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Abstract: Motivated by a design for discovering associations between inherited

childhood risk factors and adult-onset disease, the problem of estimating the distri-

bution of age at onset of the disease from a case-control sample of subjects who have

and have not yet experienced onset is examined. An embedding of the distribution

function of age at onset in a multiplicative intercept model simplifies estimation

by allowing the distribution function of age at enrollment to be conditioned out of

the likelihood. A class of estimators of the distribution function of age at onset is

developed and it is argued that a member of the class is efficient. Standard error

calculations and an approach to approximating the efficient member of the class

are described.
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1. Introduction

Exploring associations between an adult-onset disease and risk factors that
appear during childhood can contribute to the understanding of the disease’s
etiology and to the development of early screening and intervention programs. A
prospective cohort study in which children are enrolled and followed until onset of
the disease would allow straightforward analysis of the association between child-
hood measurements and the disease. However, if onset of the disease occurred
late in life, the followup time might be prohibitively long and, if the disease were
rare, a prohibitively large sample might be required. A case-control study in
which adults with and without the disease are enrolled would avoid these prob-
lems. See, for example, Breslow and Day (1980). However, such a design would
not be useful unless childhood measurements were available retrospectively.

Shea (1994), in the context of exploring associations between childhood
serum lipid levels and early onset cardiovascular disease, proposed an alternative
study design that avoids the problems associated with long followup and rare
disease. That design calls for a case sample of families with a parent who has
experienced onset of the disease and a control sample of families with disease-free
parents. Only families with children eligible for measurement of the risk factors
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are enrolled. The risk factors measured in the children are used as surrogates for
the parent’s childhood values.

Use of the alternative design is predicated on three conditions. The first
condition is that having a child eligible for enrollment is independent of the
disease. The second is that enrollment of the case families and of the control
families are independent of children’s risk factors. The third is that a heritable
factor induces the association between the disease and the risk factors through its
influence on both. The first and second conditions are necessary to avoid selection
bias. The third condition ensures that the association between a parent’s disease
and the parent’s childhood risk factor values is reflected, through inheritance, in
the association between the children’s risk factors and the parent’s disease. It
is this condition that provides the basis for using the children’s risk factors as
surrogates for the parents’ childhood values.

The statistical analysis of data from the alternative design involves several
issues. Among them are bivariate failure times (brought about through pairs of
parents) and measurement error in the predictors (brought about through im-
perfect correlation between the parents’ childhood risk factors and the children’s
risk factors). The issue of bivariate failure times is not generally a concern as
analyses would often be stratified on the parents’ sex. An accounting for the mea-
surement error issue is beyond the scope of this paper. As a first step towards
a more general setting, efforts here are restricted to the one sample problem of
estimating the marginal distribution of age at onset. Attention is focussed on
characterizing the information available in data from the alternative design, and
on developing a strategy for efficiently extracting the information. The methods
may be used directly as a building block in sub-group comparisons.

A statistical formulation of the one sample problem in the case of one parent
per family is that the data are drawn from a population of independent age at
enrollment and age-at-onset pairs. Cases are drawn from the sub-population
where age at onset precedes age at enrollment. Controls are drawn from the
sub-population where age at enrollment precedes age at onset. In the cases,
both age at onset and age at enrollment are observed. In the controls, only
age at enrollment is observed. The assumption of independence between age at
enrollment and age at onset is equivalent to an assumption of negligible change
in the distribution of age at onset over the range of age at enrollment represented
in the population.

The data are naturally thought of as divided into two parts: information
from the case families and information from the controls. However, another
division proves quite useful. In this, one part of the data is the age at enrollment
information in both the cases and controls, together with case-control indicators.
The other part is conditional age-at-onset information given age at enrollment
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data in the cases. The case-control part may be thought of as a case-control
sample where the dichotomous outcome is presence or absence of disease and
the covariate is age at enrollment. The truncated part may be thought of as a
sample of right truncated failure time data, where the truncation time is age at
enrollment and the truncated failure time is the age at onset.

The case-control part of the data identifies the logit of the distribution of
age at onset up to an additive constant. See, for example, Breslow and Storer
(1985). The truncated data part identifies the marginal distribution of age at
onset up to a multiplicative constant. See, for example, Woodroofe (1985). To-
gether, therefore, the two parts identify the marginal distribution of age at onset.
Extracting the available information is a matter of efficiently combining the two
parts of the data.

Because the first part of the data is a case-control sample, it is helpful to
examine the usual strategy for the statistical analysis of case-control data. The
usual strategy is to assume a multiplicative intercept model for the conditional
expectation, given the covariates, of the dichotomous outcomes, and to proceed
as if the data had been obtained through cross-sectional, rather than case-control,
sampling. Efficient estimates of the logit of the conditional expectation, up to
an additive constant, result from this strategy, and the usual standard error
calculations based on the assumption of cross-sectional sampling are correct as
well. The advantage of the strategy is that, with cross-sectional sampling, the
covariates are ancillary for the conditional expectation and the marginal distri-
bution of the covariates may be conditioned out of the likelihood without loss
of information. See, for example, Anderson (1972), Scott and Wild (1986) and
Weinberg and Wacholder (1993). If a non-multiplicative intercept model for the
conditional expectation is specified, then a possible strategy is to imbed the spec-
ified model in a multiplicative intercept model and to proceed as if the data had
been obtained through cross-sectional sampling. The marginal distribution of
the covariates may be conditioned out of the likelihood and the logit of the true
conditional expectation is efficienctly estimated. See, for example, Breslow and
Storer (1985), Manski and McFadden (1981) or Cosslett (1981).

The methodology developed here rests on a generalization of the usual strat-
egy for the analysis of case-control data. As with the usual strategy, the gener-
alization involves proceeding as if the case-control indicators had been obtained
through cross-sectional rather than case-control sampling with the conditional
expectation of the indicators following a multiplicative intercept model. In the
generalization, the conditional distribution of age at onset given age at enroll-
ment in the truncated data part of the likelihood is left unchanged. As with the
usual strategy for case-control data, the advantage to developing estimators in
the context of the new model with cross-sectional sampling from the multiplica-
tive intercept model, is that the marginal distribution of age at enrollment may
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be conditioned out of the likelihood. In the following, the new model with cross-
sectional sampling from the multiplicative intercept model will be referred to as
the modified version of the model, while the true model with the case-control
sampling will be referred to as the original version of the model.

The remainder of the paper is organized as follows. In the second section,
notation is defined. In the third, the validity of developing estimators in the
context of the modified version of the model is justified. In the fourth, a class
of estimators and standard error calculations for the estimators are developed
in the context of the modified version of the model. Direct calculations in an
appendix show that the estimators and standard error calculations developed in
the context of the modified version of the model are valid in the original model.
In the fifth section the issue of efficiency is examined, and in the sixth section
the results of some small simulation experiments are presented.

2. Notation and Likelihoods

This section describes notation and likelihoods for the original and modi-
fied versions of the model. First, the original version of the model is described.
Let T and A denote a generic pair of independent age at onset and age at en-
rollment times, and let Y denote the indicator that onset precedes enrollment,
Y = 1{T≤A}. Let F denote the distribution function of age at onset, and let G
denote the distribution function of age at enrollment. Let n denote the number
of cases, and let m denote the number of controls in the original version of the
model.

Settings in which onset does not always eventually occur are of interest. Let
π denote the probability that onset eventually occurs, π = limt−→∞ F (t), and let
F0 denote the conditional distribution of age at onset, given that onset occurs,
F0(t) = F (t)/π.

In the original version of the model, cases are a sample of pairs, (Ti, Ai), i =
1, . . . , n, from the conditional distribution of age at onset and age at enroll-
ment, given that onset occurs before enrollment. Controls are a sample, Ai, i =
n + 1, n + 2, . . . , n +m, from the conditional distribution of age at enrollment,
given that onset has not occurred before enrollment. The likelihood for the
cases is

∏n
i=1 dG(Ai)dF (Ti)/

∫
dG(a)F (a), and the likelihood for the controls is∏m

i=1 dG(Ai)(1 − F (Ai))/
∫
dG(a)(1 − F (a)). Let Yi, i = 1, . . . , n + m, be the

indicator of case-control status. The joint likelihood may be partitioned into
the likelihood for the case-control part of the data and the likelihood for the
truncated data part,

n+m∏
i=1

dG(Ai)F (Ai)Yi(1 − F (Ai))1−Yi∫
dG(a)F (a)Yi (1 − F (a))1−Yi

×
n∏

j=1

dF0(Tj)
F0(Aj)

. (1)
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The modified version of the model is described next. Let A, T , F , F0 and π be
as in the original version of the model. It is convenient to have different notation
for the marginal distribution function of the age at enrollment in the modified and
original versions of the model: let H denote the marginal distribution function
of age at enrollment in the modified version of the model. Let Φ(α, π, F0) be
defined implicitly by logit (Φ(α, π, F0)) = α+ logit(πF0). In the modified version
of the model, the case-control part of the data is n + m age at enrollment and
case-control indicator pairs, (Ai, Yi), obtained through cross-sectional sampling,
with the conditional expectation of Yi given Ai equal to Φ(α, π, F0(Ai)). The
conditional distribution of the truncated age-at-onset part of the data in the
modified version of the model is the same as in the original version of the model.
In the modified version of the model, the Yi, and therefore the numbers of cases
and controls, are random. Let N and M denote the random numbers of cases
and of controls, respectively, in the modified version of the model.

The likelihood in the modified version is
∏n+m

i=1 dH(Ai)Φ(α, π, F0(Ai))Yi(1−
Φ(α, π, F0(Ai)))1−Yi

∏
j:Yj=1 dF0(Tj)/F0(Aj). It follows from the form of the like-

lihood that, in the modified version of the model, the Ai are ancillary for F .
The distribution function H may therefore be conditioned out of the likelihood
without loss of efficiency. Note that the parameter space in the modified version
of the model is augmented by the multiplicative intercept α.

Finally, it will be convenient to define some backward-in-time counting pro-
cess notation. For i = 1, . . . , n, let Ni(u) denote minus the indicator that
Ti < u and Yi = 1. Let δi(u) be the indicator that Ti is less than u and that
Ai is greater than or equal to u. Let Λ be the cumulative hazard in back-
wards time, Λ(t) =

∫ t
∞−dF0(s)/F0(s). Let Ft denote the σ-algebra generated by

Yi, Ai, Ni(s), s > t, i = 1, . . . , n+m. The compensator of dNi(s) with respect to
the filtration {Fs}0

s=∞ is dΛ(s)δi(s). See, for example, Andersen, Borgan, Gill
and Keiding (1992). Let R(t) denote the cardinality of the risk set at time t,
R(t) =

∑n+m
j=1 δi(t).

3. Justification for the Modified Version

In this section, a justification for developing methods in the context of the
modified version of the model is presented. First some motivation is provided.
Then, two results for the behavior of methods developed in the context of the
modified model are described. The main point is that methods developed in the
context of the modified version of the model may be applied to data that follow
the original version of the model.

Motivation for developing methods in the context of the modified version of
the model rests on two facts. The first is that in the modified version of the
model, the pair (N,M) is ancillary for F . The second is that the conditional
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likelihood given (N,M) = (n,m) in the modified version of the model is, up to a
reparameterization, equivalent to the likelihood in the original model. These two
facts provide motivation because ancillarity suggests that natural approaches to
inference in the modified version of the model would condition on (N,M), and
because the equivalence of the likelihoods therefore suggests that conditional
methods for the modified version of the model would be valid in the original
model.

Before moving to the two results about the behavior, in the original model,
of estimators developed in the context of the modified model, the two facts that
underlie the motivation, the ancillarity result and the equivalence result, are
verified. To verify ancillarity, first note that the likelihood in the modified version
of the model may be written as the product of the marginal likelihood of the
numbers of cases and controls, ρN (1− ρ)M , and the conditional likelihood of the
ages at enrollment and onset,

n+m∏
i=1

dK(Ai)F (Ai)Yi(1 − F (Ai))1−Yi∫
dK(a)F (a)Yi(1 − F (a))1−Yi

∏
j:Yj=1

dF0(Tj)
F0(Ai)

, (2)

where ρ is defined by ρ =
∫
dH(a)Φ(α, π, F0(a)), and K is defined by

dK(a) =
dH(a)

1 − F (a) + eαF (a)

/∫
dH(u)

1 − F (u) + eαF (u)
.

To verify ancillarity, therefore, it suffices to show that the range of ρ is unre-
stricted by the values of K and F . And, by allowing α to range from −∞ to ∞
with F fixed and with

dH(a) =
dK(a)(1 − F (a) + exp(α)F (a))∫
dK(u)(1 − F (u) + exp(α)F (u))

,

it may be observed that K remains fixed and that ρ ranges from 0 to 1. To verify
the equivalence of the likelihoods, note that, from the form of the conditional
likelihood (2) in the modified version of the model and the likelihood (1) in the
original version, it suffices to show that the range of K is the same as the range
of G. And, it may be verified directly that as H ranges over all distribution
functions, so does K.

This section concludes with statements and justifications of two results for
the behavior, in the original version of the model, of estimators developed in
the context of the modified version of the model. The first result is that if an
estimator of F is unbiased in the modified version of the model, then it is unbiased
in the original version as well. The second result is that with unbiased estimators
of F , standard error calculations which are accurate in the modified version of
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the model are, under certain regularity conditions, also accurate in the original
version.

The approach taken here to justifying these two results relies on a corre-
spondence between (n,m) and G in the original version of the model, and α and
H in the modified version. The correspondence is that, for fixed F , for every
(n,m) and G in the original version of the model, there are corresponding values
of α and H so that EN = n and EM = m. Then the conditional distribution
given (N,M) = (n,m) in the modified version of the model is the same as the
distribution in the original version of the model.

The relevance of the correspondence is that when methods developed in
the context of the modified version of the model are applied to data from the
original version of the model, the resulting estimators behave probabilistically
as they would have conditionally given (N,M) = (n,m) in the modified version
of the model at the corresponding values of the parameters. Results that hold
conditionally in the modified version of the model for all H and α must therefore
also hold in the original version for all G and (n,m).

It may be verified by direct calculation that the corresponding values of H
and α are defined by

dH(a) =
n

n+m

dG(a)F (a)∫
dG(u)F (u)

+
m

n+m

dG(a)(1 − F (a))∫
dG(u)(1 − F (u))

(3)

and

exp (α) =
n

m

∫
(1 − F (u))dG(u)∫

F (u)dG(u)
. (4)

See, for example, Prentice and Pyke (1979), Cosslett (1981) or Hsieh, Manski
and McFadden (1985).

Now, justification for the two results is presented. For the first, that estima-
tors which are unbiased in the modified version of the model are unbiased in the
original model, note that, in the modified version of the model, for fixed F and
K, (N,M) is complete sufficient for ρ. It follows that, in the modified version
of the model, for fixed F and K, any unbiased estimator of F is conditionally,
given (N,M), unbiased. In particular, the result holds with K = G. But, with
K = G, the conditional distribution of the estimator in the modified version of
the model is the same as the distribution of the estimator in the original model.

Justification for the second result is similar. In the modified version of the
model, let θ̂ be an unbiased estimator of F (t), and let σ̂2 be a consistent es-
timator of the variance of θ̂. Suppose also that the conditional variance of θ̂
does not vary substantially over typical values of (N,M). (Such a stability con-
dition would be achieved, for example, by asymptotically linear variance esti-
mators.) From consistency of σ̂2, it follows that σ̂2 ≈ E{Var{θ̂ |(N,M)}} +
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Var{E{θ̂ |(N,M)}}. From the conditional unbiasedness of θ̂ derived above and
the stability of the conditional variance, the right hand side above may be ap-
proximated by E{Var{θ̂ |(N,M) ≈ E(N,M)}}. And, with H and α given by (3)
and (4), the conditional variance is the variance of θ̂ in the original version of
the model.

4. Estimation

In this section a class of estimators for F , an asymptotic expansion for the
estimators, and standard error calculations are described. The class of estimators
is developed in the context of the modified version of the model. As discussed in
the introduction and in the previous section, estimators developed in the context
of the modified version of the model are valid in the original version of the model.
The estimators depend on arbitrary weight functions. In the next section, optimal
choice of the weights is discussed.

At the core of the estimators proposed here is the Lynden-Bell estimator for
truncated data, F̂LB(t) =

∏
i:Yi=1, Ti≥t(1 − 1/R(Ti)). The Lynden-Bell estimator

is consistent for F0. See, for example, Chen, Chao and Lo (1995).
The class of estimators of F (t) proposed here takes the form F̂ (t)= π̂F̂LB(t)+

π̂
∑n+m

i=1 (Yi −Φ(α̂, π̂, F̂LB(Ai)))γt(Ai), where π̂ and α̂ are the solutions to a pair
of estimating equations 0 =

∑n+m
i=1 (Yi −Φ(α, π, F̂LB(Ai)))β(Ai). Here, β is a two

dimensional column vector of weight functions, and γt is a weight function that
may depend on t.

Before describing the asymptotic expansion of the estimators, some justifi-
cation for the class of estimators in the context of the modified version of the
model is presented. In the modified version of the model, the right hand side of
the estimating equation for π and α, evaluated at the true values of α, π and
F0, has expectation zero. Since F̂LB is consistent for F0, this suggests that the
solutions to the estimating equations should be consistent for π and α. This in
turn suggests that π̂F̂LB(t) should be consistent for F (t). The second addend in
F̂ (t) is included to increase the efficiency of the estimator. Although the second
addend contributes additional variance, it can also contribute negative covariance
with the Lynden-Bell estimator. With a judicious choice of γt, the net effect of
the addend is to reduce the overall variance of the estimator.

Now, turn to an asymptotic expansion for the estimator. The expansion is
derived in the appendix using first order Taylor expansions of the estimator and
of the estimating equation around the true values of F0, α and π, an expansion
of the Lynden-Bell estimator, and substitutions based on law of large numbers
results. The expansion takes the form

F̂ (t) − F (t) ≈
n+m∑
i=1

(Yi − Φ(α, π, F0(Ai))µt(Ai)
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+
∑

i:Yi=1

∫ 0

∞
(dNi(s) − dΛ(s)δi(s))ψt(s),

where µt(a) and ψt(s) are defined by (8) and (9) in the appendix. As derived
in the appendix, the expansion is valid in the original version of the model, if in
the modified version of the model, H and α are interpreted as the values given
by (3) and (4).

Now, the asymptotic expansion is used to develop standard error calcula-
tions. In the modified version of the model, the first addend in the expansion is
a sum of independent identically distributed variables with variance

(n+m)
∫
dH(a)Φ(α, π, F0(a))(1 − Φ(α, π, F0(a)))µ2

t (a). (5)

The variance of the second term is the expected predictable quadratic variation of
the stochastic integral,

∫ 0
∞ dΛ(s)dsER(s)ψ2

t (s). The two terms are uncorrelated,
as the second term has conditional expectation zero given the Yi and the Ai.
In the original version of the model, the first term is not a sum of identically
distributed variables. Nevertheless, as verified in the appendix, if H and α are
interpreted as the values given by (3) and (4), then the variance formula is correct
in the original version of the model.

The formulae for the variances of the two addends in the asymptotic expan-
sion suggest that the variance of F̂ (t) may be consistently estimated by

(n+m)
∫
dĤ(a)Φ(α̂, π̂, F̂ (a)/π̂)(1 − Φ(α̂, π̂, F̂ (a)/π̂))µ̂2

t (a)

+
∫ 0

∞
dΛ̂(s)R(u)ψ̂2

t (s),

where µ̂t(a) and ψ̂t(s) are defined by (10) and (11) in the appendix, Λ̂ is the trun-
cated data version of the Nelson-Aalen estimator, dΛ̂(s) =

∑
i:Yi=1 dNi(s)/R(s),

and Ĥ is the empirical distribution function of the Ai. Bagiella (1997) discusses
regularity conditions for the normalized estimator (n + m)1/2(F̂ (t) − F (t)) to
converge in distribution, as a process in t, to a continuous Gaussian process.

5. Efficiency

This section is concerned with the asymptotic efficiency of the class of esti-
mators. The main result is that it is possible to choose weight functions γt and β
so that F̂ (t) achieves the semiparametric efficiency bound for estimation of F (t).
An approach to estimating the optimal weight functions is also described.

To show that a regular estimator achieves the semiparametric efficiency
bound, it suffices to show that the estimator is asymptotic to an element of the
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tangent space. See, for example, Stein (1956), Newey (1990) or Bickel, Klaassen,
Ritov and Wellner (1993). So, to determine the optimal weight functions it suf-
fices to find weight functions for which the corresponding estimator is in the
tangent space. In the appendix, such weight functions are characterized as the
solution to an integral equation by comparing the form of scores in parametric
submodels to the asymptotic expansion of the estimator.

Although the concern here is with efficiency in the original version of the
model, the following argument shows that it suffices that the estimator be asymp-
totic to an element of the tangent space for the modified version of the model at
K = G. That is, if an estimator is efficient in the context of the modified ver-
sion of the model, then it is efficient when applied in the context of the original
version of the model. Thus, when deriving the integral equations for the optimal
weight functions, the derivation is made in the context of the modifed version of
the model.

From the form of the conditional likelihood in (2), it is apparent that, in the
original version of the model, the derivative of the log-likelihood for the modified
version of the model, along a parametric submodel at K = G, is equal to an
element of the tangent space for the original version of the model plus a term
proportional to

N/ρ−M/(1 − ρ). (6)

The additional term is the derivative of the marginal log-likelihood for the Yi,
and is therefore uncorrelated, at K = G in the modified version of the model,
with the score from the conditional likelihood. It follows that if an estimator is
in the tangent space for the modified version of the model, and if the estima-
tor is uncorrelated with (6), then the estimator is in the tangent space for the
original version of the model. To complete the argument, it is sufficient to show
that asymptotically unbiased estimators in the modified version of the model are
asymptotically uncorrelated with (6). (See, for example, Bickel, Klaassen, Ritov
and Wellner (1993)). But this follows directly from the fact that the correlation
is the derivative with respect to ρ, with F and K fixed, of the expectation of the
estimator.

It is shown in the appendix that equating the form of scores in paramet-
ric submodels with the asymptotic expansion of the estimator results in in-
tegral equations for γt and β: γt(a) = bt(a) +

∫
γt(u)W (a, u)du and β(a) =

(1, F0(a)/[F (a)(1 − F (a))])T +
∫
β(u)W (a, u)du, where W and bt are defined by

(13) and (12) in the appendix. The form of the integral equations suggests es-
timating the optimal weight functions as the solutions to the matrix equation
approximations to the integral equations: γt(a) = b̂t(a) +

∑n+m
i=1 γt(Ai)Ŵ (a,Ai),
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a ∈ {A1, . . . , An+m}, and

β(a) =

 1
F̂ (a)/π̂

F̂ (a)(1−F̂ (a))

+
n+m∑
i=1

β(Ai)Ŵ (a,Ai), a ∈ {A1, . . . , An+m} ,

where Ŵ and b̂t are defined in the appendix in (15) and (14) respectively. See,
for example, Kress (1989).

6. Simulation Results

The results of some simulation experiments that explore the moderate-
sample behavior of the estimator and the efficiency gain over the Lynden-Bell
estimator are reported. With degenerate distributions, the Lynden-Bell estima-
tor is not consistent. So, to compare the proposed estimator to the Lynden-
Bell estimator, attention was restricted to the case where π is known to be
1 and therefore need not be estimated. In this case, the estimator reduces
to F̂ (t) = F̂LB(t) +

∑n+m
i=1 (Yi − Φ(α̂, F̂LB(Ai)))γt(Ai), where α̂ is the solution

to the estimating equation 0 =
∑n+m

i=1 (Yi − Φ(α, F̂LB(Ai)))β(Ai), and the es-
timates of the optimal γt(Ai) and β(Ai) are obtained as solutions of the ma-
trix equations γt(a) = b̂t(a) +

∑n+m
i=1 γt(Ai)Ŵ (a,Ai), a ∈ {A1, . . . , An+m} and

β(a) = 1 +
∑n+m

i=1 β(Ai)Ŵ (a,Ai), a ∈ {A1, . . . , An+m}, where b̂t and Ŵ are
defined as b̂t(a) = F̂0(t)(1 − F̂0(a))[

∫ a∨t
∞ dΛ̂(s)/R(s)] and Ŵ (a, u)du =

F̂0(u)
1 − F̂0(a)

ΦF (α̂, F̂0(u))dĤ(u)
∫ a∨u

∞
dΛ̂(s)
R(s)

.

Fortran and the IMSL subroutine library, (IMSL, Inc. (1991)), were used to
perform the simulations. The survival times Ti and the enrollment times Ai were
randomly generated as Uniform on (0, 1). Cases and controls were sampled sepa-
rately with Ti ≤ Ai for the cases and Ti > Ai for the controls. Three experiments
were carried out, and in each, one thousand replications were computed. In the
first set of replications, there were 200 cases and 200 controls. In the second set
there were 200 cases, and 400 controls. In the third experiment there were 200
cases and 100 controls. Estimates of the survival function were calculated at five
different values of t: 0.10, 0.25, 0.50, 0.75, 0.90.

Results of the three sets of simulations are shown in Tables 1, 2 and 3. The
sample mean and standard deviations of the Lynden-Bell estimator, the new
estimator, the difference, and the sample correlation between the Lynden-Bell
estimator and the difference are tabulated. It may be observed that the estimator
appears reasonably consistent, though apparently with some systematic bias.
The bias is most likely related to the non-linearity of the estimating equations.
The relative efficiency of the estimator relative to the Lynden-Bell estimator
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ranges from negligible to fairly substantial. See, for example, the case t = 0.90
in Table 2. The amount of variance decrease obtained by including the sum
over the case-control portion of the data is linked to the amount of (negative)
correlation between the Lynden-Bell estimator and the sum. This is born out by
the empirical correlations found in the simulations. It should be kept in mind,
perhaps, that the Lynden-Bell estimator is not even consistent for π strictly less
than 1.

Table 1. Mean and standard deviation of FLB, F̂ , and the difference between
the two, and the correlation between the difference and FLB, for n=200,
m=200.

FLB(t) F̂ (t) difference correlation
mean std dev mean std dev mean std dev

t = 0.10 0.10133 0.02129 0.10389 0.02129 0.00256 0.00555 -0.1316
t = 0.25 0.25253 0.03722 0.25799 0.03652 0.00547 0.01090 -0.2100
t = 0.50 0.50029 0.06339 0.50876 0.05693 0.00848 0.02674 -0.4403
t = 0.75 0.75545 0.08095 0.76353 0.06160 0.00808 0.04102 -0.6687
t = 0.90 0.91067 0.07673 0.91866 0.05493 0.00799 0.04023 -0.7271

Table 2. Mean and standard deviation of FLB, F̂ , the difference between the
two, and the correlation between the difference and FLB, for n=200, m=400.

FLB(t) F̂ (t) difference correlation
mean std dev mean std dev mean std dev

t = 0.10 0.10068 0.02037 0.10371 0.02029 0.00303 0.00636 -0.1679
t = 0.25 0.25041 0.03915 0.25798 0.03757 0.00757 0.01637 -0.3039
t = 0.50 0.50506 0.06318 0.51474 0.05729 0.00968 0.02302 -0.4262
t = 0.75 0.75393 0.08085 0.76380 0.06164 0.00987 0.03861 -0.6772
t = 0.90 0.91076 0.07354 0.91877 0.05079 0.00892 0.04277 -0.7405

Table 3. Mean and standard deviation of FLB, F̂ , the difference between the
two, and the correlation between the difference and FLB, for n=200, m=100.

FLB(t) F̂ (t) difference correlation
mean std dev mean std dev mean std dev

t = 0.10 0.10067 0.02024 0.10297 0.01994 0.00778 0.07777 -0.2306
t = 0.25 0.25374 0.03883 0.25844 0.03872 0.00470 0.01660 -0.2204
t = 0.50 0.50128 0.06376 0.50829 0.05755 0.00701 0.02225 -0.4402
t = 0.75 0.75282 0.08357 0.75773 0.06645 0.00491 0.03528 -0.6565
t = 0.90 0.90733 0.07820 0.91418 0.06082 0.00685 0.03705 -0.6538
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7. Discussion

Researchers who wish to compare childhood risk factors with the age at onset
of adult-onset disease must contend with either long follow-up times and large
cohorts, or with difficulties in retrospectively obtaining childhood measurements
from adults. In order to side-step these difficulties, a family based case-control
sampling design may be used in which children’s risk factors are used as surro-
gates for their parents’ childhood values. While the children’s values will gener-
ally not be perfect surrogates, the design represents a practical solution to what
otherwise might be insurmountable difficulties.

Estimation of the distribution of age at onset in the whole sample or when
making sub-group comparisons must contend with the case-control aspect of the
sampling design. In standard case-control data, the usual approach is to assume
a multiplicative intercept model (or to imbed a given model in a multiplicative in-
tercept framework) and then to proceed as if the data had been obtained through
random sampling. This approach allows that the infinite dimensional nuisance
parameter, the distribution of the covariates, need not be estimated. The gen-
eralization of this approach, advocated for the sampling plan considered here,
involves imbedding a portion of the model in a multiplicative intercept frame-
work, leaving the remaining portion of the model unchanged, and then proceeding
as if the data had been obtained through random sampling. The generalization
allows that the infinite dimensional nuisance parameter, the distribution of the
age at enrollment, need not be estimated.

The modified version of the model obtained through the imbedding is not
proposed as the model for the data. It is simply an analytic technique used
to develop estimators. A justification for the technique follows along the same
lines as the justification for using prospective logistic regression likelihoods for
standard case-control data. Similarly, the efficiency of estimators developed in
the context of randomly sampled data from the modified version of the model for
case-control data from the original version of the model may be demonstrated
by a generalization of the efficiency arguments for the result of using prospective
logistic regression likelihoods for standard case-control data.

Here, a family of estimators and standard errors are developed in the context
of prospective data from the modified version of the model. Direct calculations
are used to verify that the estimators and standard errors are unbiased in the
context of case-control data in the original version of the model. It is shown that
a particular member of the class is semi-parametric efficient in the context of the
modified version of the model, and it is shown how the weight functions that
result in the optimal member may be estimated.

Underlying the theory is a correspondence between the modified version of
the model and the original version of the model. For any given point in the
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parameter space of the original model and for any given ratio of the number of
cases to the number of controls, there is a point in the modified version of the
model for which the conditional distribution of the data, given the number of
cases and controls, is the same as the true distribution of the data, and for which
the ratio of the expected number of cases to the expected number of controls
is the same as the true ratio. Furthermore, with randomly sampled data in the
modified version of the model, the numbers of cases and controls are ancillary.
Heuristically, estimators developed in the context of the modified version of the
model when applied to data from the original version of the model estimate the
corresponding parameters. Furthermore, reasonable estimators condition on the
ancillary statistics, the numbers of cases and controls. Thus, estimators for the
modified version of the model are correct for the original version of the model.

The approach to estimation is based on splitting the data into two portions,
a case-control portion and a truncated data portion. The truncated data portion
is used to estimate the conditional distribution of age-at-onset given that onset
occurs. The estimator is then combined with the case-control portion of the data
to estimate the marginal probability that onset occurs. The family of estimators
is obtained by adding a weighted sum of asymptotically unbiased estimators of
zero.
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Appendix

This appendix presents some details about several results. The first of the
results is a derivation of the asymptotic expansion of the estimator in the modified
version of the model. The second verifies that the estimating equation, in the
original version of the model, has expectation zero at α defined by (4). The
third shows that the empirical distribution of the Ai in the original version of the
model has H, defined by (3), for its expectation. It may be observed from the
derivation of the expansion, that the latter two results imply that the expansion
is correct in the orginal version of the model. The fourth result is to verify that
the variance formula is correct in the original version of the model. The fifth is
a derivation of the form of scores in parametric submodels, and the sixth is a
derivation of the integral equations for the optimal weight functions. It will be
useful to adopt the notation Φα,π for the gradient of Φ with respect to its first
two arguments, and ΦF for its derivative with respect to its last.
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To derive the expansion of the estimator, begin by neglecting the remainder
term in a first order Taylor expansion of F̂ (t) − F (t),

π
n+m∑
i=1

(Yi − Φ(α, π, F0(Ai)))γt(Ai)

+π(F̂LB(t) − F0(t)) − π
n+m∑
i=1

(F̂LB(Ai) − F0(Ai))ΦF (α, π, F0(Ai))γt(Ai)

−
(
π

n+m∑
i=1

Φα,π(α, π, F0(Ai))γt(Ai) − (0, F0(t))

)(
α̂− α

π̂ − π

)
.

A similar expansion of the estimating equation leads to(
α̂− α

π̂ − π

)
≈
(

n+m∑
i=1

β(Ai)Φα,π(α, π, F0(Ai))

)−1

(
n+m∑
i=1

(Yi − Φ(α, π, F0(Ai)))β(Ai)

−
n+m∑
i=1

ΦF (α, π, F0(Ai)))β(Ai)(F̂LB(Ai) − F0(Ai))

)
.

Then, substitute and make the law of large numbers approximation(
π

n+m∑
i=1

Φα,π(α, π, F0(Ai))γt(Ai) − (0, F0(t))

)
(

n+m∑
i=1

β(Ai)Φα,π(α, π, F0(Ai))

)−1

≈
(
π

∫
dH(a)Φα,π(α, π, F0(a))γt(a) − (0, F0(t))

)
(∫

dH(a)β(a)Φα,π(α, π, F0(a))
)−1

. (7)

This results in the approximation for the estimator

n+m∑
i=1

(Yi − Φ(α, π, F0(Ai))) (πγt(Ai) −Bβ(Ai))

+ π
(
F̂LB(t) − F0(t)

)
−

n+m∑
i=1

(
F̂LB(Ai) − F0(Ai)

)
(πγt(Ai) −Bβ(Ai)) ΦF (α, π, F0(Ai)),
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where B is given by (7). Finally, making the approximation F̂LB(x) − F0(x) ≈

F0(x)
∑

i:Yi=1

∫
(dNi(s) − dΛ(s)δi(s)ds)

1{s>x}
ER(s)

(see, for example, Andersen et al. (1992)), changing the order of integration and
summation and applying another law of large numbers approximation results in

F̂ (t) − F (t) ∼
n+m∑
i=1

(Yi − Φ(α, π, F0(Ai))µt(Ai)

+
∑

i:Yi=1

∫ 0

∞
(dNi(s) − dΛ(s)δi(s))ψt(s),

where

µt(a) = πγt(a) −Bβ(a), (8)

and ψ(s) =

F0(t)1{s>t} − (n+m)
∫
dH(a)F0(a)1{s>a}µt(a)ΦF (α, π, F0(a))

ER(s)
(9)

Estimates of µt and ψt that may be used in computing standard errors are
given by

µ̂t(a) = π̂γt(a) − B̂β(a) (10)

and

ψ̂t(s) =
F̂ (t)1{s>t}/π̂

R(s)
− (n +m)

∫
dĤ(a)F̂ (a)1{s>a}µ̂t(a)ΦF (α̂, π̂, F̂ (a)/π̂)

R(s)
(11)

where B̂ = (π̂
∑n+m

i=1 Φα,π(α̂, π̂, F̂ (Ai)/π̂)γt(Ai) − (0, F̂ (t)/π̂))(
∑n+m

i=1 β(Ai)Φα,π

(α̂, π̂, F̂ (Ai)/π̂))−1.

Now it is verified that the estimating equation has expectation zero in the
original model.

E

{
n+m∑
i=1

(Yi − Φ(α, π, F0(Ai))) β(Ai)

}

= nE
{(

1 − eαF (A)
1 − F (A) + eαF (A)

)
β(A)

∣∣∣∣ Y = 1
}

+ mE
{(

− eαF (A)
1 − F (A) + eαF (A)

)
β(A)

∣∣∣∣Y = 0
}
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= n

∫ 1 − F (a)
1 − F (a) + eαF (a)

β(a)
F (a)dG(a)∫
F (u)dG(u)

+m
∫ −eαF (a)

1 − F (a) + eαF (a)
β(a)

(1 − F (a))dG(a)∫
(1 − F (u))dG(u)

=
(

n∫
F (a)dG(a)

− meα∫
(1 − F (a))dG(a)

)∫ (1 − F (a))F (a)dG(a)
1 − F (a) + eαF (a)

β(a).

But, the first multiplicand in the last line is 0 by (4).
Now, the validity in the original version of the model of the variance formula

(5) is verified. The conditional distribution of the truncated part of the data is
the same in the original version of the model as in the modified version, so it
suffices to show that, in the original version of the model, with α and H defined
by (4) and (3),

nVar {(Y − Φ(α, π, F0(A))µt(A) | Y = 1}
+mVar {(Y − Φ(α, π, F0(A))µt(A)| Y = 0}

= (n+m)
∫
dH(a)Φ(α, π, F0(a))(1 − Φ(α, π, F0(a)))µ2

t (a).

The argument has two steps. The first step is to show that 0 = E{(Y −
Φ(α, π, F0(A))µt(A) | Y = 1} = E{(Y − Φ(α, π, F0(A))µt(A)| Y = 0}. The sec-
ond step is to compute nE{(Y −Φ(α, π, F0(A))2µ2

t (A)|Y = 1}+mE{(Y −Φ(α, π,
F0(A))2µ2

t (A)|Y = 0}. For the first step, it may be calculated that

E {(Y − Φ(α, π, F0(A))µt(A) | Y = y} =∫
(y − Φ(α, π, F0(a))µt(a)

dG(a)(Φ(α, π, F0(a))y(1 − Φ(α, π, F0(a))1−y∫
dG(u)(Φ(α, π, F0(u))y(1 − Φ(α, π, F0(u))1−y

.

Up to multiplication by a function of y, this quantity is
∫
dG(a)Φ(α, π, F0(a))(1−

Φ(α, π, F0(a)))µt(a). Straightforward but tedious computations starting from the
definitions of µt and B show that this last quantity is zero. For the second step,
it may be calculated that

nE
{
(Y − Φ(α, π, F0(A))2µ2

t (A) | Y = 1
}

+ mE
{(
Y − Φ(α, π, F0(A))2µ2

t (A)| Y = 0
}

= n

∫ ( 1 − F (a)
1 − F (a) + eαF (a)

µt(a)
)2 F (a)dG(a)∫

F (u)dG(u)

+ m

∫ ( −eαF (a)
1 − F (a) + eαF (a)

µt(a)
)2 (1 − F (a))dG(a)∫

(1 − F (u))dG(u)

=
∫ (

meαF (a)∫
(1 − F (u))dG(u)

+
ne−α(1 − F (a))∫

F (u)dG(u)

)
eαF (a)(1 − F (a))

(1 − F (a) + eαF (a))2
µ2

t (a)dG(a)

= (n+m)
∫
dH(a)Φ(α, π, F0(a))(1 − Φ(α, π, F0(a)))µ2

t (a).
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Now, the form of scores for submodels in the modified version of the model
is computed. Because the Ai are ancillary for F in the modified version of the
model, the log conditional likelihood given the Ai is taken as the starting point:

n+m∑
i=1

Yilog(Φ(α, π, F0(Ai))) + (1 − Yi)log(1 − Φ(α, π, F0(Ai)))

+
∑

j:Yj=1

log
(
dF0(Ti)
F0(Ai)

)

=
n+m∑
i=1

Yilog(Φ(α, π, exp(−
∫ Ai

∞
dΛ(s))))

+(1 − Yi)log(1 − Φ(α, π, exp(−
∫ Ai

∞
dΛ(s))))

+
∑

j:Yj=1

∫ Ti

Ai

dΛ(s) + log(dΛ(Ti)).

Differentiating along a parametric submodel, θ −→ (αθ, Fθ), results in

n+m∑
i=1

(Yi − Φ(α, π, F0(Ai)))

(
C +

DF0(Ai) + πF0(Ai)
∫ Ai
∞ dΛ(s)κ(s)

F (Ai)(1 − F (Ai))

)

+
∑

j:Yj=1

∫ 0

∞
(dNi(s) − dΛ(s)δi(s))κ(s),

where κ(s) is the derivative with respect to θ of log(dΛ(s)), C is the derivative
of α and D is the derivative of π.

Finally, a derivation of the integral equations is presented. Matching terms
in the form of scores for parametric submodles and the asymptotic expansion
result in a pair of equations:

µt(a) = C +
DF0(a) + πF0(Ai)

∫ a
∞ dΛ(s)κ(s)

F (a)(1 − F (a))

F0(t)1{s>t} − (n+m)
∫
dH(u)F0(u)1{s>u}µt(u)ΦF (α, π, F0(u))

ER(s)
= κ(s).

Substituting the left hand side of the second equation for κ(s) in the first equation
results in µt(a) = C + DF0(a)

F (a)(1−F (a)) + πbt(a) +
∫
W (a, u)duµt(a), where

bt(a) =
F0(t)F0(a)

F (a)(1 − F (a))

∫ a∨t

∞
dΛ(s)
ER(s)

, (12)
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and W (a, u)du is

−(n+m)F0(u)F0(a)
F (a)(1 − F (a))

dH(u)ΦF (α, π, F0(s))
∫ a∨u

∞
dΛ(s)
ER(s)

. (13)

It follows that it is sufficient for γt and β to satisfy γt(a)=bt(a)+
∫
γt(u)W (a, u)du

and

Bβ(a) =

(
C

DF0(A)
F (a)(1−F (a))

)
+
∫
Bβ(u)W (a, u)du.

Since linear transformations of β leave the estimates of π and α invariant, and
since C and D are arbitrary, the equation for β may be replaced by

β(a) =

(
1

F0(a)
F (a)(1−F (a))

)
+
∫
β(u)W (a, u)du.

Given preliminary estimates, α̃ and π̃ of α and π based on an arbitrary β, esti-
mates of W and bt that may be used in the matrix equation approximation to
the integral equations are given by

b̂t(a) =
F̂ (t)/π̂F̂0(a)
F̂ (a)(1 − F̂ (a))

∫ a∨t

∞
dΛ̂(s)
R(s)

(14)

and

Ŵ (a, u)du =
−(n+m)F̂ (u)/π̂F̂0(a)

F̂ (a)(1 − F̂ (a))
dĤ(u)ΦF (α̂, π̂, F̂ (s)/π̂)

∫ a∨u

∞
dΛ̂(s)
R(s)

. (15)
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