 2ρσ2

ε (
n − 1

n
+

γ0

γ

q∑
i=1

ri,n). (2.5)

We derive minimax designs and M-robust designs for MA(1) processes when
P1 = { ρ | 0 < a0 ≤ ρ ≤ a1 < 0.5 } and P2 = { ρ | −0.5 < b0 ≤ ρ ≤ b1 < 0 }.
Theorem 2.1. Suppose the density g∗ν minimizes L(g, ν) = J0(g, γ) + qν γ0

γ

for fixed ν. Then the minimax design ξ∗ has density function g∗ν0
and requires

r1 = · · · = rq = −sign(ρ), where ν0 is either σ2
0(2 − 4a0)/(τ2(1 +

√
1 − 4a2

0))
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or σ2
0(2 − 4a1)/(τ2(1 +

√
1 − 4a2

1)) for P1, and ν0 is either σ2
0(2 + 4b0)/(τ2(1 +√

1 − 4b2
0)) or σ2

0(2 + 4b1)/(τ2(1 +
√

1 − 4b2
1)) for P2.

The requirement r1 = · · · = rq = −sign(ρ) in Theorem 2.1 imposes a par-
ticular ordering for design points for minimax designs: consecutive design points
are as far away as possible for P1 and as close as possible for P2. Detailed strate-
gies of implementing minimax designs are discussed in Section 3. From Wiens
(1992), the density function g∗ν has the form g∗ν(u) = a∗(u2−b∗r2)+, a∗ > 0, b∗ ≤
1, 0 ≤ u ≤ r, where constants a∗ and b∗ depend on the value of ν. For small ν,
we solve γ/γ0 from the equation ((q + 4)/2)(γ/γ0 − 1)(γ/γ0)2 = ν. If 1 ≤ γ/γ0 ≤
(q +2)2/(q(q +4)), then g∗ν(u) = 1+(γ/γ0 −1)((q +4)/4)(u2/γ0− q), 0 ≤ u ≤ r.

For large ν, we solve b from equation ν = 2K2
q+2(b)/((q + 2)K3

q (b)), where
Kq(b) = q

∫ 1√
b
vq−1(v2−b)dv, and then g∗ν(u) = [(u/r)2−b]/Kq(b), r

√
b ≤ u ≤ r.

Theorem 2.2. For P1, the M-robust design ξM has density function gM =
a∗(u2 − b∗r2)+ (Lemma 4.1 in the Appendix) with α′ = (α − τ2)/τ2, β′ =
1/q−β/(2σ2

0a1q), and ξM requires that r1 + · · ·+ rq ≤ (β/(2σ2
0a1)−1)γ(gM )/γ0.

The constants a∗ and b∗ are determined by α′ and β′ in Lemma 4.1 in
the Appendix. It is true that (β/(2σ2

0a1) − 1)γ(gM )/γ0 ≥ −q, therefore r1 =
−1, . . . , rq = −1 always satisfies the requirement on the ri. A similar result is
obtained for P2 with β′ = β/(2σ2

0b1q) − 1/q, and the design ξM requires that
r1 + · · ·+ rq ≥ (β/(2σ2

0b1)−1)γ(gM )/γ0. The condition on the ri can be satisfied
with r1 > 0, . . . , rq > 0.

3. Implementation and Comparison

From Section 2, both minimax and M-robust designs have density functions
of the form a∗(u2 − b∗r2)+. For ξ∗, a∗ and b∗ depend on σ2

0/τ
2 and on the range

of autocorrelation parameter ρ. For ξM , a∗ and b∗ depend mainly on the values
of the constraint bounds α and β.

In the limiting case of τ2 = limn→∞ nη2
n = 0, i.e. σ2

0/τ
2 → ∞, the bias effect

in IMSE is 0, so we have a pure variance problem. The optimal distribution of
||x|| from the minimax design ξ∗ is the pointmass at ||x|| = r. For the M-robust
design ξM , the optimal distribution is determined by the constraint parameter
β in (1.7), because constraint (1.6) becomes trivial (τ2 + τ2J0(g, γ) ≤ α for all
α ≥ 0). For example, if q = 1 and β′ = 5/9, the optimal distribution for ||x||
is H(u) = 8u3, 0 ≤ u ≤ 0.5; if q = 1 and β′ = 1, the optimal distribution for
||x|| is the uniform distribution on [0, r], and H(u) = 2u, 0 ≤ u ≤ 0.5; if q = 1
and β′ < 1/3, then constraint (1.7) always holds and the pointmass at ||x|| = r

is optimal.
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In the case of τ2 = limn→∞ nη2
n = ∞, i.e., σ2

0/τ
2 → 0, the variance term

in IMSE vanishes. The optimal distribution of ||x|| from the minimax design
ξ∗ is uniform on [0, r]. For the M-robust design ξM , constraint (1.6) does not
hold because of τ2. However we can have J0(g, γ) = 0 if only τ2J0(g, γ) ≤ α is
considered, which also leads to the uniform distribution on [0, r].

Both ξ∗ and ξM have requirements on r1, . . . , rq. As a result, ξ∗ and ξM im-
pose orders on the design points x1, . . . ,xn. From Theorem 2.1, the requirement
on r1, . . . , rq by ξ∗ is very restrictive: all ri equal −1 for P1 and 1 for P2. On
the other hand the requirement by ξM in Theorem 2.2 is less restrictive, since
r1 > 0, . . . , rq > 0 satisfies the requirement for M-robust designs for P2, and
r1 < 0, . . . , rq < 0 usually satisfies the requirement for P1. Furthermore the re-
quirements on r1, . . . , rq of ξ∗ always satisfy those of ξM . So the minimax designs
are special cases of M-robust designs if their distribution functions are the same.

To implement these designs, we can select design points x1, . . . ,xn in two
steps. Suppose H is the distribution function of U =‖ x ‖.
Step 1. Choose n spherically symmetric points w1, . . . ,wn in the design space S

such that the empirical distribution function of ‖w1‖, . . . , ‖wn‖ converges
to H.

Step 2. Select x1, . . . ,xn as one particular permutation of w1, . . . ,wn which is
determined by r1, . . . , rq.

Example 1. We implement the minimax design ξ∗ for q = 1. The design space
is S = [−0.5, 0.5]. In step 1, choose n symmetric points w1, . . . , wn as follows.
Let l = [n/2], wi = −H−1((l − i + 0.5)/l) for i = 1, . . . , l, and wi = −wn−i+1 for
i = n− l +1, . . . , n. If n is odd, then there is a middle point w(n+1)/2 = 0. These
points are in an increasing order, w1 ≤ w2 ≤ . . . ≤ wn. In step 2, select x1, . . . , xn

by the requirement on r1. For P1, ξ∗ requires r1 = −1, i.e.,
∑

xixi+1/
∑

x2
i → −1,

as n → ∞. The following selection satisfies this requirement: x1 = w1, x2 =
wn, x3 = w2, x4 = wn−1, . . . , x2i−1 = wi, x2i = wn−i+1, . . .. For P2, ξ∗ requires
r1 = 1, so we select x1 = w1, x2 = w2, . . . , xn = wn.

Example 2. Implement ξM for q = 1. In step 1, choose w1, . . . , wn as in Example
1. In step 2, the requirement on r1 imposed by ξM is not so restrictive. For P1 we
only need r1 < 0. Therefore there are many ways to select x1, . . . ,xn including
the one in Example 1. Let wI = { wi |wi < 0 } and wII = { wi |wi ≥ 0 },
then x1, . . . , xn can be any permutation of w1, . . . , wn such that design points
alternate between wI and wII . For P2, ξM requires r1 > 0. So x1, . . . , xn can be
any permutation of w1, . . . , wn such that the first half of design points are from
wI and the second half are from wII .

In general, step 1 is the same, and step 2 is different in implementing ξ∗

and ξM . Stricter requirements on r1, . . . , rq imposed by ξ∗ allow little flexibility
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in choosing x1, . . . ,xn at step 2. The requirement r1 = . . . = rq = −sign(ρ)
is equivalent to limn→∞ E[||xi+1 + sign(ρ)xi||2] = 0, which is the requirement
imposed by the minimax designs for approximately linear models with AR(1)
errors in Wiens and Zhou (1998). Therefore the strategies in Wiens and Zhou
(1998) can be used in Step 2 to implement ξ∗. For P2, we can select x1, . . . ,xn

by the nearest neighbour method:
1. Set x0 = 0.

2. For i = 1, . . . , n, define xi to be the nearest neighbour, among those wi not
yet chosen, of xi−1.

The design points for P1 can then be taken as (−1)1x1, (−1)2x2, . . . , (−1)nxn.
For ξM , it is relatively easier to implement step 2. For q = 2, points

w1, . . . ,wn selected in step 1 fall in four quadrants, say w1,w2,w3 and w4.
For P1, ξM requires designs points x1, . . . ,xn alternating between w1 and w3

first, then alternating between w2 and w4. For P2, ξM requires that consecutive
design points stay within the same quadrant as long as possible. It is important
to emphasize that this strategy can be easily generalized for q > 2. Denote the
sign change for two consecutive design points xi and xi+1 as

si =
q∑

j=1

{1 − sign(xij) · sign(x(i+1),j)}/2.

Set initial value x1 = w1, and choose the next design point xi to keep si−1 as
small as possible for P2, and to keep si−1 as large as possible for P1 (sign change
method).

Example 3. For q = 2, we construct n = 16 points from both the minimax and
the M-robust designs for P1 and P2. The optimal distribution for ||x|| is H(u) =
(π/2)u2 + (π2/2)u4, 0 ≤ u ≤ π−1/2, which corresponds to ν = 49/72, α′ = 1/3
and β′ = 6/7. Since x/||x|| is uniformly distributed over the unit circle in IR2,
and ||x|| and x/||x|| are independent, one way to select the design points is to
take

wi = ti

(
sin φi

cos φi

)
, i = 1, . . . , n,

where ti = H−1((i − 0.5)/n), and φi is randomly selected from the uniform
distribution on [0, 2π), or φi can be randomly selected from {0, 2π/n, . . . , 2(n −
1)π/n} without replacement. The latter is used in this example. In this case,
the empirical distribution of ||wi|| converges to H. Using the nearest neighbour
method, we can arrange the order of design points wi to get minimax designs.
For M-robust designs, the sign change method is applied. Figure 1 shows the
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distribution of design points of the minimax designs and the M-robust designs
respectively.
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Figure 1. Minimax and M-robust design points in two dimensional space: (a)
minimax design for P1, (b) minimax design for P2, (c) M-robust design for
P1, (d) M-robust design for P2. Order of implementation is numerical.

Example 4. For q = 4, we construct n = 16 points from both the minimax
and the M-robust designs for P2. Suppose the optimal distribution for ||x|| is
H(u) = 8−1/2π3u6, 0 ≤ u ≤ 21/4π−1/2 corresponding to ν = 81/128, α′ = 1/5
and β′ = 8/9. Let wi = tiui, i = 1, . . . , n, where ti = H−1((i − 0.5)/n), and the
ui are randomly selected from the uniform distribution over the surface of the
unit sphere. One way to select ui is

vi =




sin φ1,i sin φ2,i sinφ3,i

cos φ1,i sin φ2,i sinφ3,i

cos φ2,i sin φ3,i

cos φ3,i


 , ui = Tivi,
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where φ1,i, φ2,i, φ3,i are randomly and independently generated from the uniform
distribution on [0, 2π) for each vi, and Ti is a permutation matrix randomly
generated for each ui. It is easy to verify that ||ui|| = ||vi|| = 1 for i = 1, . . . , n,
and each point on the surface of the unit sphere can be represented in the form
of vi. The permutation matrix Ti makes ui uniformly distributed on the surface.
Splus is used to generate φ1,i, φ2,i, φ3,i Ti, and to carry out both sign change
method and nearest neighbour method.

Based on the wi’s, we determine the sequence x1, . . . ,x16 for the M-robust
design by minimizing sign changes for consecutive design points. One sequence of
the design points x1, . . . ,x16 is displayed in Figure 2. Since design points are in
4-dimensional space, we use two plots (x1 versus x2 and x3 versus x4) to show the
design points graphically. The minimax design is obtained by using the nearest
neighbour method, and has exactly the same points as the M-robust design but a
different ordering: x1,x2,x3,x5,x6,x4,x13,x11,x12,x10,x8,x9,x7,x14,x15,x16.
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Figure 2. M-robust design points in 4-dimensional space: (a) x1 vs x2, (b)
x3 vs x4. Order of implementation is numerical.
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We conclude that minimax and infinitesimal approaches produce consistent
robust designs for linear models with correlated errors. M-robust designs have
the advantage of a less restrictive ordering of design points. In practice it is not
necessary to choose η2

n. One only needs to choose ν (related to the ratio σ2
0/τ

2)
to determine optimal density function g∗ν in Theorems 2.1, which leads to the
optimal density h(u) = (quq−1/rq)g∗ν(u) for ||x||. Since 0 ≤ ν < ∞, and two
limiting cases ν = 0 and ν = ∞ correspond to the pure bias problem and pure
variance problem respectively, ν can be viewed as a measure of efficiency versus
robustness against model departure in the response. When ν increases, we gain
more efficiency but less robustness. Furthermore, the optimal designs are not
sensitive to the value of ν if ν is not too close to 0 or ∞.
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Appendix

Proof of Theorem 2.1. First supρ∈P1
supf∈F IMSEn(f, ρ, ξ) is obtained at

either ρ = a0 or a1. Without loss of generality we assume that ρ = a0 gives
the maximum value of limn→∞ supf∈F IMSEn(f, ρ, ξ∗), then limn→∞ supρ∈P1

supf∈F IMSEn(f, ρ, ξ∗) = τ2(1 + L(g∗ν1
, ν1) + σ2

0(2 + 4a0)/(τ2(1 +
√

1 − 4a2
0))

with ν1 = σ2
0(2 − 4a0)/(τ2(1 +

√
1 − 4a2

0)). Using the fact that g∗ν1
minimizes

L(g, ν1) and ri = −1, we have, for any ξ,

lim
n→∞ sup

ρ∈P1

sup
f∈F

IMSEn(f, ρ, ξ) ≥ lim
n→∞ sup

ρ∈P1

sup
f∈F

IMSEn(f, ρ, ξ∗).

The result for P2 can be proved similarly.
The following lemma is used in Theorem 2.2.

Lemma 4.1. The density gM = a∗(u2 − b∗r2)+ is the solution to

min
ξ

γ0

γ
, s.t. J0(g, γ) ≤ α′ and

γ0

γ
≥ β′, (A.1)

where constants a∗ and b∗ depend on α′ and β′.

The proof is based on the idea that the density g = a∗(u2−b∗r2)+ minimizes
J0(g, γ). We need to find the minimum of γ0/γ by choosing a∗ and b∗ properly.
Constants a∗ and b∗ are determined as follows. Formulas for γ0/γ and J0(g, γ)
can be found in Wiens (1992, p.364).
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Case 1. For 0 ≤ α′ ≤ 4/(q(q + 4)),

gM (u) = 1 + (
1

cM
− 1)(

q + 4
4

)(
u2

γ0
− q), 0 ≤ u ≤ r, (A.2)

where cM = max{β′,
√

q(q + 4)/(
√

4α′ +
√

q(q + 4))}.
Case 2. For α′ > 4/(q(q +4)) and q(q +4)/(q +2)2 ≤ β′ ≤ 1, gM (u) has the form
of (A.2) with cM = β′.

Case 3. For α′ > 4/(q(q + 4)) and q/(q + 2) ≤ β′ ≤ q(q + 4)/(q + 2)2, first we
solve for b in 


γ

γ0
=

Kq+2(b)
Kq(b)

J0(g, γ) =
qγ − br2

r2Kq(b)
− 1 = α′,

and write the solution as b̂. Then we solve for b in γ/γ0 = Kq+2(b) /Kq(b) = β′

and denote the solution as b̃. Set b1 = min{b̂, b̃}, then the density is gM (u) =
((u/r)2 − b1)/Kq(b1), r

√
b1 ≤ u ≤ r.

Proof of Theorem 2.2. The optimization problem defined by (1.5) - (1.7) is
equivalent to (A.1) in Lemma 4.1 based on the following:

IMSEn(0, 0, ξ) = σ2
0(1 + q

γ0

γ
),

lim
n→∞ sup

f∈F

{ ∂2

∂t2
IMSEn(tf, 0, ξ)|t=0

}
= τ2(1 + J0(g, γ)),

lim
n→∞ sup

ρ∈P1

{ ∂

∂s
IMSEn(0, sρ, ξ)|s=0

}
= 2σ2

0a1(1 +
γ0

γ

q∑
i=1

ri).

The condition on ri is obtained from constraint (1.7).
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