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Abstract: Logistic regression is a widely applied tool for the analysis of binary

response variables. Several test statistics have been proposed for the purpose of

assessing the goodness of fit of the logistic regression model. Unfortunately, analysis
based on these test statistics requires a moderately large sample size so that the

chi-square approximation can be applied. When the sample size is small or the

data structure is sparse, the asymptotic approximation becomes unreliable. In this

article, an exact conditional goodness-of-fit test for the logistic regression model

with grouped binomial response data is proposed. Two efficient algorithms are

presented for carrying out the exact conditional goodness-of-fit test in small sample
studies. Two data sets from an animal carcinogenesis experiment and a study on

self-esteem are analyzed to demonstrate the methods.
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1. Introduction

The logistic regression model is a commonly used technique for relating a
binary response variable Z ∈ {0, 1} (e.g., tumour incidence - present or absent)
to a set of covariates (X1, . . . ,Xk) (e.g., risk factors) according to

log
{ pX

1 − pX

}
= β′X,

where pX represents the conditional probability of response given the vector X ′

= (X0,. . ., Xk), X0 = 1, and β′ = (β0, . . . , βk) represents the regression coeffi-
cients. Two approaches are available for statistical inference for the regression
coefficients of the logistic regression model, the asymptotic and the exact ap-
proach. The asymptotic approach has been very popular and widely used due
to its simplicity in computation (see, Hosmer and Lemeshow (1989)). However,
it has been felt that this approach is unreliable for small, sparse, or skewed data
(see, Mehta and Patel (1995)). Under these situations, statistical inference based
on the exact approach is recommended. Since the exact approach requires the
determination of the permutational distributions of appropriate sufficient statis-
tics, it has been believed to be computationally impractical. Thanks to the
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development of some fast algorithms for deriving these permutational distribu-
tions (e.g., Tritchler (1984), Hirji, Mehta and Patel (1987), and Hirji (1992)),
statistical inference based on the exact approach now becomes computationally
feasible, at least for a reasonable sample size. In fact, some of the algorithms for
exact logistic regression analysis have been incorporated into commercial statisti-
cal packages, such as LogXact-4 for Windows (1999) and StatXact-4 for Windows
(1999), enhancing their availability to the applied statistician.

Due to the popularity of the exact approach, more and more statisticians
are now tempted to apply it without checking the adequacy of fit of the assumed
logistic regression models. There has been a scattering of literature (e.g., Tsi-
atis (1980) and Hosmer and Lemeshow (1980)) on assessing the goodness of fit
for binary logistic regression models. The methods proposed by these authors,
however, require partitioning the space of covariates or subjects into regions or
groups. A goodness-of-fit statistic is then calculated as a quadratic form of the
observed minus expected counts in these regions or groups, and is shown to have
a chi-square distribution, or a distribution which can be well approximated by a
chi-square, when the sample size is large (see, e.g., Hosmer and Lemeshow (1980)
and Lipsitz, Fitzmaurice and Molenberghs (1996)). Nevertheless, the choice of
the number of partitioned regions or groups is quite subjective. Moreover, when
the sample size is small and the data structure is sparse, the accuracy of the
asymptotic approximation is questionable. Forster, McDonald and Smith (1996)
presented a Gibbs sampling approach for estimating the exact P -value of the
goodness-of-fit likelihood ratio statistic. However, as stated in their paper, how
best to implement the Gibbs sampler is still an area of much current research and
vigorous debate. More importantly, we note that the application of the Gibbs
sampler for obtaining the exact P -value is sometimes unnecessary when the data
are organized in a grouped fashion and the sample size is not large.

Mehta and Patel (1995) provided an excellent review and discussion on the
exact conditional approach, an alternative to the maximum likelihood method,
for making inferences about the parameters of the logistic regression model. Var-
ious applications of such an exact conditional approach were given to biomedical
data sets. Unfortunately, a potential but important application of the existing
exact conditional approach to the problem of assessing the goodness of fit of
the logistic regression model was not discussed in their paper. The purpose of
this paper is to propose an exact conditional goodness-of-fit test for the logistic
regression model with grouped binomial response data.

In Section 2, we describe the logistic regression model for grouped binomial
response data. A conditional goodness-of-fit test for the model will be discussed.
In Section 3, an algorithm based on nested DO loops will be presented for cal-
culating the exact P -value of the conditional goodness-of-fit test. An example
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from a study of self-esteem is used for illustration. In Section 4, another efficient
recursive algorithm will be proposed. We demonstrate the algorithm with an
example from an animal carcinogenesis experiment. A brief discussion is given
at the end of the article.

2. Exact Goodness-of-Fit Test

Suppose that in a study with a binary response variable, individuals can be
classified according to common experimental conditions or covariate values. Let
G be the number of groups, ng be the number of subjects in group g in which
observations possess a common p-dimensional covariate vector (xg1, . . . , xgk)′, Yg

be the corresponding random number of subjects who express a response (e.g.,
develop a tumor or not) in the gth group, and pg be the probability that a subject
exhibits a response in the gth group, where Yg ∈ {0, . . . , ng} and g = 1, . . . , G.
The logistic regression model that relates the probability of response pg to the
covariate vector xg is given by

log
{ pg

1 − pg

}
= β′xg, (1)

where xg = (xg0, . . . , xgk)′ and β′ = (β0, . . . , βk) with xg0 = 1 for g = 1, . . . , G.
That is, we consider the logistic regression model with intercept. Let q = k + 1.
Following Forster et al. (1996), to test the hypothesis concerning a model with
q < G covariates (i.e., treating the intercept as a covariate), we consider the
following saturated model

log
{ pg

1 − pg

}
= β′xg + δg, (2)

where g = 1, . . . , G with δ1 = · · · = δq = 0. It can be shown that the vectors of
sufficient statistics for the regression parameters, i.e., β, and (δq+1,. . ., δG)′ are
respectively given by

T =
G∑

g=1

Ygxg, and (Yq+1, . . . , YG)′. (3)

McCullagh (1986) argued that the appropriate distribution for testing goodness-
of-fit is conditional on the vector of the sufficient statistics for the regression
parameters. In our framework, a goodness-of-fit test for the model at (1) cor-
responds to the exact conditional test of H0 : δq+1 = · · · = δG = 0. Let y∗ =
(y∗1,. . ., y∗G)′ be the observed vector Y , t∗ =

∑G
g=1 y

∗
gxg be the corresponding

observed vector T , y+
q+1 = (yq+1, . . ., yG)′, and y∗+

q+1 = (y∗q+1,. . ., y
∗
G)′. Hence,
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the required exact conditional distribution under the null hypothesis H0 is given
by

PrH0 [Y
+
q+1 = y+

q+1|T = t∗] =
∏G

g=1 b(ng, yg)∑
v∈Ω(t∗)

∏G
g=1 b(ng, vg)

, (4)

where b(m,k) denotes the binomial coefficient m!/[k!(m − k)!], Ω(t∗) = {v =
(v1, . . . , vG)′ :

∑G
g=1 vgxg = t∗, vg = 0,. . ., ng, for g = 1, . . . , G} and (y1,. . ., yq)′

is the (unique) solution of the equations:
∑G

g=1 Ygxg = t∗, and Yg = yg, for
g = q+1, . . . , G. That is, we treat the regression parameters as nuisance param-
eters and factor them out by conditioning on their respective sufficient statistics.
It should be noted that under the null hypothesis H0, the exact conditional dis-
tribution (4) is free of any parameters. Following Hirji et al. (1987) (see also,
Mehta and Patel (1995)), to test the null hypothesis H0, the exact P -value based
on the conditional probabilities test can be calculated by summing the proba-
bilities of all configurations {y1, . . . , yq} with a probability not greater than that
of the observation configuration, y∗. In other words, the exact P -value of the
conditional goodness-of-fit test can be computed as

Py∗ = 1 −
∑

y∈Ω(t∗)

PrH0 [y
+
q+1|T = t∗]I{PrH0

[y+
q+1|T =t∗]>PrH0

[y∗+
q+1|T =t∗]}, (5)

where I denotes an appropriate indicator function.
According to the previous formulation, it is clear that the calculation of

the exact P -value, Py∗ , involves the identification of any vector y such that
∑G

g=1 ygxg = t∗ with Yg ∈ {0, . . . , ng} for g = 1, . . . , G. Once the set Ω(t∗)
is constructed, the P -value, Py∗ , can be computed according to (4) and (5).
However, computing Ω(t∗) according to the method proposed by Hirji et al.
(1987) can be quite laborious. For example, we note that the statistical package
LogXact-4 (1999) provides an option to report the value of Py∗ . Unfortunately
for the two examples we consider in this paper, LogXact failed to produce the
value of Py∗ after more than twelve hours of computations and gave an “insuf-
ficient memory” message. All these analyses were running on a Dell Optiplex
GX1 computer with 32Mb of RAM and a processor running at 400 MHz. We
observe that the “insufficient memory” problem is mainly due to the fact that
the existing package needs to generate and store all the elements in Ω(t∗). In the
following section, we will present an efficient algorithm for “identifying”, but not
“storing”, elements in Ω(t∗).

3. An Algorithm Based on Nested DO Loops

A trivial approach to identifying those elements in the set Ω(t∗) is based
on the method of exhaustive enumeration. That is, for every possible sequence



EXACT GOODNESS-OF-FIT TEST 203

(y1,. . ., yG) with yg ∈ {0, . . . , ng} for g = 1, . . . , G, we check if
∑G

g=1 ygxg = t∗.
It should be noted that if the data are manipulated in an ungrouped format,
i.e., each individual is treated as a separate entity, the total number of possible
outcome sequences is 2N , where N =

∑G
g=1 ng. On the other hand, if individ-

uals with common covariate values are processed in grouped format, then the
total number of possible sequences is reduced to

∏G
g=1 (1 + ng). Therefore, if the

number
∏G

g=1 (1 + ng) is not too large, the exhaustive enumeration approach is
computationally practical. However, in the simplest situation in which the co-
variates under study are all binary, the number of possible groups is 2p. In this
situation, exhaustive enumeration becomes inefficient for p ≥ 4. The situation is
worse when some of the covariates are nonbinary.

We consider the following algorithm based on nested DO loops:
Step 1. Generate the sequence y = (y1, . . . , yG) by using the following backward

nested loops
Lg ≤ yg ≤ Ug, for g = 1, . . . , G, (6)

where Lg = max{0, Lgj , j = 1, . . . , q}; Ug = min{ng, Ugj , j = 1, . . . , q};
Lgj = min{0, Ixgj [

1
xgj

{t∗j −
∑g−1

g′=1 xg′jng′−
∑G

g′=g+1 xg′jyg′}]}, j = 1, . . . ,

q; Ugj = max{0, Ixgj [
1

xgj
{t∗j −

∑G
g′=g+1 xg′jyg′}]}, j = 1, . . . , q; Ixgj = 1

if xgj �= 0; = 0 otherwise; and [D] = the largest integer less than or
equal to D;

Step 2. In the innermost loop, i.e., g = 1, check if
∑G

j=1 yjxj = t∗.
Step 2a. If “No”, skip to the next y sequence;
Step 2b. If “Yes”, then

(1) Accumulate
∏G

j=1 b(nj, yj) to Pt; and
(2) If

∑G
j=1 ln[b(nj, yj)] >

∑G
j=1 ln[b(nj , y

∗
j )], then accumulate∏G

j=1 b(nj, yj) to Pgt;
Step 3. If the nested DO loops are exhausted, the exact P -value is computed

as Py∗ = 1 - Pgt/Pt.
The above algorithm is basically the same as the one proposed by Bedrick

and Hill (1992). In their case, the entire reference set (i.e., Ω(t∗)) is stored.
In our case, we are only interested in generating the right-tailed probability
neccessary for the exact P -value calculation and storing the entire reference set
is unneccessary.

By noting that any linear transformation on the covariates does not change
the exact P -value of the conditional goodness-of-fit test, we assume without loss
of generality that all covariates take nonnegative integer values. It is easy to see
that if all the covariates under consideration are binary, then those sequences
{y1, . . . , yG} generated by the nested DO loops (6) will automatically satisfy∑G

g=1 ygxg = t∗. Finally, we would like to point out that the Nested DO-LOOPS
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algorithms proposed by O’Flaherty and MacKenzie (1982) or Garcia-Perex (1995)
can be readily adopted in our framework.

3.1. Example: a study on self-esteem

Demo and Parker (1987) studied the effect of academic achievement on self-
esteem among black and white college students. The data from this study are
given in Table 1. By performing a series of separate primary analyses, they
showed that (i) there was no significant difference between the self-esteem levels
of black and white college students; (ii) the effect of gender on self-esteem was
significant; and (iii) there was no association between academic achievement and
overall self-esteem. Let g = 1, . . . , 8 label the eight groups listed in Table 1.
We can reanalyze the data by considering the following logistic model relating
various factors to the probability of expressing low self-esteem

log
{ pg

1 − pg

}
= β0 + β1Genderg + β2GPAg + β3Raceg. (7)

Table 1. Self-esteem study data.

Gender Cumulative Race No. of Students with Total no. of
GPA Low Self-esteem Students

0 0 0 26 48
0 0 1 17 43
0 1 0 10 27
0 1 1 9 24
1 0 0 17 20
1 0 1 23 47
1 1 0 32 54
1 1 1 22 35

Note: Gender, 0 = male, 1 = female; Cumulative GPA, 0 = low, = high;
Race, 0 = white, 1 = black.
Source: Demo and Parker (1987).

We implemented the exhaustive enumeration approach on a SUN SPARC20B
station and obtained the exact P -value of the conditional goodness-of-fit test,
equal to 0.1371, in 52 seconds, while the algorithm based on the nested DO loops
took only 9 seconds to get the same result. Therefore, a conditional goodness-of-
fit test shows that the fit of the logistic regression model (7) is adequate. To test
the significance of each individual effect, we performed a two-sided hypothesis
testing of H0: βi = 0 vs. H1: βi �= 0, for i = 1, 2, and 3, using the exact approach.
In this case, we adopt “the twice the smaller tail” method to compute the two-
sided exact P -value (see, e.g., Tang, Hirji and Vollset (1995)). The corresponding
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exact P -value for H0: βi = 0 vs. H1: βi �= 0 is determined by

2min(Pr[Ti ≥ t∗i |Tj = t∗j , for all j �= i;βi = 0],

P r[Ti ≤ t∗i |Tj = t∗j , for all j �= i;βi = 0]).

The P -values for different hypotheses are reported in Table 2. The exact analysis
indicates that there is a significant gender effect on self-esteem and the effect of
cumulative GPA on self-esteem is not significant. However, a non-significant race
effect on self-esteem is reported. In this case, exact analysis of these data leads
to the same conclusions as those of Demo and Parker (1987).

Table 2. Exact P values* for self-esteem data.

H0 : βi = 0 vs. H1 : βi �= 0
Variable Exact P Value∗

Gender (β1) 0.0027
GPA (β2) 0.3786
Race (β3) 0.0685

*: Exact P value is calculated according to the “Twice the Smaller Tail”
Method.

4. An Algorithm Based on Recursion

In practice, we do not need to generate the entire exact conditional distribu-
tion under the null hypothesis to compute the exact P -value of the conditional
goodness-of-fit test. From equation (5), the main components in determining
the exact P -value, Py∗ , include (i) the calculation of the normalizing constant
∑

v∈Ω(t∗)

∏G
g=1 b(ng, vg); and (ii) the summation

∑ ∏G
g=1 b(ng, vg) for any se-

quence v in Ω(t∗) which satisfies
∑G

g=1 ln[b(ng, vg)] >
∑G

g=1 ln[b(ng, y
∗
g)]. The first

task can be done by implementing a modified procedure based on the recursive
algorithm proposed by Hirji et al. (1987), the second task can be accomplished
by using the same recursive procedure together with a simple trimming criterion.
We discuss the implementation as follows.

4.1. Computation of the normalizing constant

In the formulation at (1), we include the intercept term. Then T1 is always
equal to

∑G
g=1 Yg, and t∗1 =

∑G
g=1 y

∗
g . Consider the joint distribution of the

vector of sufficient statistics for the regression parameters in β, i.e., T . The joint
distribution of T is given by

Pr[T = t] =
cG(t) exp(β′t)∑

u∈ΩG
cG(u) exp(β′u)

, (8)
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where cG(t) is the number of ways of selecting yg (∈ {0, . . . , ng}) subjects from
group g(g = 1, . . . , G) such that the sequence (y1,. . ., yG) satisfies

∑G
g=1 ygxg =

t, and where ΩG is the set of all possible values of T . It is easy to see that cG(t∗)
is our desired normalizing constant,

∑
v∈Ω(t∗)

∏G
g=1 b(ng, vg).

Let Ωg be the set of the feasible values of T obtained by using the first
g groups only (g = 1, . . . , G) and, for each t ∈ Ωg, let cg(t) be the resultant
combinatorial coefficient. Hirji et al. (1987) presented an efficient recursive
algorithm that generates the joint distribution of the sufficient statistics, T , when
ng = 1 for g = 1, . . . , G. In this case, the recursions for generating ΩG and {cG(t) :
t ∈ ΩG} are given by Ωg = Ωg−1∪{Ωg−1⊕xg}; and cg(t) = cg−1(t)+cg−1(t−xg),
for t ∈ Ωg, where ⊕ symbolizes the addition of a vector to every member of a set.
By mathematical induction, we can show that for the general case in which ng ≥ 1
(g = 1, . . . , G), the corresponding recursions can be summarized as follows:

Ωg =
ng⋃

yg=0

{Ωg−1 ⊕ ygxg}; and (9)

cg(t) =
ng∑

yg=0

b(ng, yg)cg−1(t − ygxg), for t ∈ Ωg. (10)

Obviously, if only the normalizing constant is needed, generation of the entire set
{cG(t) : t ∈ ΩG} is not necessary. Following the arguments in Hirji et al. (1987),
we can calculate the desired normalizing constant cG(t∗) by introducing a set of
appropriate infeasibility criteria.

For g = 0, . . . , G − 1, and j = 2, . . . , q, let φgj(z) and ψgj(z) be the mini-
mum and the maximum, respectively, of

∑G
i=g+1 Yixij subject to

∑G
i=g+1 Yi = z

and Yi ∈ {0, . . . , ni}. To obtain φgj(z), we first arrange the subsequence xg+1,j,
xg+2,j,. . ., xGj in a nondecreasing order. Let the ordered (nondecreasing) subse-
quence be x(g+1,j) ≤ x(g+2,j) ≤ · · · ≤ x(Gj); and let n(g+1,j), n(g+2,j),. . . , n(Gj) be
the corresponding sample sizes. Let Mi = min(n(i), zi) and zi+1 = zi - Mi, for
i = g+1, g+2, . . . , G, where zg+1 = z. Then φgj(z) is

∑G
i=g+1Mix(ij) and ψgj(z)

can be computed in a similar manner, after arranging the subsequence xg+1,j,
xg+2,j,. . ., xGj in a nonincreasing order. Let φg1(z) = 0 and ψg1(z) =

∑G
i=g+1 ni,

for g = 0, . . . , G− 1 and for any z. Now, suppose that we are at the gth stage of
the recursions given by (9) and (10). Let t ∈ Ωg−1. For any given yg ∈ {0, . . . , ng},
and any j = 1, . . . , q, if either tj + ygxgj + φgj(t∗1 − t1 − yg) > t∗j or tj + ygxgj +
ψgj(t∗1 − t1 − yg) < t∗j , then given the sub-sequence (y1, . . . , yg−1) that resulted
in the vector t, and yg, there cannot exist any sub-sequence (yg+1, . . . , yG) for
which

∑G
j=1 Yjxj = t∗. Thus, we can delete the vector t + ygxg from further

consideration. Therefore, by implementing the recursions (9) and (10) together
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with checking those aforementioned infeasibility criteria, the desired normalizing
constant cG(t∗) will be produced in the final stage of the recursions, i.e., when
g = G.

Here we compute the minimums and maximums subject only to the con-
straint based on the sufficient statistic of the intercept parameter. However,
“stricter” minimums and maximums can be obtained by imposing more con-
straints based on other sufficient statistics of the regression parameters. The
rationale for using stricter bounds can be found in Hirji (1992) and we omit
the details here. However, solutions may not be available and computations are
lengthy.

4.2. Summation
∑ ∏G

j=1 b(nj, vj) for appropriate sequences

For g ≤ G − 1 and z ≤ t∗1, let λg(z) = max
∑G

j=g+1 ln[b(nj , yj)], with the
maximization done over all (yg+1,. . ., yG) satisfying yg+1 +· · · + yG = z, 0 ≤ yj

≤ nj; yj ∈ {0, . . . , nj} with j = g + 1, . . . , G. Let λG(z) = 0 for any z. λg(.)
can be readily computed by backward induction (see, Mehta and Patel (1980)).
To compute the summation

∑ ∏G
j=1 b(nj , vj) for those sequences v’s in Ω(t∗)

which satisfy
∑G

j=1 ln[b(nj , vj)] >
∑G

j=1 ln[b(nj , y
∗
j )], we introduce an additional

trimming criterion.
Suppose we are at the gth stage of the recursions given by (9) and (10). Let t

∈ Ωg−1. For any given yg∈{0, . . . , ng}, and any j=1, . . . , q, if
∑g

j=1 ln[b(nj , yj)]+
λg(t∗1 −

∑g
j=1 yj) ≤

∑G
j=1 ln[b(nj , y

∗
j )], then given the sub-sequence (y1, . . . , yg−1)

that resulted in the vector t, and yg, there cannot exist any sub-sequence (yg+1,
. . . , yG) for which

∑G
j=1 ln[b(nj , yj)] >

∑G
j=1 ln[b(nj , y

∗
j )]. Thus, we can delete

the vector t + ygxg from further consideration. By implementing the recursions
(9) and (10) together with the trimming criterion above, and the infeasibility
criteria described in Section 4.1, the desired summation

∑ ∏G
j=1 b(nj, vj) for those

sequences v’s in Ω(t∗) which satisfy
∑G

j=1 ln[b(nj , vj)] >
∑G

j=1 ln[b(nj , y
∗
j )] will

be produced in the final stage of the recursions, i.e., when g = G.
Once again, one may argue that a “stricter” maximum for

∑G
j=g+1 ln[b(nj,

yj)] can be adopted if we restrict the maximization to sub-sequences (yg+1,. . ., yG)
satisfying

∑G
j=g+1 yjxj = t∗ -

∑G
j=g yjxj. In this case, we may need to use general

integer programming methods (Hadley (1964)). However, the more constraints
the greater the computational effort required in the maximization problem. This
is an important factor to be considered before using stricter bounds.

4.3. Example: study of tolazamide in an animal carcinogensis experi-
ment

We consider the example discussed in Tarone and Gart (1980), a National
Cancer Institute animal carcinogensis experiment in which the drug tolazamide
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was administered to male and female mice and rats. Animals assigned to control,
low dose, and high dose groups, respectively, were fed the drug at levels 0.0, 0.5,
and 1.0 percent of their diet. Proportions of animals in each of the species/sex
strata with leukemia or lymphoma are reported in Table 3. To illustrate the
efficiency of our algorithms, we fit the following to the data.

log
{ pg

1 − pg

}
= β0 + β1Genderg + β2Speciesg + β3Doseg. (11)

In this case, the sufficient statistics for β0, β1, β2, and β3 are respectively given
by T1 =

∑12
g=1 Yi; T2 =

∑12
g=7 Yi; T3 = Y4 + Y5 + Y6 + Y10 + Y11 + Y12; and

T4 = Y2 + 2Y3 + Y5 + 2Y6 + Y8 + 2Y9 + Y11 + 2Y12.

Table 3. Carcinogenesis bioassay of tolazamide.

Gender Species Dosage No. of Animals Total no. of
Developed Disease Animals

0 0 0 4 14
0 0 1 5 35
0 0 2 1 34
0 1 0 2 15
0 1 1 1 35
0 1 2 4 35
1 0 0 6 15
1 0 1 2 33
1 0 2 4 34
1 1 0 4 15
1 1 1 3 33
1 1 2 2 35

Note: Gender, 0 = male, 1 = female; Species, 0 = mice, 1 = rat; Dosage, 0 =
control, 1 = low, 2 = high.
Source: Tarone and Gart (1980).

The corresponding observed values of the sufficient statistics are given by
38, 21, 16, and 33. There are 3,672,542 sequences which satisfy

∑G
j=1 yjxj = t∗.

Among these sequences, only 88,257 of them satisfy the inequality
∑G

j=1 ln[b(nj,

yj)] >
∑G

j=1 ln[b(nj, y
∗
j )]. To check if the proposed logistic model fits the data, we

run the exhaustive enumeration procedure, the algorithm based on nested DO
loops, and the recursive algorithm. Exhaustive enumeration took 2,980 seconds to
produce Py∗ = 0.1965. The algorithm based on nested DO loops took 80 seconds
to obtain the same result, while the recursive algorithm took only 30 seconds.
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Now that the underlying logistic model (11) fits the data, further analyses and
conclusions based on this model are warranted.

5. Discussion

We have considered an exact conditional test for assessing the goodness-of-fit
of the logistic regression model. Our test is different from the previous goodness-
of-fit tests proposed by Hosmer and Lemeshow (1980) and Lipsitz, Fitzmaurice
and Molenberghs (1996) in two respects. First, we do not require the partitioning
of the space of covariates or subjects into regions or groups. Second, we consider
exact analysis rather than asymptotic analysis. The advantage of our method is
its reliability in small samples. Moreover, our proposed algorithms can be readily
modified to give an exact P -value for other goodness-of-fit statistics, such as the
Pearson chi-square or the deviance statistic.

The existing statistical package LogXact-4 (1999) provides another option
for producing the desired exact P -value. However, in the two examples we con-
sidered, it failed to produce the results due to insufficient computer memory and
it took a long time to report failure. We present two efficient algorithms for cal-
culating the exact P -value of the conditional goodness-of-fit test. They are the
algorithm based on nested DO loops, and the recursive algorithm. The former
algorithm is the one proposed by Bedrick and Hill (1992). But, we do not store
the entire reference set. The advantage of using this method is that it is ide-
ally suited for a nested-Do-loop program, say, in FORTRAN. More importantly,
this method does not require additional memory to store or retrieve intermediate
records. Theoretically, it can be used for problems of any size and any number
of covariates. From our experience, the recursive algorithm is more efficient than
the algorithm based on nested DO loops when the sample size and the number
of covariates are large. However, the recursive algorithm may require extensive
memory to manipulate the hashing table used for implementing the recursions
(9) and (10). For details in implementation of the hashing table, consult Hirji et
al. (1987).

In closing, we would like to discuss various factors that would affect the ef-
ficiency and applicability of the proposed algorithms. (i) The efficiency of the
proposed algorithms depend heavily on data labeling. According to our experi-
ence, processing the algorithms with sample sizes already sorted in descending
order usually accelerates the computation. This finding agrees with those of
Bedrick and Hill (1992), Hirji and Vollset (1994), and Hirji et al. (1996). (ii)
Type of covariates is another critical factor in efficiency. As noted in Section 3, if
all the covariates under consideration are binary, then any sequence {y1, . . . , yG}
generated by the nested DO loops (6) will automatically satisfy

∑G
j=1 yjxj = t∗

and computational time is saved. For categorical covariates, efficiency decreases
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as the number of categories increases. We have found our algorithms compu-
tationally practical for categorical covariates with 4 to 5 categories. (iii) For
covariates that are continuous, each observation in the reference set may possess
the same conditional probability. As a result, the conditional probabilities test
(and even the deviance test) may provide no information about lack-of-fit. In
this case, we suggest the conversion of the measurements to binary or ordinal
types. (v) According to our experience, the proposed algorithms are applicable
to problems with 4 to 6 covariates and total sample size up to 300 observations.
Applicability could be considerably extended to data that are extremely unbal-
anced or highly grouped. Also, we note that problems in which the observed
response rate is close to 0 or 1 are less time consuming.
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