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Abstract: Extended linear modeling provides a flexible framework for functional

estimation problems with multiple covariates. Such problems include ordinary and

generalized regression, density and conditional density estimation, hazard regres-

sion, spectral density estimation and polychotomous regression. In this paper, we

develop a general theory on the rate of convergence of maximum likelihood es-

timation in extended linear modeling. The role of concavity of the log-likelihood

function is highlighted. Both correctly specified and misspecified models are treated

in a unified manner. Applications are made to a variety of structural models: sat-

urated models, partly linear models, and functional ANOVA models. Two specific

contexts, counting process regression and conditional density estimation, are used

to illustrate the general theory.
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1. Introduction

Extended linear modeling (Hansen (1994) and Stone, Hansen, Kooperberg
and Truong (1997)) provides a flexible framework for functional estimation prob-
lems with multiple covariates. Such problems include ordinary and generalized
regression, density and conditional density estimation, hazard regression, spec-
tral density estimation, and polychotomous regression. The purpose of this paper
is to develop a general theory on the rate of convergence in estimation. The con-
cavity of the log-likelihood function plays a crucial role.

Let η be the function of interest defined on a domain U . In many appli-
cations, U is a finite dimensional Euclidean space. The function η is related to
the distribution of a (possibly vector-valued) random variable W, taking values
in an arbitrary set W. To estimate η, an i.i.d. sample, W1, . . . ,Wn, from the
distribution of W is observed.

For the purpose of imposing specific structures on η, we introduce a linear
space H of real-valued functions on U and assume that η ∈ H. We refer to H as the
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model space. By choosing H appropriately, we get many familiar structural mod-
els, such as classical linear models (H = {η(u) = uTβ,u ∈ U}), additive models
(H = {η(u) = η1(u1) + η2(u2) + · · · + ηL(uL),u = (u1, . . . , uL) ∈ U}), partly
linear models (H = {η(u) = uT1 β+η2(u2),u = (u1,u2) ∈ U}), partly linear addi-
tive models (H = {η(u) = uT1 β + η2(u2) + · · · + ηM (uM ),u = (u1, . . . , uM ) ∈
U}), varying coefficient models (H = {η(u) = η1(uL)u1 + η2(uL)u2 + · · · +
ηL−1(uL)uL−1,u = (u1, . . . , uL) ∈ U}), functional ANOVA models (H = {η(u) =
η1(u1)+η2(u2)+· · ·+ηL(uL)+selected interaction terms,u = (u1, . . . , uL ) ∈ U},
here an “interaction term” is a function of two or more variables).

Let p(η,w) denote the probability density of W, which depends on the un-
known function η. For a candidate function h of η, the log-likelihood is given by
l(h,w) = log p(h,w). Define the expected log-likelihood by Λ(h) = E[l(h,W)],
where the expectation is taken with respect to the true function η. We say our
model is a concave extended linear model if (i) l(h,w) is concave in h for each
value of w ∈ W, that is, given any two functions h1, h2 ∈ H whose log-likelihood
functions are well-defined, l(αh1 +(1−α)h2,w) ≥ αl(h1,w)+(1−α)l(h2 ,w) for
α ∈ (0, 1) and w ∈ W; and (ii) Λ(h) is strictly concave in h, that is, given any
two functions h1, h2 ∈ H that are not essentially equal and whose expected log-
likelihood functions are well-defined, Λ(αh1 +(1−α)h2) > αΛ(h1)+(1−α)Λ(h2)
for α ∈ (0, 1). (Here two functions on U are essentially equal if they differ only on
a subset of U having Lebesgue measure zero.) In the above definition, we implic-
itly assume that the set of functions h such that l(h,w) and Λ(h) are well-defined
is a convex set.

In many applications, η need not totally specify the probability distribu-
tion of W. In such applications, we can take l(h,w) to be the logarithm of a
conditional likelihood, a pseudo-likelihood, or a partial likelihood, depending on
the problem under consideration. From now on, we allow this broad view of
l(h,w) in extended linear modeling. For simplicity, we still call l(h,w) the log-
likelihood and Λ(h) the expected log-likelihood. To relate the function of interest
to the log-likelihood, we assume that, subject to mild conditions on l(h,w), the
function η is the essentially unique function in H that maximizes the expected
log-likelihood. Consider, for example, the estimation of a regression function
η(x) = E(Y |X = x). One can take l(h,W) = −[Y − h(X)]2 with W = (X, Y ).
If the conditional distribution of Y given X is normal with constant variance, l
is (up to additive and multiplicative constants) the conditional log-likelihood. If
this conditional distribution is not normal, we can think of l as the logarithm of
a pseudo-likelihood. In either case, the true regression function η maximizes the
expected log-likelihood.

The class of concave extended linear models is extremely rich, containing
many estimation problems as special cases. Here are some examples.
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Hazard regression. Consider a positive survival time T , a positive censoring
time C, the observed time T ∧C = min(T,C), and an X -valued random vector X
of covariates. Let δ = ind(T ≤ C) be the indicator random variable that equals
one or zero according as T ≤ C (T is uncensored) or T > C (T is censored). Sup-
pose T and C are conditionally independent given X. Suppose also that P (C ≤
τ) = 1 for a known positive constant τ . Let η(x, t) = log{f(t|x)/[1 − F (t|x)]},
t > 0, denote the logarithm of the conditional hazard function, where f(t|x) and
F (t|x) are the conditional density and conditional distribution functions, respec-
tively, of T given that X = x. The log-likelihood for a candidate h for η is given
by l(h,W) = δh(X, T ∧ C) −

∫ T∧C
0 exp h(X, t) dt. Here, W = (X, T ∧ C, δ) and

U = X × [0, τ ].

Conditional density estimation. Consider a random pair (X,Y), where X
is X -valued, Y is Y-valued, and the conditional distribution of Y given that
X = x has a positive density. Since the corresponding log-density φ satisfies
the nonlinear constraint

∫
Y expφ(y|x) dy = 1 for x ∈ X , it is not natural to

model φ as a member of a linear space. To overcome this difficulty, we write
φ(y|x) = η(y|x) − c(x; η) and model η as a member of some linear space; here
c(x; η) = log

∫
Y exp η(y|x) dy. By imposing a suitable linear constraint on η, we

can make the map σ : η �→ φ one-to-one (see Section 4 for the details). Then
the problem of estimating φ is reduced to that of estimating η and can thereby
be cast into the framework of extended linear modeling. The (conditional) log-
likelihood is given by l(h,X,Y) = h(Y|X) − c(X;h). Here W = (X,Y) and
U = X × Y.

Generalized regression, density estimation (Stone et al. (1997)), spectral den-
sity estimation (Kooperberg, Stone and Truong (1995b)), polychotomous regres-
sion (Kooperberg, Bose and Stone (1997)), event history analysis (Huang and
Stone (1998)), proportional hazards regression (Huang, Kooperberg, Stone and
Truong (1999)), and extension of hazard regression to counting process regres-
sion (Section 3) can also be treated in the framework of concave extended linear
models.

Let G ⊂ H be a finite-dimensional space of bounded functions, whose dimen-
sion may depend on the sample size. We estimate η by using maximum likelihood
over G, that is, we take η̂ = argmax g∈G �(g), where �(g) = (1/n)

∑n
i=1 l(g,Wi)

is the scaled log-likelihood. Typical choices of G include spaces of polynomials,
trigonometric polynomials, or polynomial splines. When H has a specific struc-
ture, G is chosen to have the same structure. For example, if H is a space of
additive functions, we can choose G to be a space of additive splines. See Section
2.3 for more examples of choosing G for structural models. We refer to G as the
estimation space.
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Given the estimate η̂, the following questions about its asymptotic behavior
arise naturally. Is η̂ consistent? If so, what is the rate of convergence? How
does η̂ behave when the model is misspecified, that is, when η �∈ H? In the
structural models we consider, the target function usually has a decomposition
as a sum of certain component functions. For example, in additive models, the
target function is a sum of functions of a single variable. Thus any reasonable
estimate should have a similar decomposition. Then, under what conditions and
at what rate will the components of the estimate converge to the corresponding
components of the target function?

In this paper we provide general answers to these questions in the context of
concave extended linear models. The results are applicable to a broad range of
estimation problems including those mentioned above. Previous work on asymp-
totics for extended linear models includes Stone (1985, 1986, 1990, 1991, 1994),
Hansen (1994), Kooperberg, Stone and Truong (1995a, b), Huang (1998a, b),
Huang and Stone (1998), and Huang et al. (1999). While these works focused
on either a specific context (e.g., regression), or a specific model space (e.g., an
additive model), or a specific type of estimation space (e.g., an additive spline
space), the current paper gives a unified treatment of various contexts and vari-
ous types of model and estimation spaces. By considering possible combinations
of the likelihood (estimation context), model space (structural assumption) and
type of estimation space, we can obtain a rich body of results.

The theoretical synthesis in this paper provides insightful understanding of
the structure of extended linear modeling. By singling out the “concavity” prop-
erty of the log-likelihood, we identify the common features of various estimation
problems that can be treated effectively within the framework of extended lin-
ear modeling. Moreover, by permitting some or all of the components in the
ANOVA decomposition of the function of interest to be parametric, the current
theory broadens the scope of extended linear modeling as originally considered in
Hansen (1994) and Stone et al. (1997). In particular, we obtain a unified treat-
ment of rates of convergence for partly linear additive models and functional
ANOVA models in various statistical contexts (Section 2.3). The treatment of
model misspecification for partly linear models is also new.

Section 2 presents the general result on rates of convergence (Theorem 2.1),
from which consistency is a simple consequence. Both correctly specified and
misspecified models are treated in a unified manner. Applications to saturated
models, partly linear models, and functional ANOVA models are discussed. In
Sections 3 and 4 , two specific contexts are studied in detail to illustrate the
power of our general theory. Section 3 deals with counting process regression
with possibly internal time-dependent covariates and thus extends previous work
of Kooperberg, Stone and Truong (1995a) and Huang and Stone (1998). Section
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4 studies the conditional density estimation problem, which provides a novel
application of the general theory when the function of interest is subject to
nonlinear constraints. All proofs are given in the Appendices.

Notation. Let #(B) denote the cardinality (number of members) of a set B.
For a function h on U , set ‖h‖∞ = supu∈U |h(u)|. Given positive numbers an
and bn for n ≥ 1, let an<∼bn mean that an/bn is bounded and let an 
 bn mean
that an<∼bn and bn<∼an. Given random variables Vn for n ≥ 1, let Vn = OP (bn)
mean that limc→∞ lim supn P (|Vn| ≥ cbn) = 0 and let Vn = oP (bn) mean that
lim supn P (|Vn| ≥ cbn) = 0 for all c > 0. For a random variable V , let En denote
expectation relative to its empirical distribution; that is, En(V ) = n−1 ∑

i Vi,
where Vi, 1 ≤ i ≤ n, is a random sample from the distribution of V . We use
M,M1,M2, . . . to denote generic constants, which may vary from one context to
another.

2. Description of Main Results

In this section we present our main results and illustrate their application.
The discussion of necessary regularity conditions and technical proofs is post-
poned to Appendix A.

2.1. Rates of convergence

We assume that the log-likelihood l(h,w) and expected log-likelihood Λ(h)
are well-defined and finite for every bounded function h on U . Since the esti-
mation space G ⊂ H is a finite-dimensional linear space of bounded functions,
�(h,w) and Λ(h) are well-defined on G.

In typical applications of extended linear models, the model space H cor-
responding to a set of structural assumptions is at best an approximation to
reality. To define an appropriate target for the estimate when the the model is
misspecified (that is, η �∈ H), let η∗ = arg maxh∈H Λ(h) denote the best approx-
imation to η in H, where “best” means maximizing the expected log-likelihood.
Typically, the best approximation η∗ exists and is essentially unique when the
model is concave. It follows from the information inequality that if η ∈ H, then
η∗ = η almost everywhere. Thus we regard η∗ as our target, which allows us to
give a unified treatment of correctly specified and misspecified models.

In the regression context, for example, η∗ is the orthogonal projection of η
onto H with respect to the L2 norm given by ‖h‖2 = E[h2(X)]; that is, η∗ =
arg minh∈H ‖h− η‖2. Here, to guarantee the existence of η∗, we need to assume
that H is a Hilbert space; that is, it is closed in the metric corresponding to the
indicated norm.

Since η̂ maximizes the scaled log-likelihood �(g), which should be close to the
expected log-likelihood Λ(g) for g ∈ G when sample size is large, it is natural to
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think that η̂ is directly estimating the best approximation η̄ = arg maxg∈GΛ(g)
to η in G. If G is chosen such that η̄ is close to η∗, then η̂ should provide a
reasonable estimate of η∗. This motivates the decomposition

η̂ − η∗ = (η̄ − η∗) + (η̂ − η̄),

where η̄−η∗ and η̂− η̄ are referred to as the approximation and estimation errors
respectively.

Let ‖·‖ be a norm on H such that ‖h‖ <∞ and ‖h‖ ≤ C0‖h‖∞ for h ∈ H and
a positive constant C0. The norm ‖ · ‖ is used to measure the distance between
two functions in H. Typically, it is chosen to be an L2-norm on U relative to an
appropriate measure that depends on the estimation problem. In the regression
context, for example, a natural choice is given by ‖h‖2 = E[h2(X)]. In the
following, we assume without loss of generality that C0 = 1 since, otherwise, we
can apply the same arguments to the norm ‖ · ‖/C0.

To get mathematically rigorous results, we need some regularity conditions.
A set of such conditions (i.e., Conditions A.1, A.2 and A.4) is assumed to hold
throughout this section and will be stated explicitly in Appendix A. Roughly
speaking, we require that the target function η∗ exist and that the log-likelihood
and the expected log-likelihood be concave. In addition, the norm ‖ · ‖ should be
connected to the log-likelihood and expected log-likelihood in a suitable manner.
These conditions are satisfied in the various estimation contexts discussed in the
previous section and will be verified explicitly in Sections 3 and 4 for counting
process regression and conditional density estimation.

Set Nn = dim(G), An = supg∈G,‖g‖�=0{‖g‖∞/‖g‖} ≥ 1, and ρn = infg∈G ‖g −
η∗‖∞. The following is the main result of this section. The proof is given in
Appendix A.

Theorem 2.1. Suppose limnAnρn = 0 and limnA
2
nNn/n = 0. Then η̄ exists

uniquely for n sufficiently large and ‖η̄ − η∗‖2 = O(ρ2
n). Moreover, η̂ exists

uniquely except on an event whose probability tends to zero as n → ∞, and
‖η̂ − η̄‖2 = OP (Nn/n). Consequently, ‖η̂ − η∗‖2 = OP (Nn/n + ρ2

n).

Note that consistency of the estimate is an immediate consequence of this
theorem. The bounds for the magnitudes of the estimation and approximation
errors can be interpreted intuitively as follows: Nn/n is just the inverse of the
number of observations per parameter, and ρn is the best possible approximation
rate to the target function in the estimation space. This result provides consid-
erable insight: while the error bound of the stochastic part can be explained by a
heuristic variance calculation, that of the systematic part is reduced to a problem
of approximation theory.
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The constants An and ρn above were introduced in Huang (1998a) in devel-
oping a general theory on rates of convergence of least squares estimates in the
regression context. The magnitude of An can be determined by employing results
in the approximation theory literature for various commonly used approximating
spaces, including polynomials, trigonometric polynomials, splines, wavelets, and
finite elements. The constant ρn is the minimum L∞ norm of the error when η∗

is approximated by a function in G. By using results from approximation theory,
the magnitude of ρn can be determined for commonly used approximating spaces
if a smoothness condition is imposed on η∗. See the paper just referred to for
further discussion of these constants.

In the following subsections, we illustrate how to apply Theorem 2.1. In
particular we give the magnitudes of An and ρn when G is an appropriately
chosen approximating linear space and η satisfies some smoothness condition.

2.2. Saturated models

Let U be the Cartesian product of compact intervals U1, . . . ,UL. Consider
the saturated model, that is, let H be the space of all square-integrable functions
on U . In this case, there is no structural assumption imposed on η, so η∗ = η.

A commonly used smoothness condition is as follows. Let 0 < β ≤ 1. A
function h on U is said to satisfy a Hölder condition with exponent β if there is
a positive number γ such that |h(u) − h(u0)| ≤ γ|u − u0|β for u0,u ∈ U ; here
|u| = (

∑L
l=1 u

2
l )

1/2 is the Euclidean norm of u = (u1, . . . , uL) ∈ U . Given an
L-tuple i = (i1, . . . , iL) of nonnegative integers, set [i] = i1 + · · · + iL and let Di

denote the differential operator defined by Di = ∂[i]/(∂ui11 · · · ∂uiLL ). Let k be a
nonnegative integer and set p = k+β. A function on U is said to be p-smooth if
it is k times continuously differentiable on U and Di satisfies a Hölder condition
with exponent β for all i with [i] = k.

Let m and J be fixed nonnegative integers. Given an increasing sequence
of real numbers a = t0 < t1 < · · · < tJ < tJ+1 = b, a function on [a, b] is a
polynomial spline with degree m and J interior knots {tj , 1 ≤ j ≤ J} if the
following holds: (i) it is a polynomial of degree m in the intervals [tj, tj+1),
0 ≤ j ≤ J − 1, and [tJ−1, tJ ]; if m > 0, then (ii) it has m − 1 continuous
derivatives on [a, b]. The collection of such spline functions constitutes a linear
space of dimension J + m + 1 and is denoted Spl([a, b],m, J). In statistical
applications, the number of interior knots J may depend on the sample size n.
In this case, we require that the knots have bounded mesh ratio, that is, that
the ratios of the distances between consecutive knots are bounded above by a
universal constant.

Suppose η is p-smooth. For m ≥ p − 1, set Gl = Spl(Ul,m, Jn) for 1 ≤
l ≤ L and let G be the tensor product of G1, . . . ,GL, that is, the linear space
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spanned by functions g1(u1) · . . . · gL(uL) with gl ∈ Gl for 1 ≤ l ≤ L. Suppose
p > L/2, limn Jn = ∞, and limn J

2L
n /n = 0. Then Nn 
 JLn , An 
 J

L/2
n (see

Corollary 2 of Huang (1998a)) and ρn 
 J−p
n (see (13.69) and Theorem 12.8 of

Schumaker (1981)). Hence, limnAnρn = 0 and limnA
2
nNn/n = 0. By Theorem

2.1. ‖η̂ − η‖2 = OP (JLn /n + J−2p
n ). In particular, for Jn 
 n1/(2p+L), we have

‖η̂ − η‖2 = OP (n−2p/(2p+L)).
The rate of convergence n−2p/(2p+L) is actually optimal; there is no estimate

that can have a faster rate of convergence uniformly over the class of p-smooth
functions (see Stone (1982)). This illustrates the curse of dimensionality: given
the same smoothness condition, the larger the dimension L, the slower the rate.

2.3. Structural models

Many structural models can be specified by constructing an appropriate
model space using linear function spaces and their tensor products. In such
a case, it is natural to require that the estimation spaces have the same structure
as the model space. We show in this section how Theorem 2.1 can be applied in
this situation to obtain the rate of convergence of our estimate. We also show
under what conditions and at what rate the components of the estimate converge
to those of the target function. Suppose U is the Cartesian product of U1, . . . ,UL,
where each Ul is a compact subset of some Euclidean space.

Model space. Let H∅ denote the space of constant functions on U . Given
1 ≤ l ≤ L, let Hl ⊃ H∅ denote a closed subspace of the space of all square-
integrable functions on Ul, which can be finite- or infinite-dimensional. Given a
nonempty subset s = {s1, . . . , sk} of {1, . . . , L}, let Hs denote the tensor product
of Hs1, . . . ,Hsk

, which is the closure of the space of functions on U spanned by the
functions f of the form f(u) =

∏k
i=1 fsi(usi), where fsi ∈ Hsi for 1 ≤ i ≤ k. Let S

denote a hierarchical collection of subsets of {1, . . . , L}, where hierarchical means
that if s is a member of S and r is a subset of s, then r is a member of S. The
corresponding model space H is defined by H = {∑s∈S hs : hs ∈ Hs for s ∈ S}.
Note that the various structural models discussed in Section 1 can all be put
into this framework by making suitable choices of Hl and S. For example, taking
Hl = L2(Ul) for 1 ≤ l ≤ L and S = {∅, {1}, . . . , {L}}, we obtain an additive
model.

Estimation space. Let G∅ denote the space of constant functions on U , di-
mension N∅ = 1. Given 1 ≤ l ≤ L, let Gl (G∅ ⊂ Gl ⊂ Hl) denote a linear
space of bounded, real-valued functions on Ul, which may vary with the sam-
ple size n, with finite, positive dimension Nl = Nln. Given a nonempty subset
s = {l1, . . . , lk} of {1, . . . , L}, let Gs be the tensor product of Gl1, . . . ,Glk . The
estimation space G is defined by G = {∑s∈S gs : gs ∈ Gs for s ∈ S}. Note that
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the dimension of Gs is Ns =
∏k
i=1Nli and that the dimension Nn of G satisfies

Nn 
 ∑
s∈S Ns. If Hl is finite-dimensional, we can choose Gl = Hl.

The functions in H and G can have a number of representations as a sum of
components. To obtain a unique such representation, we require that each non-
constant component be orthogonal to all possible values of the proper lower-order
components relative to an appropriate inner product, which leads to the notion
of a functional ANOVA decomposition. Usually, one uses a theoretical inner
product on the model space and an empirical inner product on the estimation
space. The reason for using different inner products is that the theoretical inner
product is often defined in terms of the data-generating distribution, and hence
depends on unknown quantities, while the empirical inner product needs to be
totally determined by the data since it will be used to decompose the estimate.
A systematic account of functional ANOVA decompositions is provided in Huang
(2000). Some of the results of that paper are summarized in Appendix D.

Theorem 2.1 can be used to study the convergence properties of our estimates
when the model and estimation spaces are constructed as above. Set As =
Asn(Gs) = supg∈Gs,‖g‖�=0(‖g‖∞/‖g‖) and ρs = ρsn(η∗s ,Gs) = infg∈Gs ‖g − η∗s‖∞
for s ∈ S. The constants As and ρs, which are analogs of the constants An and
ρn, are defined on the tensor product spaces that constitute the estimation space
G and thus are more straightforward to determine. Suppose Condition D.1 in
Appendix D holds. The following result is a consequence of Theorem 2.1 and
Lemma D.1.

Corollary 2.1. Suppose limnAsρs′ = 0 and limnA
2
sNs′/n = 0 for each pair

s, s′ ∈ S. Then ‖η̂ − η∗‖2 = OP (
∑
s∈S(Ns/n+ ρ2

s)).

Suppose now that η∗ and η̂, as members of H and G respectively, have the
ANOVA decompositions η∗ =

∑
s∈S η

∗
s and η̂ =

∑
s∈S η̂s (See Appendix D for

formal definitions.). Suppose Conditions D.1–D.3 in Appendix D hold. Corollary
2.1 and Theorem D.1 together yield the following result.

Corollary 2.2. Suppose limnAsρs′ = 0 and limnA
2
sNs′/n = 0 for each pair

s, s′ ∈ S. Then ‖η̂s − η∗s‖2 = OP (
∑
s∈S(Ns/n+ ρ2

s)) for s ∈ S.

We now give some examples of structural models. For simplicity, suppose
that each Ul, 1 ≤ l ≤ L, is a compact interval. Set H

0
l = {α+βul, ul ∈ Ul : α, β ∈

R} and H
2
l = L2(Ul) for l = 1, . . . , L. In the following examples, when H

0
l is used

as a building block for the model space, we choose Gl = H
0
l as the corresponding

building block for the estimation space; when H
2
l is used as a building block for

the model space, we choose Gl = Spl(Ul,m, Jn) as the corresponding building
block for the estimation space.

Linear models. G = H = H
0
1 + · · · + H

0
L. In this case, An is independent of

n and ρn = 0. It follows from Theorem 2.1 that ‖η̂ − η∗‖2 = OP (1/n). Write
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η̂ = α̂+β̂1u1+· · · β̂LuL and η∗ = α∗+β∗1u1+· · ·+β∗LuL. Then |α̂−α∗|2 = OP (1/n)
and |β̂l − β∗l |2 = OP (1/n) for 1 ≤ l ≤ L.

Partly linear additive models. H = H
0
1 + · · ·+ H

0
K + H

2
K+1 + · · ·+ H

2
L, where

1 ≤ K < L. Set G = G1 + · · · + GL, where Gl = H
0
l for l = 1, . . . ,K and

Gl = Spl(Ul,m, Jn) for l = K + 1, . . . , L. Then A{l} is bounded and independent

of n and N{l} = 2 for 1 ≤ l ≤ K; A{l} 
 J
1/2
n and N{l} 
 Jn for K < l ≤ L.

Let η∗ = η∅ + η∗1(u1) + · · · + η∗L(uL) be the ANOVA decomposition of η∗. Note
that η∗l = β∗l (ul − 〈ul, 1〉) for 1 ≤ l ≤ K. Suppose the functions η∗l , K < l ≤ L,
are p-smooth. Let m ≥ p − 1. Suppose further that p > 1/2, Jn → ∞ as
n → ∞, and J2

n = o(n). Then ρ{l} = 0 for 1 ≤ l ≤ K and ρ{l} 
 J−p
n for

K < l ≤ L. Hence, limnA
2
{l}N{l′}/n = 0 and limnA{l}ρ{l′} = 0 for 1 ≤ l, l′ ≤ L.

It follows from Corollary 2.1 that ‖η̂ − η∗‖2 = OP (Jn/n + J−2p
n ). Furthermore,

let η̂ = η̂∅ + η̂1(u1) + · · · + η̂L(uL) be the ANOVA decomposition of η̂. Then,
by Corollary 2.2, ‖η̂l − η∗l ‖2 = OP (Jn/n + J−2p

n ) for 1 ≤ l ≤ L. Taking Jn 

n1/(2p+1), we find ‖η̂− η∗‖2 = OP (n−2p/(2p+1)) and ‖η̂l− η∗l ‖2 = OP (n−2p/(2p+1))
for 1 ≤ l ≤ L. In particular, for 1 ≤ l ≤ K, write η̂l(ul) = β̂l(ul−〈ul, 1〉n). Then
|β̂l − β∗l | = OP (n−p/(2p+1)).

The rates of convergence obtained here are in parallel to Theorems 1 and 2
in Chen (1995). While Chen’s results were obtained in the context of generalized
regression, our results apply to a broad range of estimation problems. Moreover,
our results apply to misspecified models, which were not considered in his paper.

Functional ANOVA models. Given a hierarchical collection S, a functional
ANOVA model can be specified by defining the model space H as at the be-
ginning of this subsection with Hl = H

2
l for l = 1, . . . , L. For instance, if

S = {∅, {1}, {2}, {3}, {1, 2}}, one has a functional ANOVA model with one two-
factor interaction component, where the function η of interest is modeled to have
the form

η(u) = η∅ + η{1}(u1) + η{2}(u2) + η{3}(u3) + η{1,2}(u1, u2).

To get an estimate of η, we construct the estimation space G corresponding to
S with Gl = Spl(Ul,m, Jn) for l = 1, . . . , L. Suppose the functions η∗s , s ∈ S,
are p-smooth. Let m ≥ p − 1. Set d = maxs∈S #(s) and suppose that p > d/2,
Jn → ∞ as n → ∞, and J2d

n = o(n). Observe that As 
 J
#(s)/2
n , Ns 
 J

#(s)
n ,

and ρs 
 J−p
n for s ∈ S. (See the example following Theorem 2.1.) Hence,

limnA
2
sNs′/n = 0 and limnAsρs′ = 0 for s, s′ ∈ S. It follows from Corollary

2.1 that ‖η̂ − η∗‖2 = OP (Jdn/n + J−2p
n ). Furthermore, let η̂ =

∑
s∈S η̂s and

η∗ =
∑
s∈S η

∗
s be the ANOVA decompositions of η̂ and η∗. Then, by Corollary

2.2, ‖η̂s−η∗s‖2 = OP (Jdn/n+J−2p
n ) for s ∈ S. Taking Jn 
 n1/(2p+d), we get that

‖η̂ − η∗‖2 = OP (n−2p/(2p+d)) and ‖η̂s − η∗s‖2 = OP (n−2p/(2p+d)) for s ∈ S.



EXTENDED LINEAR MODELING 183

The rate of convergence n−2p/(2p+d) here should be compared with the rate
n−2p/(2p+L) for the saturated model. Note that d is the maximum order of in-
teraction between the components of the argument variable u. Thus, by using
models with only main effects and low-order interactions (d < L), we can ob-
tain faster rates of convergence than by using the saturated model and thereby
ameliorate the curse of dimensionality. In particular, the rate n−2p/(2p+1) for an
additive model is the same as that for estimating a one-dimensional function.
Similarly, the rate n−2p/(2p+2) for a model involving two-factor interactions is the
same as that for estimating a two-dimensional function.

Remark 2.1. In the examples above, we use univariate splines to build the
estimation spaces. Theorem 2.1 and Corollaries 2.1 and 2.2 also apply when
the estimation spaces are built from polynomials, trigonometric polynomials,
or bivariate or multivariate splines. One can proceed as in Huang (1998) to
determine the constants An, ρn, As, and ρs.

Remark 2.2. In some situations, it is not natural to model the function of in-
terest as a member of a linear space due to inherent restrictions on this function.
Our result can still be applied after a slight modification. Let φ denote a function
on U of interest that is subject to some nonlinear constraints. (Linear constraints
can be easily incorporated into the model space H.) Suppose we can relate φ to a
function η through a one-to-one map σ : φ = σ(η), where η is naturally modeled
as a member of the model space H. Then φ̂ = σ(η̂), the maximum likelihood
estimate in σ(G), can be used to estimate φ = σ(η). When the model is mis-
specified, we think of φ̂ as estimating φ∗ = σ(η∗), the best approximation to φ in
σ(H), where “best” means maximizing the expected log-likelihood. Usually, σ(·)
satisfies a Lipschitz condition in some neighborhood of zero: for every positive
constant M1, there is a positive constant M2 such that

‖σ(h1) − σ(h2)‖ ≤M2‖h1 − h2‖ for h1, h2 ∈ H with ‖h1‖∞, ‖h2‖∞ ≤M1.

(2.1)
In this case, the results in Theorem 2.1 can be easily translated to results about φ̂.
See Section 4 for an illustration in the context of conditional density estimation.

3. Counting Process Regression

In this section, we apply the general theory for extended linear modeling to
the context of counting process regression, which includes hazard regression for
right-censored survival data as an important special case. In this context, the
intensity of a counting process is related to a vector of time-dependent covariates.
We will show that the conditions on the log-likelihood in the general results in
Section 2 are implied by more primitive and statistically more natural conditions.
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It is well known that the counting process formulation provides a general
framework for survival analysis, and more generally for event history analysis;
see Andersen, Borgan, Gill and Keiding (1993). Under this formulation, the non-
parametric kernel method was studied by McKeague and Utikal (1990), Nielsen
and Linton (1995), and Dabrowska (1997). However, the ease of incorporat-
ing various structural assumptions to achieve dimensionality reduction makes
the extended linear modeling approach attractive in this context. Kooperberg,
Stone and Truong (1995a) and Huang and Stone (1998) have applied extended
linear modeling to hazard regression for right-censored survival data, a special
case of counting process regression. Their treatment requires either that the
covariates be time-independent or that the time-dependent covariates be exter-
nal. The counting process formulation employed in this paper allows us to treat
time-dependent covariates that need not be external (commonly referred to as
internal).

Let T = [0, τ ] for some positive constant τ . Suppose (Ω,F , P ) is a complete
probability space and that {Ft : t ∈ T }, Ft ⊂ F , is a filtration satisfying
the “usual conditions”, that is, Ft is a family of right-continuous, increasing
σ-algebras and F0 contains the P -null sets of F . We assume {N(t) : t ∈ T } is
an adapted (see Andersen et al. (1993)) counting process with intensity

E[N(dt)|Ft−] = Y (t) exp η(t,X(t)) dt, (3.1)

where Y (t) is a {0, 1}-valued, predictable process, indicating the times at which
the processN is under observation, and X(t) is an X -valued, predictable covariate
process. The interest lies in estimating the log-hazard function η based on a
random sample.

For the special case of hazard regression with right-censored survival data,
one observes (T ∧ C, ind(T ≤ C)), where T is the survival time of an individual
and C is the censoring time. Suppose T and C are conditionally independent
given the process X = (X(t)), and that the conditional hazard of T given (X(s) :
s ≤ t) is exp η(t,X(t)). Let N(t) = ind(T ≤ C ∧ t) be the counting process with
a single jump at an uncensored survival time. Then N(·) has intensity given by
(3.1), where Y (t) = ind(T ∧C ≥ t) is the indicator that the individual is observed
to be at risk at time t. (See Example 1 of McKeague and Utikal (1990).)

Returning to the counting process framework, we write the scaled log-likeli-
hood for a candidate function h for η based on the random sample, (Ni, Yi,Xi),
1 ≤ i ≤ n, as

�(h) =
1
n

∑
i

( ∫
T
h(t,Xi(t))Ni(dt) −

∫
T
Yi(t) exp h(t,Xi(t)) dt

)
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(see Jacod (1975) and page 1512 of Dabrowska (1997)). Usually, the covariates
Xi(t) are observed only for the times t such that Yi(t) = 1. The current formu-
lation still works in this case, however, since the log-likelihood does not involve
the unobserved values of Xi(t). The expected log-likelihood is given by

Λ(h) = E
( ∫

T
h(t,X(t))N(dt) −

∫
T
Y (t) exp h(t,X(t)) dt

)
.

Note that Λ(h) is well-defined for any integrable function h when the log-hazard
η(t,x) is bounded. The present setup falls into the framework of extended linear
modeling described in Section 1 with W = (N,Y,X) and U = T × X .

For square-integrable functions h1 and h2 on T ×X , define the empirical inner
product and norm by 〈h1, h2〉n = En

∫
T Y (t)h1(t,X(t))h2(t,X(t)) dt and ‖h1‖2

n =
〈h1, h1〉n. The theoretical versions of these quantities are given by 〈h1, h2〉 =
E

∫
T Y (t)h1(t,X(t))h2(t,X(t)) dt and ‖h1‖2 = 〈h1, h1〉.

Condition 3.1. There is a bounded function η∗ ∈ H that maximizes Λ(·) over
H.

Condition 3.2. The function η(t,x) is bounded on T × X .

Condition 3.3. For each t ∈ T , the measure P (Y (t) = 1,X(t) ∈ ·) has a
density fY (t)=1,X(t)(t,x) with respect to the Lebesgue measure on X . Moreover,
fY (t)=1,X(t)(t,x) is bounded away from zero and infinity uniformly in t ∈ T and
x ∈ X .

The above are mild regularity conditions. Condition 3.1 is necessary to define
the target when the model is misspecified. The same argument as in Theorem 1
of Kooperberg, Stone and Truong (1995) can be used to verify the existence of
η∗. Conditions similar to Condition 3.3 have been used in McKeague and Utikal
(1990), Nielson and Linton (1995), and Dabrowska (1997).

Let the model and estimation spaces be defined as in Theorem 2.1. The
theoretical norm defined in this section is used as the distance measure. The
following is the main result of this section. The proof is given in Appendix B.

Theorem 3.1. Suppose Conditions 3.1-3.3 hold and that limnAnN
2
n/n = 0 and

limnAnρn = 0. Then the conclusions of Theorem 2.1 hold.

Remark 3.1. In the marker dependent hazard model (Nielsen and Linton
(1995)), the log-hazard η(t,X(t)) depends only on the marker process (X(t)),
that is, η(t,X(t)) = η(X(t)). Theorem 3.1 still holds in such a situation with
the spaces H and G being appropriate spaces of functions on X . In addition,
the result does not rely on the assumption that the log-hazard depends only on
the marker. When such an assumption is invalid, η̂ can be viewed as an esti-
mate of the function η∗ depending only on X(t) that maximizes the expected
log-likelihood among functions on X .
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4. Conditional Density Estimation

In this section, we apply the general theory for extended linear modeling to
the context of conditional density estimation. See Hansen (1994) for a previous
(more complicated) treatment of this problem, where the estimation spaces are
required to be built from polynomial splines.

Let X and Y be compact sets in possibly different Euclidean spaces. Consider
a random pair (X,Y), where X is X -valued and Y is Y-valued. Suppose X and Y
have a positive joint density fX,Y. Let fX denote the density of X, and let fY|X
denote the conditional density of Y given X. Then fX,Y(x,y) = fX(x)fY|X(y|x)
for x ∈ X and y ∈ Y. Our interest lies in estimating fY|X(y|x) based on a
random sample of size n from the joint distribution of (X,Y).

Our approach is to model the logarithm φ = log fY|X of the conditional
density. This parameterization has the advantage that fY|X is guaranteed to be
positive while φ ranges freely over R. Given a function h on X ×Y and given x ∈
X , set c(x;h) = log

∫
Y exph(y|x) dy; if c(x;h) < ∞, then exp(h(y|x) − c(x;h))

is a density on Y. For any function h on X × Y, the (conditional) log-likelihood
is given by l(h,x,y) = h(y|x) − c(x;h); in particular, if c(x;h) = ∞, then
l(h,x,y) = −∞. The expected log-likelihood is given by Λ(h) = E[h(Y|X) −
c(X;h)] when the relevant expectation exists.

Note that, for any two functions h and h0 defined respectively on X ×Y and
X , we have that l(h+h0) = l(h). Hence, any function of the form φ(y|x)+h0(x),
where h0 is a function depending only on the variable x such that c(x;φ +
h0) <∞, maximizes Λ(·). However, if we restrict our search to valid conditional
densities, then φ(y|x) is the essentially unique function maximizing Λ(·).

Lemma 4.1. If both φ1(y|x) and φ2(y|x) maximize Λ(·) over some convex set
of functions on X × Y, then φ2(y|x) − φ1(y|x) = φ0(x) almost everywhere for
some function φ0 depending only on x. If we further require that φ1 and φ2 be
conditional densities, then it is necessary that φ1 = φ2 almost everywhere.

Proof. Let h1 and h2 denote any two functions such that c(x;h1) < ∞ and
c(x;h2) < ∞ for almost all x ∈ X . For α ∈ (0, 1), set hα = h1 + α(h2 − h1).
Then

d

dα
l(hα;x,y) = h2(y|x) − h1(y|x) − E[h2(Yα|X) − h1(Yα|X)|X = x],

d2

dα2
l(hα;x,y) = −Var [h2(Yα|X) − h1(Yα|X)|X = x],

where, given X = x, Yα has the density fYα|X(y|x) = exp(hα(y|x) − c(x;hα)).
(It follows by a standard argument in the context of one-parameter exponential
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families that c(x;hα) < ∞ and the conditional expectations and conditional
variances appearing above are finite.) Moreover,

d2

dα2
Λ(h1 + α(h2 − h1)) = −E{Var [h2(Yα|X) − h1(Yα|X)|X]}. (4.1)

The lemma is a simple consequence of (4.1).

Observe that c(x;φ) = 0 for any conditional density φ. If we model φ as lying
in some linear space of functions, we need to consider the nonlinear constraint
c(x;φ) = 0. Alternatively, write φ = σ(η) := η−c(x; η) and model η as a member
of some linear space H. Then the constraint c(x;φ) = 0 is automatically satisfied.
The identifiability of η is ensured under a suitable linear constraint, which can
be incorporated into the structure of the space H.

For ease in expressing the identifiability constraint on η, we employ orthog-
onality relative to an appropriate inner product. In addition, two ancillary func-
tion spaces are introduced to describe the structure of H. We will see later on
that such a formulation is very convenient in dealing with the ANOVA structure
of a function.

Specifically, let ψ denote the uniform distribution on X × Y. Denote the
corresponding inner product and norm by 〈·, ·〉ψ and ‖ · ‖ψ. Let ⊥ψ denote
orthogonality relative to 〈·, ·〉ψ . Let H1 be a Hilbert space of functions on X ×Y
equipped with the inner product 〈·, ·〉ψ , and let H0 be the space of functions in H1

that depend only on variable x. We require that, given any h ∈ H1, h(y0|x) ∈ H0

for any fixed y0 ∈ Y. Set H = {h ∈ H1 : h ⊥ψ H0}. Then η is identifiable when
modeled as a member of H. Indeed, suppose that φ = η1−c(x; η1) = η2−c(x; η2)
for η1, η2 ∈ H. Then η1 − η2 = c(x; η2) − c(x; η1) depends only on x and thus
it belongs to H0. On the other hand, η1 − η2 ⊥ψ H0. Hence η1 = η2 almost
everywhere.

Condition 4.1. There is a bounded conditional density function φ∗ ∈ H1 that
maximizes Λ(·) over H1.

According to Lemma 4.1, the conditional density φ∗ in this condition is
uniquely defined. If the true conditional density φ is a member of H1, then
φ∗ = φ and Condition 4.1 is just the requirement that φ be bounded. On the
other hand, Condition 4.1 guarantees that the maximizer of Λ(·) over H exists.
To verify this claim, for h ∈ H1, set

(Pψh)(y|x) = h(y|x) − 1
|Y|

∫
Y
h(y|x) dy, x ∈ X , y ∈ Y.

Then Pψ is the orthogonal projection onto H relative to 〈·, ·〉ψ . Set η∗ = Pψφ
∗.

We have the unique decomposition φ∗ = η∗ + (φ∗ − η∗), where η∗ ∈ H and



188 JIANHUA Z. HUANG

φ∗ − η∗ ∈ H0. Since φ∗ is a conditional density, c(x;φ∗) = 0. It is easily seen
that η∗ − c(x; η∗) = φ∗ and η∗ is the unique function in H that maximizes the
expected log-likelihood. We also have ‖η∗‖∞ ≤ 2‖φ∗‖∞ <∞.

We construct the estimation spaces to have the same structure as the model
space. Let G1 be a finite-dimensional subspace of H1 and let G0 be the space of
functions in G1 that depend only on variable x. We require that, for each g ∈ G1,
g(y0|x) ∈ G0 for any fixed y0 ∈ Y. Set G = {g ∈ G1 : g ⊥ψ G0}. It is easily
shown that g ∈ G if and only if g ∈ G1 and

∫
Y g(y|x) dy = 0 for almost all x ∈ X .

Hence, G ⊂ H.
For square-integrable functions h1 and h2 on X × Y, define the empirical

inner product and norm by 〈h1, h2〉n = En[h1(Y|X)h2(Y|X)] and ‖h1‖2
n =

〈h1, h1〉n. The theoretical versions of these quantities are given by 〈h1, h2〉 =
E[h1(Y|X)h2(Y|X)] and ‖h1‖2 = 〈h1, h1〉.

Condition 4.2. The joint density fX,Y is bounded away from zero and infinity
on X × Y.

Let η̂ = argmax g∈G
�(g) denote the maximum likelihood estimate of η∗ in G.

Set φ̂ = σ(η̂). Then φ̂ is the maximum likelihood estimate of φ∗ = σ(η∗). Note
that σ(·) satisfies the Lipschitz condition (2.1). We apply Theorem 2.1 to obtain
the rate of convergence of η̂ to η∗ and subsequently the rate of convergence of φ̂
to φ∗.

Set An = supg∈G
{‖g‖∞/‖g‖} and Nn = dim(G). Define A0n and N0n

similarly by replacing G with G0 in the definition of An and Nn. Set ρ1n =
infg∈G1 ‖g − φ∗‖∞. The following is the main result of this section. The proof is
given in Appendix C.

Theorem 4.1. Suppose Conditions 4.1 and 4.2 hold. In addition, suppose that
limnA

2
nNn/n = 0, limnA

2
0nN0n/n = 0, and limnAnρ1n = 0. Then φ̂ exists

except on an event whose probability tends to zero as n → ∞, and ‖φ̂ − φ∗‖2 =
OP (Nn/n+ ρ2

1n).

Remark 4.1. In Theorem 4.1, we can replace ρ1n by ρn = infg∈G ‖g − η∗‖∞.
However, we prefer to use ρ1n in the statement of this theorem since ρ1n is more
straightforward to determine than ρn. In comparison with Theorem 2.1, the
additional requirement limnA

2
0nN0n/n = 0 is used to ensure that the theoretical

and empirical inner products are close on G0, that is, supg∈G0
|‖g‖n/‖g‖ − 1| =

oP (1).

Remark 4.2. Under the conditions of Theorem 4.1, ‖η̂−η∗‖ = OP (Nn/n+ρ2
n),

where ρn = infg∈G ‖g − η∗‖∞. See the proof of Theorem 4.1.
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5. Conclusion

This work is inspired by the pioneering work of Stone (1985, 1986, 1994). In
his rejoinder, Stone (1994) states that

Thus, distinct but closely related theories have been or are being de-
veloped for regression, logistic and Poisson regression, polychotomous
regression, hazard regression and the estimation of hazard, density,
conditional density and spectral density estimation. It would be worth-
while to synthesis this theoretical work.

In this paper we achieve this synthesis by identifying an important common fea-
ture of various extended linear models — concavity of the log-likelihood. We
obtain general asymptotic results that can treat simultaneously a broad range
of estimation problems, a variety of structural models, and various types of es-
timation spaces. In our general framework, the structural assumption on the
unknown function is specified by choosing an appropriate model space, and the
estimation space is built accordingly. Our results are applicable when the struc-
tural assumption is either correctly specified or misspecified. These results are
given under very broad conditions which need to be verified in each specific
context. We illustrate, in the contexts of counting process regression and con-
ditional density estimation, how to verify these broad conditions by using more
primitive and statistically more natural conditions. As an important byproduct
of the theoretical insight, we often obtain stronger results with simpler proofs.
For example, our result on counting process regression extends in many ways
Kooperberg et al. (1995a), but with a substantially simpler proof. Recently, the
theoretical framework in this paper has been used as the foundation to study free
knot splines in various extended linear models (see Stone and Huang (2000)).
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Appendix A. General results on rates of convergence

In this appendix, we provide two general results on convergence rates in
extended linear modeling, one for handling the approximation error and one for
handling the estimation error. These two results together yield Theorem 2.1.

Approximation Error

Condition A.1. The best approximation η∗ in H to η exists and there is
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a positive constant K0 such that ‖η∗‖∞ ≤ K0.

In the regression context, η∗ is just the orthogonal projection of η onto H

relative to a certain inner product, which obviously exists; see Huang (1998a). In
general, the existence of η∗ can be established by taking into account the specific
properties of the log-likelihood; see, for example, Theorems 4.1 and 5.1 of Stone
(1994), Theorem 1 of Kooperberg, Stone and Truong (1995a), and Theorem 2.1
of Huang and Stone (1998). When the model is concave, η∗ is essentially uniquely
defined when it exists.

Condition A.2. For each pair of bounded functions h1, h2 ∈ H, Λ(h1 + α(h2 −
h1)) is twice continuously differentiable with respect to α. For any positive
constant K, there are positive numbers M1 and M2 such that

−M1‖h2 − h1‖2 ≤ d2

dα2
Λ(h1 + α(h2 − h1)) ≤ −M2‖h2 − h1‖2, 0 ≤ α ≤ 1,

(A.1)
for all h1, h2 ∈ H with ‖h1‖∞ ≤ K and ‖h2‖∞ ≤ K.

Lemma A.1. Suppose Conditions A.1 and A.2 hold. Let K1 be a positive
constant such that K1 > K0 with K0 as in Condition A.1. Then there are positive
numbers M3 and M4 such that −M3‖h− η∗‖2 ≤ Λ(h) − Λ(η∗) ≤ −M4‖h− η∗‖2

for all h ∈ H with ‖h‖∞ ≤ K1.

Proof. Let h ∈ H with ‖h‖∞ ≤ K1. Since η∗ maximizes Λ(·), (d/dα)Λ((1 −
α)η∗ + αh)|α=0 = 0. Integrating by parts, we get that

Λ(h) − Λ(η∗) =
∫ 1

0
(1 − α)

d2

dα2
Λ((1 − α)η∗ + αh) dα.

The desired result now follows from Condition A.2.

Theorem A.1. (Approximation Error) Suppose Conditions A.1 and A.2 hold
and limnAnρn = 0. Let K1 be a positive constant such that K1 > K0 with K0

as in Condition A.1. Then η̄ exists uniquely and ‖η̄‖∞ ≤ K1 for n sufficiently
large. Moreover, ‖η̄ − η∗‖2 = O(ρ2

n).

Proof. Since G is finite-dimensional, it follows by a compactness argument that
there is a function g∗ ∈ G such that ‖g∗−η∗‖∞ = ρn. Let a > 1 denote a positive
constant (to be determined later). Choose g ∈ G with ‖g − η∗‖ ≤ aρn. Then
by the definition of An, ‖g − g∗‖∞ ≤ An‖g − g∗‖ ≤ An(‖g − η∗‖ + ‖η∗ − g∗‖) ≤
Anρn(a+ 1) and ‖g‖∞ ≤ ‖g− g∗‖∞ + ‖g∗ − η∗‖∞ + ‖η∗‖∞ ≤ Anρn(a+ 1)+ ρn +
‖η∗‖∞. Since limnAnρn = 0, we obtain that, for n sufficiently large, ‖g‖∞ ≤ K1
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for all g ∈ G with ‖g − η∗‖ ≤ aρn. It now follows from Lemma A.1 that, for n
sufficiently large,

Λ(g) − Λ(η∗) ≤ −M4a
2ρ2
n for all g ∈ G with ‖g − η∗‖ = aρn, (A.2)

Λ(g∗) − Λ(η∗) ≥ −M3ρ
2
n. (A.3)

Let a be chosen such that a >
√
M3/M4. Then it follows from (A.2) and (A.3)

that, for n sufficiently large, Λ(g) < Λ(g∗) for all g ∈ G with ‖g−η∗‖ = aρn. Since
‖g∗ − η∗‖ < aρn, we conclude from the definition of η̄ and the strict concavity
of Λ(·) that η̄ exists uniquely and ‖η̄ − η∗‖ < aρn for n sufficiently large. Hence
‖η̄‖∞ ≤ K1 and ‖η̄ − η∗‖2 = O(ρ2

n).

Estimation Error

Condition A.3. There is a positive constant K0 such that, for n sufficiently
large, the best approximation η̄ in G to η exists uniquely and ‖η̄‖∞ ≤ K0.

This condition is, in fact, a consequence of Theorem A.1. It is convenient to
state it as a condition so that, in the theorem below, conditions on the expected
log-likelihood need not be specified.

Condition A.4. For any pair g1, g2 ∈ G, �(g1 +α(g2 − g1)) is twice continuously
differentiable with respect to α.

(i)

sup
g∈G

∣∣∣ ddα�(η̄ + αg)
∣∣∣
α=0

∣∣∣
||g|| = OP

((Nn

n

)1/2)
.

(ii) For any positive constant K, there is a positive number M such that

d2

dα2
�(g1 + α(g2 − g1)) ≤ −M‖g2 − g1‖2, 0 ≤ α ≤ 1,

for any g1, g2 ∈ G with ‖g1‖∞ ≤ K and ‖g2‖∞ ≤ K, except on an event
whose probability tends to zero as n→ ∞.

Theorem A.2. (Extimation Error) Suppose Conditions A.3 and A.4 hold and
limnA

2
nNn/n = 0. Let K1 be a positive constant such that K1 > K0 with K0 as

in Condition A.3. Then η̂ exists uniquely and ‖η̂‖∞ ≤ K1, except on an event
whose probability tends to zero as n→ ∞. Moreover, ‖η̂ − η̄‖2 = OP (Nn/n).

Proof. By Taylor’s expansion,

�(g) = �(η̄)+
d

dα
�(η̄+α(g− η̄))

∣∣∣
α=0

+
∫ 1

0
(1−α)

d2

dα2
�(η̄+α(g− η̄)) dα, g ∈ G.

(A.4)
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Let a be a positive number (to be determined later). Choose g ∈ G such that
‖g − η̄‖ ≤ a(Nn/n)1/2. Then by the definition of An, ‖g − η̄‖∞ ≤ An‖g − η̄‖ ≤
a(A2

nNn/n)1/2 = o(1). Thus, for n sufficiently large, ‖g‖∞ ≤ K1 for all g ∈ G

with ‖g− η̄‖ ≤ a(Nn/n)1/2. Consequently it follows from Condition A.4(ii) that,
except on an event whose probability tends to zero as n→ ∞,∫ 1

0
(1 − α)

d2

dα2
�(η̄ + α(g − η̄)) dα ≤ −M

2
a2

(Nn

n

)
(A.5)

for all g ∈ G with ‖g − η̄‖ = a(Nn/n)1/2. Fix an arbitrary positive constant ε.
By Condition A.4(i), we can choose a sufficiently large such that, except on an
event whose probability is less than ε,∣∣∣∣ ddα�(η̄ + α(g − η̄))

∣∣∣
α=0

∣∣∣∣ < M

2
a2

(Nn

n

)
(A.6)

for all g ∈ G with ‖g − η̄‖ = a(Nn/n)1/2. Suppose (A.5) and (A.6) hold. Then,
by (A.4), �(g) < �(η̄) for all g ∈ G with ‖g − η̄‖ = a(Nn/n)1/2. Hence by the
strict concavity of �(·) (which follows from Condition A.4(ii)), η̂ exists uniquely
and ‖η̂ − η̄‖ ≤ a(Nn/n)1/2. Since ε is arbitrary, the theorem follows.

Remark A.1. We give a sufficient condition for Condition A.4(i) when the norm
‖ ·‖ is associated with an inner product 〈·, ·〉 defined on G. Let {φj : 1 ≤ j ≤ Nn}
be an orthonormal basis for G with respect to 〈·, ·〉. Then each function g ∈ G can
be represented uniquely as g =

∑
j βjφj , where βj = 〈g, φj〉 for j = 1, . . . , Nn.

Let β denote the Nn-dimensional column vector with entries βj. To indicate
the dependence of g on β, write g(·) = g(·;β) and �(g(·;β)) = �(β). Let S(β) =
∂�(β)/∂β denote the score at β, that is, theNn-dimensional column vector having
entries ∂�(β)/∂βj . Let β̄ be the column vector with entries β̄j = 〈η̄, φj〉. Then
(d/dα)�(η̄ + αg)|α=0 = [S(β̄)]T (β − β̄) and hence

sup
g∈G

∣∣∣∣ ddα�(η̄ + αg)
∣∣∣
α=0

∣∣∣∣
‖g‖ ≤ |S(β̄)|.

Consequently, a sufficient condition for Condition A.4(i) is that |S(β̄)| = OP (Nn/

n)1/2.

Remark A.2. The results in this section can be easily extended to the case
where l(h,w) and Λ(h) are only defined when h takes values on a proper open
subinterval I of R. This extension is useful in handling the estimation of functions
taking values only in a restricted subdomain of R, in particular, the conditional
mean of the Poisson distribution in the generalized regression context (see Huang
(1998b)).
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Appendix B. Proof of Theorem 3.1: counting process regression

To apply Theorems 2.1, we need only check Conditions A.1, A.2 and A.4.
Condition A.1 is a consequence of Condition 3.1. Condition A.2 follows imme-
diately from the definitions of Λ and the theoretical norm. It remains to check
Condition A.4, assuming that η̄ exists and is bounded uniformly in n (see the
discussion below Condition A.3). Using the fact that η̄ ∈ G maximizes Λ(g) in
g ∈ G, we obtain that

d

dα
�(η̄ + α(g − η̄))

∣∣∣∣
α=0

= (En − E)
( ∫

T [g(t,X(t)) − η̄(t,X(t))] dN(t)
)

−(〈g − η̄, exp η̄〉n − 〈g − η̄, exp η̄〉), g ∈ G.

Since η̄ ∈ G and ‖η̄‖∞ ≤M <∞, we conclude from Lemma 11 of Huang (1998a)
that

sup
g∈G

|〈g − η̄, exp η̄〉n − 〈g − η̄, exp η̄〉|
‖g − η̄‖ = OP

((Nn

n

)1/2)
. (B.1)

We claim next that

sup
g∈G

|(En − E)[
∫
T g(t,X(t)) dN(t)]|

{E
∫
T g

2(t,X(t)) dN(t)}1/2
= OP

((Nn

n

)1/2)
. (B.2)

Since η̄ ∈ G, it follows from (B.2) that

sup
g∈G

|(En − E)(
∫
T [g(t,X(t)) − η̄(t,X(t))] dN(t))|

{E
∫
T [g(t,X(t)) − η̄(t,X(t))]2 dN(t)}1/2

= OP
((Nn

n

)1/2)
. (B.3)

By conditioning and using Condition 3.2, we obtain that

E

∫
T

[g(t,X(t)) − η̄(t,X(t))]2 N(dt) 
 ‖g − η̄‖2, uniformly in g ∈ G. (B.4)

Hence Condition A.4(i) follows from (B.1) and (B.3). Condition A.4(ii) follows
from the definition of the empirical norm and Lemma 10 of Huang (1998a).

We now prove (B.2). It follows from Condition 3.2 and the Cauchy–Schwartz
inequality that

E

[( ∫
T
g(t,X(t))E(N(dt)|Ft−)

)2
]
<∼‖g‖

2. (B.5)

Now M(·) = N(·) −
∫ ·
0 E(N(dt)|Ft−) is a square integrable martingale with

predictable variation process 〈M〉 =
∫ ·
0 E(N(dt)|Ft−) (the square integrability

of M(·) follows from Condition 3.2). Thus, the process (
∫ ·
0 g(t,X(t)) dM(t))2 −∫ ·

0 g
2(t,X(t))E(N(dt)|Ft−) is a martingale (see Theorem II.3.1 of Andersen, Bor-

gan, Gill and Keidin (1993)). Consequently,

E

[( ∫
T
g(t,X(t)) dM(t)

)2
]

= E

∫
T
g2(t,X(t))E(N(dt)|Ft−) 
 ‖g‖2. (B.6)
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Since dN(t) = dM(t)+E(N(dt)|Ft−), we conclude from (B.5), (B.6), and the tri-
angle inequality that Var (

∫
T g(t,X(t)) dN(t)) ≤ E[(

∫
T g(t,X(t)) dN(t))2 ]<∼‖g‖

2.

On the other hand, the same argument as in (B.4) yields that E
∫
T g

2(t,X (t)) dN
(t) 
 ‖g‖2. Consequently, Var (

∫
T g(t,X(t)) dN(t))<∼E

∫
T g

2(t,X(t)) dN(t), uni-
formly in g ∈ G. Thus the same argument as in the proof of Lemma 11 of Huang
(1998a) can be used to show that (B.2) holds. The proof of Theorem 3.1 is
complete.

Appendix C. Proof of Theorem 4.1: conditional density estimation

Recall that G ⊂ H, η∗ maximizes the expected log-likelihood over H, and that
η̂ is the maximum likelihood estimate in G. Suppose the conditions in Theorem
2.1 hold. It then follows that η̂ exists except on an event whose probability tends
to zero as n→ ∞, and ‖η̂−η∗‖2 = OP (Nn/n+ρ2

n) where ρn = infg∈G ‖g−η∗‖∞.
On the other hand, η∗ is bounded and η̂ is bounded except on an event whose
probability tends to zero as n → ∞ (see Theorem A.2). Therefore, since σ(·)
satisfies the Lipschitz condition (2.1), we find ‖φ̂ − φ∗‖2 = ‖σ(η̂) − σ(η∗)‖2 =
OP (Nn/n + ρ2

n). Now, since ρ1n ≤ ‖φ∗‖∞ < ∞, there is a function g∗1 ∈ G1

such that ‖g∗1 − φ∗‖∞ = ρ1n. Set g̃ = Pψg
∗
1 . Then g̃ ∈ G and ‖g̃ − η∗‖∞ =

‖Pψ(g∗1−φ∗)‖∞ ≤ 2‖g∗1−φ∗‖∞, so ρn<∼ρ1n and hence ‖φ̂−φ∗‖2 = OP (Nn/n+ρ2
1n).

We need only check the conditions in Theorem 2.1. Condition A.1 with
I = R follows from the discussion after Condition 4.1. To check Condition A.2,
suppose that h1 and h2 are in H and bounded. Using the fact that fYα|X(y|x)
is bounded away from zero and infinity, we find

Var {[(h2(Yα|X) − h1(Yα|X)]|X = x} 

∫
Y
[h2(y|x) − h1(y|x)]2 dy (C.1)

uniformly in α ∈ (0, 1) and x ∈ X . On the other hand, Condition 4.2 implies
that the density of X is bounded away from zero and infinity. Condition A.2
thus follows from (4.1), (C.1), and Condition 4.2.

We now check Condition A.4. We can assume that η̄ exists and is bounded
uniformly in n (see the discussion below Condition A.3). We have

d

dα
�(η̄ + α(g − η̄))

∣∣∣
α=0

‖g − η̄‖ =
〈g̃, 1〉n − 〈g̃, 1〉

‖g − η̄‖ ,

where g̃(x,y) = g(y|x) − η̄(y|x) − E[g(Ȳ|X) − η̄(Ȳ|X)|X = x]. Since η̄ ∈ G,
{g̃ : g ∈ G} is a linear space with dimension at most dim(G) = Nn. The same ar-
gument as in Lemma 11 of Huang (1998a) yields supg̃:g∈G

{|〈g̃, 1〉n−〈g̃, 1〉|/‖g̃‖} =
OP ((Nn/n)1/2). Since the joint density of X and Y is bounded away from zero
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and infinity (Condition 4.2), ‖g̃‖<∼‖g̃‖ψ and ‖g − η̄‖ψ<∼‖g − η̄‖. On the other
hand, since the conditional density of Ȳ given X = x is bounded away from zero
and infinity, ‖g̃‖ψ<∼‖g − η̄‖ψ uniformly in g ∈ G. Condition A.4(i) then follows.

Observe that, for g1, g2 ∈ G, (d2/dα2)�(g1 + α(g2 − g1)) = −En{Var [g2(Yα

|X)−g1(Yα|X)|X]}. Thus, by (C.1), (d2/dα2)�(g1 +α(g2−g1)) 
 −
∫
Y En{[g2(y

|X) − g1(y|X)]2} dy. Since limnA
2
0nN0n/n = 0 by Lemma 10 of Huang (1998a),

supg∈G0
|‖g‖n/‖g‖−1| = oP (1). Note that g2(y|x)−g1(y|x) ∈ G0 for fixed y ∈ Y.

Hence, the right-hand side of the above display is bounded above and below by
positive multiples of −

∫
Y E{[g2(y|X) − g1(y|X)]2} dy. Condition A.4(ii) then

follows from Condition 4.2. This completes the proof.

Appendix D. Summary of some results on functional ANOVA

In this appendix, we summarize some results on functional ANOVA decom-
positions that are needed in Section 2.3 in studying structural models. See Huang
(2000) for the details.

Given a hierarchical collection S of indices, define the model space H and
the estimation space G as at the beginning of Section 2.3. We first give a formal
definition of functional ANOVA decomposition.

Let 〈·, ·〉 be a theoretical inner product defined on the space of Lebesgue
square-integrable functions on U , and let ‖ · ‖ denote the associated norm. Set
H

0
∅ = H∅ and, for each nonempty set s ∈ S, let H

0
s denote the space of functions in

Hs that are orthogonal (relative to the theoretical inner product) to each function
in Hr for every proper subset r of s. Under suitable conditions, each function
h ∈ H can be written uniquely in the form

∑
s∈S hs, where hs ∈ H

0
s for s ∈ S.

We refer to
∑
s∈S hs as the theoretical ANOVA decomposition of h, and to hs,

s ∈ S, as the components of h in this decomposition.
Let 〈·, ·〉n denote an empirical inner product that is determined by the data

and let ‖ · ‖n denote the associated norm. Set G
0
∅ = G∅ and, for each nonempty

set s ∈ S, let G
0
s denote the space of functions in Gs that are orthogonal (relative

to the empirical inner product) to each function in Gr for every proper subset r
of s. Under suitable conditions, each function g ∈ G can be written uniquely in
the form

∑
s∈S gs, where gs ∈ G

0
s for s ∈ S. We refer to

∑
s∈S gs as the empirical

ANOVA decomposition of g, and we refer to gs, s ∈ S, as the components of g.

Condition D.1. Let |||h||| denote the L2-norm on U relative to the Lebesgue
measure. There are positive numbers M1 and M2 ≥ M1 such that M1|||h||| ≤
‖h‖ ≤M2|||h||| for any Lebesgue square-integrable function h.

Condition D.2. supg∈G |‖g‖n/‖g‖ − 1| = oP (1).



196 JIANHUA Z. HUANG

Condition D.3. Fix any subspace G̃ of G with dimension Ñn. Then for any
fixed sequence hn, n ≥ 1, of uniformly bounded functions on U ,

sup
g∈G̃

|〈hn, g〉n − 〈hn, g〉|
‖g‖ = OP

((Ñn

n

)1/2)
.

Lemma D.1. Under Condition D.1, An<∼(
∑
s∈S A

2
s)1/2.

Suppose now that η∗ and η̂, as members of H and G respectively, have the
ANOVA decompositions η∗ =

∑
s∈S η

∗
s and η̂ =

∑
s∈S η̂s, where η∗s ∈ H

0
s and

η̂s ∈ G
0
s for s ∈ S.

Theorem D.1. Suppose Conditions D.1–D.3 hold. Then ‖η̂s − η∗s‖2 = OP (‖η̂ −
η∗‖2 +

∑
s∈S(Ns/n+ ρ2

s)).
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