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Abstract: We develop an asymptotic, robust version of the Gauss-Markov theorem

for estimating the regression parameter vector β and a parametric function c′β
in the linear regression model. In a class of estimators for estimating β that are

linear in a Winsorized observation vector introduced by Welsh (1987), we show

that Welsh′s trimmed mean has smallest asymptotic covariance matrix. Also, for

estimating a parametric function c′β, the inner product of c and the trimmed

mean has the smallest asymptotic variance among a class of estimators linear in

the Winsorized observation vector. A generalization of the linear Winsorized mean

to the multivariate context is also given. Examples analyzing American lobster

data and the mineral content of bones are used to compare the robustness of some

trimmed mean methods.
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1. Introduction

Consider the linear regression model

y = Xβ + ε, (1.1)

where y is a vector of observations for the dependent variable, X is a known
n× p design matrix with 1′s in the first column, and ε is a vector of independent
and identically distributed disturbance variables. We consider the problem of
estimating the parameter vector β and the parametric function c′β of β.

From the Gauss-Markov theorem, it is known that the least squares estima-
tor has the smallest covariance matrix in the class of unbiased linear estimators
My where M satisfies MX = Ip. Also, the inner product of c and the least
squares estimator has smallest variance among all linear unbiased estimators of
c′β. However, the least squares estimator is sensitive to departures from nor-
mality and to the presence of outliers so we need to consider robust estimators.
One approach to robust estimation is to construct a weighted observation vector
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y∗ and then construct a consistent estimator which is linear in y∗; see for ex-
ample, Ruppert and Carroll (1980), Welsh (1987), Koenker and Portnoy (1987),
Kim (1992), Chen and Chiang (1996) and Chen (1997). There are two types of
weighted observation vectors in this literature. First, y∗ can represent a trimmed
observation vector Ay with A a trimming matrix constructed from regression
quantiles (see Koenker and Bassett (1978)) or residuals based on an initial esti-
mator (see Ruppert and Carroll (1980) and Chen (1997)). Second, y∗ can be a
Winsorized observation vector defined as in Welsh (1987). In this paper, we con-
sider the Winsorized observation vector of Welsh (1987), study classes of linear
functions based on y∗ for estimation of β and c′β, and develop a robust version
of the Gauss-Markov theorem.

In Section 2, we introduce various types of linear Winsorized means and de-
rive their large sample properties in Section 3. We discuss instrumental variables
and bounded-influence Winsorized means in Section 4 and generalize the results
to the multivariate linear model in Section 5. Examples analyzing the American
lobster data and a set of bone data are given in Section 6. Proofs of theorems
are in Section 7.

2. Linear Estimation Based on Winsorized Responses

In the regression model (1.1), let yi be the ith element of y and x′i be the
ith row of X for i = 1, . . . , n. Let β̂0 be an initial estimator of β. The regression
residuals from β̂0 are ei = yi − x′iβ̂0. For 0 < α1 < 0.5 < α2 < 1, let η̂(α1)
and η̂(α2) represent, respectively, the α1th and α2th empirical quantiles of the
regression residuals. The Winsorized observation defined by Welsh (1987) is

y∗i = yiI(η̂(α1) ≤ ei ≤ η̂(α2)) + η̂(α1)(I(ei < η̂(α1)) − α1) (2.1)

+η̂(α2)(I(ei > η̂(α2)) − (1 − α2)).

This definition reduces the influence of observations with residuals lying outside
the quantile-interval (η̂(α1), η̂(α2)) and bounds the influence in the error variable
ε. Alternative definitions of Winsorized observations can be entertained: for
example, we could replace η̂(αi) by η̂(αi)+x′iβ̂0. It is more convenient to work on
the scale of the independent and identically distributed errors ε than on the scale
of the non-identically distributed observations y, so we retain Welsh’s definition.
Let y∗ = (y∗1 , . . . , y∗n)′ and denote the trimming matrix by A = diag(a1, . . . , an),
where ai = I(η̂(α1) ≤ ei ≤ η̂(α2)).

Any linear unbiased estimator has the formMy with M a p×n nonstochastic
matrix satisfying MX = Ip. Since M is a full-rank matrix, there exist matrices H
and H0 such that M = HH ′

0. Thus, an estimator is a linear unbiased estimator
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if there exists a p×p nonsingular matrix H and a n×p full-rank matrix H0 such
that the estimator can be written as

HH ′
0y. (2.2)

We generalize linear unbiased estimators defined on the observation vector y to
estimators defined on y∗ by requiring them to be of the formMy∗ withM = HH ′

0,
where H and H0 are chosen to ensure that the estimator is consistent.

Definition 2.1. A statistic β̂lw is asymptotically linear in the Winsorized ob-
servations (ALWO) y∗ if

β̂lw = My∗, (2.3)

and M can be decomposed as M = HH ′
0 with H a p×p stochastic or nonstochas-

tic matrix and H0 a n × p matrix which is independent of the error variables ε,
satisfying the following two conditions:
(a1) nH → H̃ in probability, where H̃ is a full rank p× p matrix.
(a2) HH ′

0X = (α2 − α1)−1Ip + op(n−1/2), where Ip is the p× p identity matrix.
This is similar to the usual requirements for unbiased estimation except that
we have introduced a Winsorized observation vector to allow for robustness and
considered asymptotic instead of exact unbiasedness.

For estimating the parametric function c′β, we define a class of estimators
analogously.

Definition 2.2. A linear function a′y∗ is asymptotically linear in the Winsorized
observations (ALWO) y∗ for a parametric function c′β if the vector a can be
decomposed as a′ = h′0H ′

0 with column p-vector h0 stochastic or nonstochastic
and H0 a n × p matrix which is independent of the error variables ε, satisfying
the following two conditions:
(a1*) nh0 → h̃ in probability, where h̃ is a nonzero p× 1 vector.
(a2*) h′0H ′

0X = (α2 − α1)−1c′ + op(n−1/2).
Suppose that My∗ is an ALWO estimator for the parameter vector β. Then
clearly a′y∗ with a′ = c′M is an ALWO estimator for the parametric function
c′β. This means that results on the optimal estimation of c′β can be derived
from those on estimation of β.

Two questions arise for the class of ALWO estimators. First, does this class
of estimators contain interesting estimators? We can answer in the affirmative
because the class of ALWO estimators defined in this paper contains Welsh′s
(1987) trimmed mean (H = (X ′AX)−1 and H0 = X), the subclass of linear
Winsorized instrumental variables means (H = (S′AX)−1 and H0 = S with S

a n × p matrix of instrumental variables; see Section 4) and the Mallows-type
bounded influence trimmed means (H = (X ′WAX)−1 and H0 = X ′W with W
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a diagonal matrix of weights); see De Jongh, De Wet and Welsh (1988). Second,
can one find a best estimator in this class? This question will be answered in the
next section.

3. Large Sample Properties of ALWO Estimators

Let ε have distribution function F with probability density function f . De-
note by h′i the ith row of H0. Let zi represent either the vector xi or hi, and
zij be its jth element. The following conditions are similar to the standard ones
for linear regression models as given in Ruppert and Carroll (1980) and Koenker
and Portnoy (1987):

(a3) n−1∑n
i=1 z

4
ij = O(1) for z = x or h and all j.

(a4) n−1X ′X = Qx + o(1), n−1H ′
0X = Qhx + o(1) and n−1H ′

0H0 = Qh + o(1)
whereQx andQh are positive definite matrices andQhx is a full rank matrix.

(a5) n−1∑n
i=1 zi = θz + o(1), for z = x or h, where θx is a finite vector with first

element value 1.
(a6) The probability density function and its derivative are both bounded and

bounded away from 0 in a neighborhood of F−1(α) for α ∈ (0, 1).
(a7) n1/2(β̂0 − β) = Op(1).

The following theorem gives a Bahadur representation for ALWO estimators.
Note that the results for Welsh’s trimmed mean discussed by Ren (1994) and
Jureckova and Sen (1996, pp.173-175) apply only for the case xi = hi.

Theorem 3.1. Under conditions (a1)-(a7), we have

n1/2(β̂lw − (β + γlw)) = n−1/2H̃
n∑

i=1

hiψ(εi, F ) + op(1)

with ψ(ε, F ) = εI(F−1(α1) ≤ ε ≤ F−1(α2)) − λ + F−1(α1)I(ε < F−1(α1)) +
F−1(α2) I(ε > F−1(α2))− ((1−α2)F−1(α2)+α1F

−1(α1)), and γlw = λH̃θh and
where λ =

∫ F−1(α2)
F−1(α1) εdF (ε).

From the above theorem, it is seen that the asymptotic properties of ALWO
estimators do not depend on the initial estimator. The limiting distribution of
ALWO estimators follows from the Central Limit Theorem (see, e.g. Serfling
(1980, p.30)).

Corollary 3.2. Under the conditions of Theorem 3.1, the normalized ALWO es-
timator n1/2(β̂lw−(β+γlw)) has an asymptotic normal distribution with zero mean
vector and asymptotic covariance matrix (α2 − α1)2σ2(α1, α2)H̃QhH̃ ′, where
σ2(α1, α2) = (α2 − α1)−2[

∫ F−1(α2)
F−1(α1) (ε − λ)2dF (ε) + α1(F−1(α1) − λ)2 + (1 −

α2)(F−1(α2) − λ)2 − (α1F
−1(α1) + (1 − α2)F−1(α2))2].
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If we further assume that F is symmetric at 0 and let α1 = 1 − α2 = α,
0 < α < 0.5, then γlw = 0 and β̂lw is a consistent estimator of β. In general,
when F is asymmetric, β̂lw is a biased estimator of β and the asymptotic bias
is given by γlw. If we center the columns of H0 so that θz has all but the first
element equal to 0, then the asymptotic bias affects the intercept alone and not
the slope.

We briefly sketch a large-sample methodology for statistical inference for
β based on an ALWO estimator. To do this, we first need to estimate the
asymptotic covariance matrix of β̂lw. Let Q̂h = n−1∑n

i=1 hih
′
i = n−1H ′

0H0 and
V = (α2−α1)−2[n−1∑n

i=1 e
2
i I(η̂(α1) < ei < η̂(α2))+α1η̂

2(α1)+(1−α2)η̂2(α2)−
(α1η̂(α1) + (1 − α2)η̂(α2) + λ̂)2]HQ̂hH

′, where λ̂ = n−1∑n
i=1 eiI(η̂(α1) < ei <

η̂(α2)).

Theorem 3.3. V → σ2(α1, α2) in probability.

For 0 < u < 1, let Fu(r1, r2) denote the (1−u) quantile of the F distribution, with
r1 and r2 degrees of freedom, and let du(r1, r2) = (1−2α)−1r1Fu(r1, r2). Suppose
for some integer 
, K is a 
×p matrix of rank 
 and we want to test H0 : Kβ = v.
Letm be the number of ei removed by trimming. Then the rejection region will be
(Kβ̂s−v)′(KV −1K ′)−1(Kβ̂s−v) ≥ du(
, n−m−p) with size approximately equal
to u. If K = Ip, the confidence ellipsoid (β̂s − β)′V −1(β̂s − β) ≤ du(
, n−m− p)
for β has an asymptotic confidence coefficient of approximately 1 − u.

Next we consider the question of optimal ALWO estimation. For any two
positive definite p × p matrices Q1 and Q2, we say that Q1 is smaller than or
equal to Q2 if Q2−Q1 is positive semidefinite. An estimator is said to be the best
in an estimator-class if it is in this class and its asymptotic covariance matrix is
smaller than or equal to that of any estimator in this class. The following lemma
implies that any ALWO estimator with asymptotic covariance matrix

σ2(α1, α2)Q−1
x (3.1)

is a best estimator in this class.

Lemma 3.4. For any matrices H̃ and Qh induced from conditions (a1) and
(a4), the difference (α2 − α1)2H̃QhH̃ ′ −Q−1

x is positive semidefinite.

The trimmed mean proposed by Welsh (1987) is

β̂w = (X ′AX)−1X ′y∗ (3.2)

so put H = (X ′AX)−1 and H0 = X. From Welsh (1987) we have n−1X ′AX →
(α2−α1)Qx so we can see that conditions (a1) and (a2) hold for β̂w, and Welsh′s
trimmed mean is an ALWO estimator. Moreover, Welsh (1987) proved that
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n1/2(β̂w − (β + γw)) has an asymptotic normal distribution with zero mean and
covariance matrix of the form (3.1).

Theorem 3.5. Under conditions (a1)-(a7), Welsh′s trimmed mean β̂w defined
in (3.2) is a best ALWO estimator.

For estimating the parametric function c′β, we have the following corollary
to Theorem 3.1 and Corollary 3.2.

Corollary 3.6. Under conditions (a1∗)-(a2∗) and (a3)-(a7),

(a) n1/2(a′y∗ − (c′β + γ∗)) = n−1/2∑n
i=1 h

′h̃iψ(εi, F ) + op(1), where γ∗ = λh′θh.
(b) The normalized ALWO estimator n1/2(a′y∗ − (c′β + γ∗)) has an asymp-

totic normal distribution with zero mean and asymptotic variance (α2 −
α1)2σ2(α1, α2) h′Qhh.

It follows from Theorem 3.5 that the inner product of c and Welsh′s trimmed
mean is also asymptotically best in the class of (asymptotically) linear functions
of the Winsorized observation vector y∗.

Corollary 3.7. Under the conditions of Corollary 3.6, a best ALWO estimator
for estimating c′β is c′β̂w, where β̂w is Welsh’s trimmed mean.

In the class of linear estimators based on the Winsorized observation vector
y∗, we have shown that for estimating the parameter vector β and the parametric
function c′β, Welsh′s trimmed mean and the inner product of c and Welsh′s
trimmed mean are both best ALWO estimators. This establishes the robust
version of the Gauss-Markov theorem.

4. Particular Estimators

We noted in Section 2 that the class of ALWO estimators includes a subclass
of instrumental variables estimators and the Mallows type bounded-influence
trimmed means. In this section, we specialise the general results of Section 3 to
these estimators and, where appropriate, discuss their implications.

The ALWO instrumental variables estimator is defined by β̂s=(S′AX)−1S′y∗,
where S is a matrix of instrumental variables. That is, S is a n× p matrix with
ith row s′i and i, jth element sij such that
(b1) n−1∑n

i=1 s
4
ij = O(1) for all j,

(b2) n−1S′X = Qsx + o(1), and n−1S′S = Qs + o(1), where Qs is a p×p positive
definite matrix and Qsx is a full rank matrix,

(b3) n−1∑n
i=1 si = θs + o(1).

Our first result shows that the ALWO instrumental variables estimator is an
ALWO estimator.
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Lemma 4.1. Under conditions (b1)-(b3), n−1S′AX converges in probability to
the full rank matrix (α2 − α1)−1Qsx.

This lemma implies that, with H = (S′AX)−1 andH0 = S in (2.2), condition
(a1) holds. One can also check that condition (a2) holds. Thus the ALWO
instrumental variables estimator is an ALWO estimator.

The large sample properties of β̂s follow immediately from Theorem 3.1 and
Corollary 3.2. It can be shown that Welsh′s trimmed mean is a best ALWO
instrumental variables estimator. That is, it is optimal to use X rather than a
matrix of instruments S.

For the class of Mallows-type bounded influence trimmed means β̂bi = (X ′

WAX)−1 X ′Wy∗, we assume that the following additional assumption is valid.
(b4) limn→∞ n−1∑n

i=1 wixix
′
i = Qw, limn→∞ n−1∑n

i=1 w
2
i xix

′
i = Qww, where

Qw and Qww are p× p positive definite matrices.
De Jongh et al (1988) proved that n1/2(β̂bi − β) has an asymptotic nor-

mal distribution with zero mean vector and asymptotic covariance matrix (α2−
α1)2σ2(α1, α2)Q−1

w QwwQ
−1
w . As Welsh′s trimmed mean is a Mallows-type bound-

ed influence trimmed mean (W = In), it follows that Welsh′s trimmed mean is
also the best Mallows-type bounded influence trimmed mean. This result is
based solely on considerations of the asymptotic variance and ignores the fact
that Welsh′s trimmed mean does not have bounded influence in the space of in-
dependent variables. It confirms that bounded influence is achieved at the cost
of efficiency.

5. Multivariate ALWO Estimators

Consider the classical multivariate regression model

Y = XB + V,

where Y is a n × m matrix of observations of m dependent variables, X is a
known n× p design matrix with 1′s in the first column, and V is a n×m matrix
of independent and identically distributed disturbance random m-vectors. Let
B̂0 = (β̂1, . . . , β̂m) be an initial estimator of B with the property n1/2(β̂j −
βj) = Op(1) for j = 1, . . . ,m. The regression residuals are eij = yij − x′iβ̂j , i =
1, . . . , n and j = 1, . . . ,m, where yij is the (i, j)th element of matrix Y . For
0 < αj1 < 0.5 < αj2 < 1, let η̂j(αj1) and η̂j(αj2) represent, respectively, the
αj1 and αj2th empirical quantiles of the regression residuals for the jth equation.
Then the Winsorized observation vector for the jth equation is y∗j = (y∗1j, . . . , y

∗
nj)

where

y∗ij = yijI(η̂j(αj1) ≤ eij ≤ η̂j(αj2)) + η̂j(αj1)(I(eij < η̂j(αj1)) − αj1)

+η̂j(αj2)(I(eij > η̂j(αj2)) − (1 − αj2)).
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Denote the jth trimming matrix by Aj = diag(aj1, . . . , ajn), where aji = I(η̂j(
αj1) ≤ eij ≤ η̂j(αj2)). Estimation is defined for the parameter vector β =
(β′1, . . . , β′m)′ with B = (β1, . . . , βm).

Definition 5.1. A statistic β̂mlw is called a multivariate ALWO estimator if
there exists p × p matrices Hj, stochastic or nonstochastic, j = 1, . . . , p and a
n× p matrix H0which is independent of the error variables ε, such that

β̂mlw =



H1H

′
0 0 · · · 0

0 H2H
′
0 · · · 0

...
...

...
0 0 · · · HmH

′
0





y∗1
...
y∗m


 ,

where the matrices Hj and H0 satisfy
(c1) nHj → (αj2 − αj1)−1H̃0,
(c2) HjH

′
0X = (αj2 − αj1)−1Ip + op(n−1/2).

Comparing the notation used in Definition 2.1, we replace H̃ by (αj2−αj1)−1H̃0

where H̃0 is a constant matrix independent of j. Let ⊗ represent the Kronecker
product defined as C ⊗ B = (cijB) if matrix C = (cij). The following theorem
follows from Theorem 3.1 and Corollary 3.2.

Theorem 5.2. Under conditions (c1)-(c2) and (a3)-(a7), we have

(a) n1/2(β̂mlw − (β+γmlw))=Im⊗ H̃0n
−1/2∑n

i=1




(α12 − α11)−1ψ(ε1i, F1)
(α22 − α21)−1ψ(ε2i, F2)

...
(αm2 − αm1)−1ψ(εmi, Fm)


⊗

hi + op(1),
where εij, the (ij)th element of V , has distribution function Fj , and, with λj =

∫ F−1
j (αj2)

F−1
j (αj1)

εdFj(ε), γmlw =




(α12 − α11)−1λ1
...

(αm2 − αm1)−1λm


⊗ H̃0θh.

(b) n1/2(β̂mlw−(β+γmlw)) has an asymptotic normal distribution with zero mean
vector and asymptotic covariance matrix Σ ⊗ H̃QhH̃

′ where Σ is defined as
the following matrix




σ2
1(α11, α12) σ12(α11, α12, α21, α22) · · · σ1m(α11, α12, αm1, αm2)

σ21(α21, α22, α11, α12) σ2
2(α21, α22) · · · σ2m(α21, α22, αm1, αm2)

...
...

...
σm1(αm1, αm2, α11, α12) σm2(αm1, αm2α21, α22)· · · σ2

m(αm1, αm2)






ESTIMATORS BASED ON WINSORIZED OBSERVATIONS 155

with

σ2
j (αj1, αj2) = (αj2 − αj1)−2[

∫ F−1
j (αj2)

F−1
j (αj1)

ε2dFj(ε) + αj1(F−1
j (αj1))2

+(1 − αj2)(F−1
j (αj2))2 − (αj1F

−1
j (αj1)

+(1 − αj2)F−1
j (αj2) + λj)2],

σjk(αj1, αj2, αk1, αk2)

= (αj2 − αj1)−1(αk2 − αk1)−1[
∫ F−1

k
(αk2)

F−1
k

(αk1)

∫ F−1
j (αj2)

F−1
j (αj1)

εjεkdFjk

+F−1
k (αk1)

∫ F−1
k

(αk1)

−∞

∫ F−1
j (αj2)

F−1
j (αj1)

εjdFjk

+F−1
k (αk2)

∫ ∞

F−1
k

(αk2)

∫ F−1
j (αj2)

F−1
j (αj1)

εjdFjk

+F−1
j (αj1)

∫ F−1
k

(αk2)

F−1
k

(αk1)

∫ F−1
j (αj1)

−∞
εkdFjk

+F−1
j (αj2)

∫ F−1
k

(αk2)

F−1
k

(αk1)

∫ ∞

F−1
j (αj2)

εkdFjk

+F−1
j (αj1)F−1

k (αk1)P (εj < F−1
j (αj1), εk < F−1

k (αk1))

+F−1
j (αj1)F−1

k (αk2)P (εj < F−1
j (αj1), εk > F−1

k (αk2))

+F−1
j (αj2)F−1

k (αk1)P (εj > F−1
j (αj2), εk < F−1

k (αk1))

+F−1
j (αj2)F−1

k (αk2)P (εj>F−1
j (αj2), εk>F−1

k (αk2))−((1−αj2)F−1
j (αj2)

+αj1F
−1
j (αj1) + λj)((1 − αk2)F−1

k (αk2) + αk1F
−1
k (αk1) + λk)],

where Fjk represents the joint p.d.f. of variables εj and εk.

The multivariate trimmed mean generalized from Welsh (1987) is

β̂mw =




(X ′A1X)−1 0 · · · 0
0 (X ′A2X)−1 · · · 0
...

...
...

0 0 · · · (X ′AmX)−1


 (Im ⊗X ′)



y ∗

1
...
y∗m


 .

It is obvious that β̂mw is a multivariate ALWO estimator and it has an asymptotic
normal distribution with zero mean and covariance matrix Σ⊗Q−1

x . From Lemma
3.3, we have the following.
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Theorem 5.3. The Welsh type multivariate trimmed mean is the best multivari-
ate ALWO estimator.

For large sample inference, we need to estimate the asymptotic covariance
matrix of the multivariate Welsh′s trimmed mean. We now exhibit an estimator
of the matrix Σ. Let

vjk = (αj2 − αj1)−1(αk2 − αk1)−1n−1
n∑

i=1

{
[eijI(η̂j(αj1) ≤ eij

≤ η̂j(αj2)) + η̂j(αj1)I(eij<η̂j(αj1)) + η̂j(αj2)I(eij>η̂j(αj2))][eikI(η̂k(αk1)

≤ eik ≤ η̂k(αk2)) + η̂k(αk1)I(eik < η̂k(αk1)) + η̂k(αk2)I(eik > η̂k(αk2))]

−[αj1η̂j(αj1)+(1−αj2)η̂j(αj2)+λ̂j ][αk1η̂k(αk)+(1−αk2)η̂k(αk2)+λ̂k]
}
,

where λ̂m = n−1∑n
i=1 eimI(η̂m(αm1) ≤ eim ≤ η̂m(αm2)) for m = j and k. Then

an estimator of Σ is

Σ̂ =



v11 v12 · · · v1m

v21 v22 · · · v2m
...

...
...

vm1 vm2 · · · vmm


 .

The multivariate ALWO estimator is not equivariant. In fact, the componen-
twise trimming used in its construction means that it cannot be made equivariant.
Equivariance is an attractive mathematical property but is arguably of limited
relevance in practice. The absence of equivariance simply means that we need to
be careful about choosing a meaningful coordinate system for the data so that
the components make sense. The above results (Theorem 5.2-5.3) apply to any
fixed coordinate system. However, we may sometimes want to use a coordinate
system which is estimated from the data. We therefore introduce a weighted
multivariate ALWO estimator in which the weights are estimated from the data.

We denote the independent and identically distributed disturbance random
m-vectors of V by v̄i, i = 1, . . . , n, i.e., v̄i = (ε1i, . . . , εmi)′. Let G be an estimator
of a m × m dispersion matrix Ξ with the property that n1/2(G − Ξ) = Op(1).
Then let B̂g

0 = (β̂g
1 , . . . , β̂

g
m) = B̂0G

−1/2, where B̂0 is an initial estimator of B
satisfying n1/2(B̂0−B) = Op(1). The transformed multivariate regression model
is

Y g = XBg + V g (5.1)

with Y g = Y G−1/2, Bg = BG−1/2 and V g = V G−1/2. To construct Winsorized
observations, consider the residuals of the transformed observations Y g from the
initial estimator B̂g

0 , namely egij = yg
ij−x′iβ̂g

j , i = 1, . . . , n and j = 1, . . . ,m, where
yg

ij is the (i, j)th element of matrix Y g. For 0 < αj1 < 0.5 < αj2 < 1, let η̂g
j (αj1)

and η̂g
j (αj2) represent, respectively, the αj1 and αj2th empirical quantiles of the
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regression residuals egij , i = 1, . . . , n. Then the Winsorized observation vector for
the jth transformed equation model (5.1) is yg∗

j = (yg∗
1j , . . . , y

g∗
nj), where

yg∗
ij = yg

ijI(η̂
g
j (αj1) ≤ egij ≤ η̂g

j (αj2)) + η̂g
j (αj1){I(egij < η̂g

j (αj1)) − αj1}
+η̂g

j (αj2){I(egij > η̂g
j (αj2)) − (1 − αj2)}.

Denote the jth trimming matrix by Aj = diag(aj1, . . . , ajn), where aji = I(η̂g
j

(αj1) ≤ egij ≤ η̂g
j (αj2)). Estimation is defined for the parameter vector β =

(β′1, . . . , β′m)′ with B = (β1, . . . , βm).

Definition 5.4. An estimator B̂mlw is called a weighted multivariate ALWO
estimator if it satisfies B̂mlw = B̂g

mlwG
1/2′ , where B̂g

mlw = (β̂g
1 , β̂

g
2 , . . . , β̂

g
m), there

are p×p stochastic or nonstochastic matrices Hj j = 1, . . . , p, and a nonstochastic
n× p matrix H0, such that β̂g

mlw = (β̂g′
1 , β̂

g′
2 , . . . , β̂

g′
m)′ has the representation:

β̂g
mlw =



H1H

′
0 0 · · · 0

0 H2H
′
0 · · · 0

...
...

...
0 0 · · · HmH

′
0





yg∗
1
...
yg∗

m


 ,

where the matrices Hj and H0 satisfy
(c1) nHj → (αj2 − αj1)−1H̃0,
(c2) HjH

′
0X = (αj2 − αj1)−1Ip + op(n−1/2).

Denote by F ξj the distribution function of v̄′ξj and

ψj(v̄)=(αj2 − αj1)−1[v̄′ξjI(η
ξ
j (αj1) ≤ v̄′ξj ≤ ηξ

j (αj2))+η
ξ
j (αj1)I(v̄′ξj ≤ ηξ

j (αj1))

+ηξ
j (αj2)I(v̄′ξj ≥ ηξ

j (αj2))−{λj + αj1η
ξ
j (αj1)+(1 − αj2)η

ξ
j (αj2)}],

where ξj is the jth column of Ξ−1/2, ηξ
j (α) is the αth quantile of distribution

F ξj and λj =
∫ ηξ

j (αj2)

ηξ
j (αj1)

εdF ξj (ε). For large sample analysis, we make the following

assumptions.
(c3) There exists ε > 0 such that p.d.f of v̄′(ξj + δ) is uniformly bounded in a

neighborhood of ηξ
j (α) for ‖δ‖ ≤ ε and the p.d.f of v̄′(ξj + δ)v̄′u(v̄′ξj) is

uniformly away from zero for ‖u‖ = 1 and ‖δ‖ ≤ ε.

(c4) E((v̄′ξj)2‖v̄‖) <∞.

Our main result is the following theorem.

Theorem 5.5. Under conditions (c1)-(c4) and (a3)-(a7), we have

(a) n1/2(β̂mlw−(β+γmlw))=Im⊗H̃0n
−1/2∑n

i=1




(ψ1(v̄i), ψ2(v̄i) · · ·ψm(v̄i))ξ∗1
...

(ψ1(v̄i), ψ2(v̄i)ψm(v̄i))ξ∗m


⊗
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hi + op(1), where ξ∗j is the jth column of Ξ1/2′ and γmlw =




(γ1 · · · γm)ξ∗1
...

(γ1 · · · γm)ξ∗m




with γj = λjH̃0θh and λj =
∫ ηξ

j (αj2)

ηξ
j (αj1)

εdF ξj (ε).

(b) n1/2(β̂mlw−(β+γmlw)) has an asymptotic normal distribution with zero mean
vector and asymptotic covariance matrix Σ ⊗ H̃0QhH̃

′
0 where

Σ = cov(




(ψ1(v̄), ψ2(v̄) · · ·ψm(v̄))ξ∗1
...

(ψ1(v̄), ψ2(v̄) · · ·ψm(v̄))ξ∗m


).

The weighted multivariate trimmed mean generalized from Welsh (1987) is

β̂mw =




(X ′A1X)−1 0 · · · 0
0 (X ′A2X)−1 · · · 0
...

...
...

0 0 · · · (X ′AmX)−1


 (Im ⊗X ′)



yq∗
1
...
yq∗

m


 .

It is obvious that β̂mw is a weighted multivariate ALWO estimator and it has an
asymptotic normal distribution with zero mean and covariance matrix Σ⊗Q−1

x .

From Lemma 3.3, we have the following.

Theorem 5.6. The Welsh type weighted multivariate trimmed mean is the best
multivariate ALWO estimator.

Consider the special design αj1 = 0 and αj2 = 1 for j = 1, . . . ,m and Ξ is
the covariance matrix cov(v̄). Then the asymptotic covariance matrix of β̂mlw

is Σ = Ξ ⊗ H̃QhH̃
′ while the asymptotic covariance matrix of the least squares

estimator is Ξ ⊗Q−1
x .

6. Examples

Before we can use the ALWO estimators such as Welsh’s trimmed mean and
the multivariate generalization proposed in Section 5, we need to specify the ini-
tial estimator and the trimming proportions. The simplest initial estimator is
the least squares estimator. To improve robustness in small samples, it may be
better to use a robust initial estimator such as the 
1 estimator (see Koenker’s
discussion of Welsh (1987)). Other robust estimators can also be considered.
Similarly, in the multivariate case, if we choose to use a data determined coor-
dinate system, the simplest dispersion estimator G is the sample variance of the
residuals but robustness considerations may lead us to consider using a robust
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dispersion estimator. The simplest way to choose the trimming proportions is
to specify them in advance. The use of 10% trimming in both tails is widely
recommended (see for example Ruppert and Carroll (1980)). On the other hand,
the trimming proportions can be determined adaptively from the data (see for
example Welsh (1987), Jureckova, Koenker and Welsh, (1994) and references
therein). It appears to be largely a philosophical question as to which approach
individual users prefer.

The choice of initial estimator and the method of choosing the trimming
proportions impact on the computation of the estimators. Given an initial esti-
mator and given trimming proportions, the calculation is straightforward. First,
the componentwise residuals are sorted, then the Winsorized observation vec-
tors y∗j for j = 1, . . . ,m are constructed and, finally, the estimator is computed
from its explicit definition by elementary matrix operations. Thus, the extent
of the computational burden depends on the burden involved in calculating the
initial estimator and the trimming proportions. The least squares and 
1 estima-
tors are readily computed but other robust estimators may be computationally
more burdensome. Similarly, some choices of G may increase the computational
burden. Adaptive methods for choosing the trimming proportions require the
estimator to be computed over a number of trimming proportions. In practice,
this is usually done by fixing a grid of possible trimming proportions. While this
does increase the computational burden, it is generally by only a small amount.

Lobster Catch Data

In this section, the trimmed mean methods proposed by Koenker and Bassett
(1978) and Welsh (1987) are applied to analyze a data set which consists of n = 44
observations on the American lobster resource displayed in Morrison (1983). In
this data set, the response is the annual catch (in metric tons) of lobsters (y) and
the independent variables (predictors) expected to affect the response include:
the number of registered lobster traps (X1), the number of fishermen (X2), the
mean annual sea temperature (X3) and the year (T ). From economic theory, we
anticipate the mean regression function of y to be nondecreasing in the variables
X1 and X2. We also expect the mean regression function to be nondecreasing in
X3.

Morrison (1983) studied the relationship between y and the above predictors
by using a linear regression model includingX1,X2,X3 and polynomials in T with
degree up to 4. Unfortunately, the estimate of the coefficient for the variable X1

(lobster trap) was negative, which violates economic theory.
To perform the analyses using trimmed mean methods, we first identify the

appropriate regression function. To achieve this goal, we fit the naive multiple
regression model

y = β0 + β1x1 + β2x2 + β3x3 + ε. (6.1)



160 L-A CHEN, A. H. WELSH AND W. CHAN

From the experience of Morrison (1983), we would not expect this model to fit
the data. However, the residual plot provides insight into the data set and is
useful for building a realistic model. The residual plot for the 
1-norm fit for
model (6.1) is displayed in Figure 1.

R
esidual

Year

Figure 1. Residual plot based on 
1-norm for model (6.1).

Figure 1 suggests evidence of a structural change that invalidates using a
single regression equation to represent the data. An alternative model for fitting
data with structural changes is obtained by adding dummy functions in time to
model (6.1). By inspection, we select knots at t = 10, 26 and 38 because the
residuals falling in regions {1, . . . , 9}, {26, . . . , 37} and {38, . . . , 44} are all, or
almost all, of the same sign. We then consider the following regression model
including dummy functions in t

y=β0 + β1x1 + β2x2 + β3x3 + (β4+β7t)I(t ≥ 10) + (β5+β8t)I(t ≥ 26) (6.2)

+(β6 + β9t)I(t ≥ 38) + ε.

Two types of trimmed mean will be used to estimate the regression parameters
of (6.2). Let z′i = (1, x1i, x2i, x3i, I(ti ≥ 10), I(ti ≥ 26), I(ti ≥ 38), tiI(ti ≥
10), tiI(ti ≥ 26), tiI(ti ≥ 38)).
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The first approach proposed by Koenker and Bassett (1978) is based on
regression quantiles. The regression quantile process β̂(α), 0 < α < 1, is defined
to be a solution to minb∈Rp

∑n
i=1 ρα(yi − z′ib) where ρα(u) = u(α − I(u < 0)).

The trimmed mean based on regression quantiles is β̂KB = (Z ′WαZ)−1Z ′Wαy

where Wα = diag(w1, . . . , wn), wi = I(z′iβ̂(α) < yi < z′iβ̂(1−α)) and matrix Z is
the n× 10 matrix with rows z′i.

We list the estimates associated with some trimming proportions α in the
following table.

Table 1. Koenker and Bassett’s trimmed mean β̂KB.

α β0 β1 β2 β3 β4 β5 β6 β7 β9

.05 −1.36 .05 .92 .75 .08 .23 4.94 .01 −.13

.10 −1.40 .14 .88 .69 .14 .08 5.04 .01 −.13

.15 −2.82 .03 1.11 .82 .13 .05 5.59 .00 −.15

.20 −2.28 .18 0.94 .80 .25 −.13 5.70 .00 −.15

.25 −.80 .10 .82 .80 .17 .28 4.98 .00 −.13

.30 −.47 .10 0.78 .73 .28 .22 2.57 .00 −.07

.35 −3.32 .09 1.14 .77 .23 −.22 .00 .00 .00

* Estimates of β8 are all zeros.

Basically, the estimates of β1, β2 and β3 all have the right signs.
We use the 
1-estimate β̂�1 ≡ β̂(0.5) of (6.2) as the initial estimate for Welsh′s

trimmed mean. The residuals based on β̂�1 are ei = yi − z′iβ̂�1 , i = 1, . . . , n. Let
A be the trimming matrix defined in Section 2 based on residuals ei.

Since trimmed means based on initial estimates are able to trim an arbi-
trary number of observations, here we select trimming proportions α so that the
numbers of trimmed observations are 1, . . . , 10. Table 2 gives the estimates β̂w.

As the true parameters are unknown, we are not able to compare the effi-
ciencies of these estimates. However, comparison of these two tables gives the
following conclusions.
(a) The estimates of the parameters β1, β2 and β3 for the least squares, 
1-norm

and both trimmed mean methods have the right signs. This means that the
model at (6.2) improves on the model adopted by Morrison (1983).

(b) The estimates β̂KB show fluctuation in trimming percentage and number
of observations, respectively, without forming a convergent sequence. This
makes it difficult to determine the trimming percentage or number. On the
other hand, Table 2 shows that the trimmed mean β̂w is relatively stable
when the number of trimming observations increases. Welsh’s trimmed mean
performed quite robustly for this data set. Given that only a small number
of outliers showed in Figure 1, Welsh′s trimmed mean (in Table 2) with three
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observations removed seems to be an appropriate estimate for the regression
parameters of model (6.2).

Table 2. Welsh’s trimmed mean β̂w.

Trim.
no.

β0 β1 β2 β3 β4 β5 β6 β8 β9

1 −1.30 .13 .85 .80 .17 .22 5.13 −.00 −.13
2 −1.30 .13 .86 .79 .16 .23 5.13 −.00 −.13
3 −1.64 .13 .90 .77 .13 .22 5.33 −.00 −.14
4 −1.47 .12 .89 .76 .14 .23 5.20 −.00 −.14
5 −1.49 .12 .89 .79 .15 .35 5.03 −.01 −.13
6 −2.08 .11 .97 .78 .09 .29 5.33 −.01 −.14
7 −2.00 .10 .96 .78 .11 .26 5.28 −.00 −.14
8 −1.54 .09 .91 .77 .13 .28 5.01 −.01 −.13
9 −1.64 .10 .92 .77 .15 .25 5.11 −.00 −.14
10 −1.95 .09 .97 .73 .21 .01 5.45 −.00 −.14

* Trim. no. is the trimming number of observations; estimates of β7 are 0.1 for Trim.
no. 1 - 9 and 0.0 for Trim. no. 10.

Mineral Content in Bones

Johnson and Wichern (1982, p.34) give data on the mineral content of the
arm bones of 25 subjects and suggest the use of multivariate regression modelling
to analyse the relationship between mineral content in the dominant radius (y1)
and the remaining radius (y2), and the mineral content of the other four bones:
the dominant humerus (x1), the remaining humerus (x2), the dominant ulna
(x3), and the remaining ulna (x4).

Since the data consist of measurements of the same quantity (mineral con-
tent), it makes sense to keep them on the same scale. The coordinate system in
which the data are presented is natural and meaningful so we will work with it.
The scatterplot matrix of the data shows subjects 1 and 23 as slightly unusual
by virtue of having a high mineral content in the humerus given the mineral
content in the dominant humerus, but otherwise provides no evidence that a
transformation is required. We therefore consider the bivariate regression model

(y1 y2) = (1 x1 x2 x3 x4)




β0 β
∗
0

β11 β21

β12 β22

β13 β23

β14 β24


+ (ε1, ε2),
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which has all the variables on the raw scale. The residual plot for the residuals
from the 
1 fit to the data for the dominant radius (Figure 2) shows some mild
curvature and several potential outliers. There seems to be less curvature in the
residual plot for the radius data (Figure 3) and more homogeneous variation,
making it more difficult to determine whether outliers are present or not. The
suggestion of curvature is not reduced by transforming all variables to the log
scale so we retain the raw scale for simplicity. Normal quantile plots of the resid-
uals show that the marginal distributions of the residuals have long tails. The
marginal distribution of the residuals from the fit to the data for the dominant
radius has a long lower tail consisting of subjects 23, 17, 25, and 14, and two
mild outliers in the upper tail from subjects 1 and 19.

R
esidual

Subject number

Figure 2. Residual plot based on 
1-norm for equation model.

The marginal distribution of the residuals from the fit to the data for the
radius has two long tails rather than distinct outliers.

In Table 3, we give estimates of the β′s obtained using least squares (LS),
some of Welsh′s trimmed means with different numbers of observations Win-
sorized, and the 
1-norm (
1).

Notice that, apart from a small increase at k = 2, 3, and 5 with j = 2,
the variance decreases as k, the number of observations trimmed, increases. This
suggests that the distributions are long-tailed and that relatively severe trimming
is required.
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R
esidual

Subject number

Figure 3. Residual plot based on 
1-norm for second equation model.

Table 3. Estimates by least squares, Welsh’s trimmed mean.

Estimate β10 β11 β12 β13 β14

LS .0995 .2208 −.0877 .3605 .3564
β̂mlw(1) .1177 .2091 −.0832 .3547 .3568
β̂mlw(2) .1386 .2269 −.1112 .3384 .3660
β̂mlw(3) .1882 .1818 −.0819 .2918 .3905
β̂mlw(4) .1865 .1434 −.0670 .2728 .4789
β̂mlw(5) .1571 .1572 −.0912 .2829 .5356

1 .1287 .1806 −.1328 .3244 .5742

Estimate β10 β11 β12 β13 β14

LS .1263 −.0154 .1561 .1940 .4486
β̂mlw(1) .1162 −.0149 .1617 .1976 .4454
β̂mlw(2) .1176 −.0156 .1654 .2121 .4250
β̂mlw(3) .1255 −.0012 .1564 .1788 .4351
β̂mlw(4) .1572 −.0371 .2026 .0521 .4959
β̂mlw(5) .1634 −.0427 .2102 .0276 .5077

1 .1476 −.0368 .2103 −.0314 .5815

ps: β̂mlw(k) represents the Welsh′s trimmed mean with number k of Winsorized obser-
vations.
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Table 4. Estimates of σ̂2
j (k/n, 1 − k/n) and σ̂12(k/n, 1 − k/n).

j k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
j=1 .00612 .00609 .00444 .00296 .00179 .00137
j=2 .00416 .00439 .00471 .00466 .00253 .00298
σ̂12 .00299 .00289 .00243 .00177 .00079 .00055

7. Appendix

Proof of Theorem 3.1. From condition (a2) and (A.10) of Ruppert and Carroll
(1980), HH ′

0AXβ = β + op(n−1/2). Inserting (2.1) in equation (2.3), we have

n1/2(β̂lw − β) = n1/2H[H ′
0Aε− η̂(α1)

n∑
i=1

hi(α1 − I(ei ≤ η̂(α1)))

+η̂(α2)
n∑

i=1

hi(α2 − I(ei ≤ η̂(α2))))] + op(1).

Now we develop a representation of n−1/2H ′
0Aε. Let Uj(α, Tn) = n−1/2∑n

i=1 hijεi
I(εi < F−1(α) + n−1/2x′iTn) and U(α, Tn) = (U1(α, Tn), . . . , Up(α, Tn)). Also, let

T ∗
n(α) = n1/2

[
β̂0+

[
η̂(α)
0p−1

]
−
(
β+

[
F−1(α)
0p−1

] )]
. Then n−1/2H ′

0Aε = U(α2, T
∗
n(α2))

−U(α1, T
∗
n(α1)). From Jureckova and Sen’s (1987) extension of Billingsley’s The-

orem (see also Koul (1992)), we have

|Uj(α, Tn) − Uj(α, 0) − n−1F−1(α)f(F−1(α))
n∑

i=1

hijx
′
iTn| = op(1) (7.1)

for j = 1, . . . , p and Tn = Op(1). From (7.1),

n−1/2H ′
0Aε

= (U(α2, T
∗
n(α2))−U(α2, 0))−(U(α1, T

∗
n(α1))−U(α1, 0))+(U(α2, 0)−U(α1, 0))

= n−1/2
n∑

i=1

hiεiI(F−1(α1) ≤ εi ≤ F−1(α2)) + F−1(α2)f(F−1(α2))QhxT
∗
n(α2)

+F−1(α1)f(F−1(α1))QhxT
∗
n(α1)+op(1). (7.2)

To complete the proof of Theorem 3.1, from the representation of η̂(α) (see
Ruppert and Carroll (1980)), we have

n−1/2H ′
0Aε = n−1/2

n∑
i=1

hiεiI(F−1(α1) ≤ εi ≤ F−1(α2)) + (F−1(α2)f(F−1(α2))

−F−1(α1)f(F−1(α1)))Qhxn
1/2(−Ip + I∗)(β̂0 − β)
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+[F−1(α2)n−1/2
n∑

i=1

(α2 − I(εi ≤ F−1(α2)))

−F−1(α1)n−1/2
n∑

i=1

(α1 − I(εi ≤ F−1(α1)))]Qhx + op(1), (7.3)

where I∗ is a p × p diagonal matrix with the first diagonal element equal to 1.
Similarly, we also have, for 0 < α < 1,

η̂(α)n−1/2
n∑

i=1

hi(α−I(ei ≤ η̂(α)))

= F−1(α)[f(F−1(α))Qhxn
1/2(−Ip+I∗)(β̂0 − β)

−Qhxn
−1/2

n∑
i=1

(α− I(εi ≤ F−1(α)))δ0

+n−1/2
n∑

i=1

hi(α− I(εi ≤ F−1(α)))] + op(1), (7.4)

where δ0 is p-vector with first element equal to 1 and the reamining elements
equal to 0. Combining (7.3) and (7.4) for α = α1 and α2,

n−1/2[H ′
0Aε− η̂(α1)n−1/2

n∑
i=1

hi(α1 − I(ei ≤ η̂(α1))) (7.5)

+η̂(α2)n−1/2
n∑

i=1

hi(α2 − I(ei ≤ η̂(α1)))]

= n−1/2
n∑

i=1

hi[εiI(F−1(α1) ≤ εi ≤ F−1(α2)) + F−1(α1)I(εi ≤ F−1(α1))

+F−1(α2)I(εi ≥ F−1(α2)) − (α1F
−1(α1) + (1 − α2)F−1(α2))] + op(1).

The theorem is then obtained from (7.5) and Condition (a1).

Proof of Theorem 3.3. From the representation of sample quantiles in Ruppert
and Carroll (1980) and the linear Winsorized instrumental variables mean β̂s,
η̂(a) → F−1(a) in probability for a = α1 and α2. Now,

n−1
n∑

i=1

e2i I(η̂(α1)<ei<η̂(α2))

= n−1(β̂0 − β)′
n∑

i=1

xix
′
i(β̂0 − β)I(η̂(α1)<ei<η̂(α2))

+n−1
n∑

i=1

ε2i I(η̂(α1)<ei<η̂(α2)) + n−1(β̂0 − β)′
n∑

i=1

xiεiI(η̂(α1)<ei<η̂(α2)).
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From the fact that n1/2(β̂s − β) = Op(1), n−1∑n
i=1 xiεiI(η̂(α1) < ei < η̂(α2)) =

op(1) and n−1∑n
i=1 ε

2
i I(η̂(α1) < ei < η̂(α2)) = n−1∑n

i=1 ε
2
i I(F

−1(α1) < εi <

F−1(α2)) + op(1), where the last equation follows from Lemma A.4 of Ruppert
and Carroll (1980). Analogous discussion shows that λ̂ is consistent for λ. Then
these results imply the theorem.

Proof of Lemma 3.4. Write plim(Bn) = B if Bn converges to B in prob-
ability. Let C = HH0 − (X ′AX)−1X ′. Now plim(CAX) = plim(HH ′

0AX) −
plim(X ′AX)−1X ′AX = 0. Hence

H̃QhH̃
′ = (α2 − α1)−1plim(HH ′

0A(HH ′
0A)′)

= (α2 − α1)−1plim((CA+ (X ′AX)−1X ′A)(CA+ (X ′AX)−1X ′A)′)

= (α2 − α1)−1[plim(CAC ′) + plim((X ′AX)−1X ′AX(X ′AX)−1)]

= (α2 − α1)−1plim(CAC ′) + (α2 − α2)−1Q−1
x

≥ (α2 − α1)−2Q−1
x .

Proof of Corollary 3.7. It is obvious that (α2 − α1)2h′Qhh = plim(α2 −
α1)−2na′a. The best linear Winsorized mean for c′β satisfies min plimn(α2 −
α1)−2a′a subject to c = plim(α2−α1)X ′a. Equivalently, solve min plimL(a, λ) =
(α2−α1)−2na′a+λ(c−(α2−α1)X ′a). Taking the partial derivative of L(a, λ) with
respect to a and λ, we have a = (2n)−1(α2−α1)3Xλ subject to C = (α2−α1)X ′a.
Thus a = (α2 − α1)−1X(X ′X)−1c. This we can estimate by a = X(X ′AX)−1c,

and the best linear Winsorized mean for c′β is c′(X ′AX)−1X ′y∗ ≡ c′β̂lw.

Proof of Lemma 4.1. Using the Jureckova and Sen (1987) extension of Billings-
ley’s Theorem, we have n−1∑n

i=1 sijxikI(η̂(α1) < εi < η̂(α2)) = (α2 − α1)qjk +
op(1) where qjk is the jkth term of the matrix Qsx, and xij, sik are the ijth and
ikth terms of X and S, respectively. We then have n−1S′AX = (α2 − α1)Qsx +
op(1).

Proof of Theorem 5.5. The vector β̂g
mlw is a vertical stacking of β̂g

j = HjH
′
0y

g∗
j .

We have

β̂g
j =HjH

′
0AjXBgj +HjH

′
0AjV gj −Hj η̂

g
j (α1)

n∑
i=1

hi{α1 − I(egij ≤ η̂g
j (α1))}

+Hj η̂
g
j (α2)

n∑
i=1

hi{α2 − I(egij ≤ η̂g
j (α2))}, (7.6)

where gj is the jth column of G−1/2. The proof is the same for each j so we drop
j to simplify the notation.
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We first derive the representation of n−1/2H ′
0AV g. Since n1/2(g−ξ) = Op(1),

we need to consider only the term n−1/2H ′
0AV ξ. For 
 = 1, . . . , p, let

S�(b, g) = n−1/2
n∑

i=1

hi�v̄
′
iξ[I{v̄′i(ξ+n−1/2g) ≤ ηξ(α)+n−1/2d′ib}−I{v̄′iξ ≤ ηξ(α)}].

We want to show that

sup‖b‖≤k,‖g‖≤k′ |S�(b, g) − ηξ(α)fξ(ηξ(α))n−1
n∑

i=1

hi�{d′ib+ g′E(v̄|v̄′ξ = ηξ(α))}|

= op(1), (7.7)

where fξ is the density of v̄′ξ, to obtain a representation for H ′
0AV g in (7.6).

To establish (7.7), we first show that

n−1
n∑

i=1

h2
i�E[(v̄′iξ)

2|I{v̄′i(ξ + n−1/2g1) ≤ ηξ(α) + n−1/2d′ib1} − I{v̄′i(ξ + n−1/2g2)

≤ ηξ(α) + n−1/2d′ib2}|] ≤M(‖b2 − b1‖ + ‖g2 − g1‖) (7.8)

for some M > 0. Let A = n−1∑n
i=1 h

2
i�E[(v̄′iξ)2|I{v̄′i(ξ + n−1/2g1) ≤ ηξ(α) +

n−1/2d′ib1}−I{v̄′i(ξ+n−1/2g2) ≤ ηξ(α)+n−1/2d′ib1}|] and B = n−1∑n
i=1 h

2
i�E[(v̄′i

ξ)2[|I{v̄′i(ξ + n−1/2g2) ≤ ηξ(α) + n−1/2d′ib1} − I{v̄′i(ξ + n−1/2g2) ≤ ηξ(α) +
n−1/2d′ib2}|]. Note that (7.8) is bounded by A+B. We can decompose A as

A=n−1
n∑

i=1

h2
i�E[(v̄′iξ)

2I{v̄′i(ξ + n−1/2g1) ≤ ηξ(α) + n−1/2d′ib1, v̄
′
i(ξ + n−1/2g2)

>ηξ(α)+n−1/2d′ib1}]+n−1
n∑

i=1

h2
i�E[(v̄′iξ)

2I{v̄′i(ξ+n−1/2g1)>ηξ(α)+n−1/2d′ib1,

v̄′i(ξ + n−1/2g2) ≤ ηξ(α) + n−1/2d′ib1}] = A1 +A2.

Consider A1. Suppose that g1 
= g2 and let U1 = v̄′(ξ+ n−1/2g1), U2 = v̄′ (g2−g1)
‖g2−g1‖ ,

and U3 = v̄′ξ. Then, using the conditional expectation E(H(U1, U2, U3)) =
E(E(H(U1, U2, U3)|U2, U3)), A1 = n−1∑n

i=1 h
2
i�E{U2

3 fU1|U2,U3
(ηξ(α)+n−1/2d′ib1)

U2}n−1/2‖g2−g1‖ ≤Mn−1/2‖g2−g1‖. Similarly, we have A2 ≤Mn−1/2‖g2−g1‖
and B ≤Mn−1/2‖b2 − b1‖ so (7.8) holds.

Next, we consider

n−1
n∑

i=1

h2
i�E[(v̄′iξ)

2sup‖g1−g‖+‖b1−b‖≤k|I{v̄′i(ξ + n−1/2g1) ≤ ηξ(α) + n−1/2d′ib1}

−I{v̄′i(ξ + n−1/2g) ≤ ηξ(α) + n−1/2d′ib}|]. (7.9)
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The expression (7.9) is bounded by C1 + C2 +D with

C1=n−1
n∑

i=1

h2
i�E[(v̄′iξ)

2sup‖g1−g‖+‖b1−b‖≤kI{v̄′i(ξ + n−1/2g1)≤ηξ(α)+n−1/2d′ib1,

v̄′i(ξ + n−1/2g) > ηξ(α)+n−1/2d′ib1}];

C2=n−1
n∑

i=1

h2
i�E[(v̄′iξ)

2sup‖g1−g‖+‖b1−b‖≤kI{v̄′i(ξ + n−1/2g1)>ηξ(α)+n−1/2d′ib1,

v̄′i(ξ+n
−1/2g) ≤ ηξ(α)+n−1/2d′ib1}];

D=n−1
n∑

i=1

h2
i�E[(v̄′iξ)

2sup‖g1−g‖+‖b1−b‖≤k|I{v̄′i(ξ+n−1/2g) ≤ ηξ(α)+n−1/2d′ib1}

−I{v̄′i(ξ+n−1/2g) ≤ ηξ(α)+n−1/2d′ib}|].

Similar arguments to those used to prove (7.8) can be used to show that (7.9)
is bounded by n−1/2Mk. For example, letting U1 = v̄′(ξ + n−1/2g), U2 =
supg1

v̄′ (g1−g)
‖g1−g‖ , and U3 = (v̄′ξ)2, we see that from Assumption c4,

C1 ≤ n−1
n∑

i=1

h2
i�EU

2
3 I{U1 ≤ ηξ(α)+U2n

−1/2‖g1 − g‖ + n−1/2sup‖b1−b‖≤k|d′ib1|,

U1 > ηξ(α) − U2n
−1/2‖g1 − g‖ − n−1/2sup‖b1−b‖≤k|d′ib1|}

= n−1
n∑

i=1

h2
i�EU

2
3

∫ ηξ(α)+u2n−1/2‖g1−g‖+n−1/2sup‖b1−b‖≤k|d′ib1|

ηξ(α)−u2n−1/2‖g1−g‖−n−1/2sup‖b1−b‖≤k|d′ib1|
fU1|U2,U3

(u1)du1

≤Mn−1
n∑

i=1

h2
i�E(U2U3)n−1/2‖g1 − g‖ ≤ n−1/2Mk.

It follows that (7.9) is bounded by n−1/2MK, so from lemma 3.2 of Bai and He
(1998) and (7.8), we have

sup‖b‖≤k,‖g‖≤k′ |S�(b, g) −ES�(b, g)| = op(1). (7.10)

To establish (7.7), we still need to show that

sup‖b‖≤k,‖g‖≤k′ |ES�(b, g) − ηξ(α)fξ(ηξ(α))n−1
n∑

i=1

hi�{d′ib+ g′E(v̄|v̄′ξ

= ηξ(α))}| = op(1). (7.11)

Consider the decomposition

ES�(b, g) = n−1/2
n∑

i=1

hi�Ev̄
′
iξ[I{v̄′i(ξ + n−1/2g) ≤ ηξ(α) + n−1/2d′ib}
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−I{v̄′iξ ≤ ηξ(α) + n−1/2d′ib}]

+n−1/2
n∑

i=1

hi�Ev̄
′
iξ[I{v̄′iξ ≤ ηξ(α) + n−1/2d′ib} − I{v̄′iξ ≤ ηξ(α)}]

= E1 + E2.

Let U = v̄′ξ, Z = v̄′g and δ = n−1/2d′ib. Then

|E1 − n−1
n∑

i=1

hi�η
ξ(α)fξ(ηξ(α))g′E(v̄|v̄′ξ = ηξ(α))|

≤ n−1/2
n∑

i=1

hi�

∣∣∣ ∫ ∞

−∞

∫ ηξ(α)+δ

ηξ(α)+δ−n−1/2z
uf(u, z)dudz

−n−1/2ηξ(α)
∫ ∞

−∞
zf(ηξ(α), z)dz

∣∣∣
= n−1/2

n∑
i=1

hi�

∫ ∞

−∞

∣∣∣ ∫ ηξ(α)+δ{ufU|Z (u|z)

ηξ(α)+δ−n−1/2z
−ηξ(α)fU |Z(ηξ(α)|z)}du

∣∣∣fZ(z)dz

≤ n−1/2
n∑

i=1

hi�

∫ ∞

−∞

∫ ηξ(α)+δ

ηξ(α)+δ−n−1/2z

∫ u

ηξ(α)

∣∣∣fU |Z(t|z) + tf ′U |Z(t|z)
∣∣∣dtdufZ(z)dz

≤M1n
−1/2

n∑
i=1

hi�

∫ ∞

−∞

∫ ηξ(α)+δ

ηξ(α)+δ−n−1/2z
(u− ηξ(α))dufZ(z)dz

≤M2n
−1

n∑
i=1

hi�(‖di‖‖b‖‖g‖E‖v̄‖ + n−1/2E‖v̄‖2‖g‖2) ≤M3‖b‖. (7.12)

Similarly, |E2−ηξ(α)fξ(ηξ(α))n−1∑n
i=1 hi�d

′
ib| ≤M‖b‖ so we have proved ( 7.11)

and hence (7.7).
Provided

n1/2(η̂g(α) − ηξ(α)) = Op(1), (7.13)

similar arguments to those leading to (7.7) establish that

n−1H ′
0A

gX = (α2 − α1)Qsx + op(1). (7.14)

Then from (7.7) and (7.13), we have

n−1/2H ′
0A

gV g = n−1/2
n∑

i=1

hiv̄
′
iξI(η

ξ(α1) ≤ v̄′iξ ≤ ηξ(α2)) − ηξ(α2)fv̄′ξ(ηξ(α2))

·n−1/2
n∑

i=1

hi{d′iTn2 + T ′
nE(v̄|v̄′ξ = ηξ(α2))}

+ηξ(α1)fv̄′ξ(ηξ(α1))n−1/2
n∑

i=1

hi{d′iTn1

+t′nE(v̄|v̄′ξ = ηξ(α1))} + op(1), (7.15)
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where Tnk = n1/2(β̂g +

(
η̂g(αk)

0

)
− (βg +

(
ηg(αk)

0

)
)), k = 1, 2 and Tn =

n1/2(g − ξ).
We still need to establish (7.13) and derive representations for the last two

terms in (7.6). Let S̃(g, b) = n−1/2∑n
i=1[−I(v̄′i(ξ+n−1/2g) ≤ ηξ(α)+n−1/2x′ib)+

I(v̄′i(ξ + n−1/2g) ≤ ηξ(α))]. Then we need to prove that

sup‖b‖≤k,‖g‖k′ |S̃(g, b) − fξ(ηξ(α))n−1
n∑

i=1

hi�{d′ib+ g′E(v̄|v̄′ξ = ηξ(α))}| = op(1).

(7.16)
Similar arguments to those leading to (7.10) show that sup‖b‖≤k,‖g‖≤k′ |Sn(g, b)−
E(Sn(g, b))| = op(1) and similar arguments to those leading to (7.12) establish
(7.16). Following Ruppert and Carroll (1980), we also have

n−1/2
n∑

i=1

(α − I(yg
i − x′iβ̂

g ≤ η̂g(α))) = op(1). (7.17)

Moreover, as in the proof of Lemma 5.1 of Jureckova (1977), we obtain from
(7.17) and (7.18) that, for every ε > 0, there exists K > 0, 
 > 0 and N such that

P [ inf
‖b‖≥k

n−1/2|
n∑

i=1

{α− I(v̄′ig ≤ ηξ(α) + n−1/2d′ib)}| < 
] < ε (7.18)

for n ≥ N . Then (7.13) follows from (7.17) and (7.18).
Combining (7.16) and (7.17), we have

−η̂g(α1)n−1/2
n∑

i=1

hi{α1−I(egi≤η̂g(α1))}+η̂g(α2)n−1/2
n∑

i=1

hi{α2−I(egi≤η̂g(α2))}

= ηξ(α1)n−1/2
n∑

i=1

hi{α1 − I(v̄′iξ ≤ ηξ(α1))}

+ηξ(α2)n−1/2
∑
i=1

hi{α1 − I(v̄′iξ ≤ ηξ(α2))}

−ηξ(α1)fv̄′ξ(ηξ(α1))n−1
n∑

i=1

hi(d′iTn1 + t′nE(v̄|v̄′ξ = ηξ(α1)))

+ηξ(α2)fv̄′ξ(ηξ(α2))n−1
n∑

i=1

hi{d′iTn2 + t′nE(v̄|v̄′ξ = ηξ(α2))} + op(1). (7.19)

Combining (7.15) and (7.19), we have n1/2(β̂g−(Bξ−γ)) = H̃n−1/2∑n
i=1 hiψ(v̄i)

+op(1), which implies that

n1/2(B̂g
mlw−(B+(γ1· · ·γm)Ξ1/2′))=H̃0n

−1/2
n∑

i=1

hi(ψ1(v̄i),. . ., ψm(v̄i))Ξ1/2′+op(1).
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The theorem then follows.
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