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Abstract: A simple adjusted random imputation method for handling item nonre-

sponse in complex surveys is presented. This method eliminates the imputation

variance of the estimator of a mean or total, and at the same time preserves the

distribution of item values. Jackknife and bootstrap variance estimators that de-

pend only on the reported values in the data file are also proposed. It is necessary

to identify the respondent and imputed values in the data file as well as the im-

putation class. Simulation results on the performance of the proposed method in

estimating a total and distribution function are also presented.

Key words and phrases: Adjusted imputation, bootstrap, hotdeck, jackknife, mean

imputation, stratified multistage sampling.

1. Introduction

Item nonresponse occurs frequently in sample surveys with many items. It
is usually handled by some form of imputation to fill in the missing values. An
advantage of imputation is that the same sampling weight is used for all the
items, unlike the weight-adjustment method which is typically used for unit non-
response. Commonly used imputation methods include deterministic imputation,
such as mean imputation within imputation classes, and stochastic imputation,
such as random imputation within classes. Deterministic imputation eliminates
imputation variance of the estimator of a mean or total, but the distribution of
item values is not preserved. For example, mean imputation leads to a spike at
the point ȳr, the mean of the respondent values. On the other hand, random
imputation preserves the distribution, but leads to imputation variance which
can be a significant component of the total variance if the item response rate is
not high.

In this paper we present a simple adjusted random imputation method that
eliminates the imputation variance of the estimator of a mean or total, and at the
same time preserves the distribution of item values, and in fact estimates of the
distribution function based on the imputed data are shown to remain consistent
and asymptotically normal. Though the method does not entirely eliminate
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imputation variance from the estimated distribution function, it is shown to
significantly reduce it. This method is valid for general stratified multistage
designs. Jackknife and bootstrap variance estimators are also considered. We
assume that the imputed and respondent values are identified in the data file as
well as the imputation class. Uniform response within classes is also assumed;
that is, within an imputation class equal response probabilities on the item y and
independent response across sampled units, but response probabilities can vary
across classes.

Section 2 studies the case of simple random sampling. Results for stratified
multistage designs are given in Section 3. Section 4 reports the results of a
simulation study on the performance of the proposed method in estimating a
total, population variance and distribution function. For simplicity of notation,
we consider only the case of a single imputation class, but the results readily
extend to multiple imputation classes formed on the basis of auxiliary variables
observed on all the sampled units.

2. Simple Random Sampling

To fix ideas, we first consider simple random sampling. Suppose in a simple
random sample, s, of size n, r elements, sr, respond and m elements, sm, do not
respond to an item y. Let y∗i , i ∈ sm be the imputed values for the missing data,
based on the donor set {yi, i ∈ sr}. The imputed estimator of the population
mean Ȳ = (y1 + · · · + yN )/N is then given by

ȳI =
1
n

(
∑
sr

yi +
∑
sm

y∗i ). (2.1)

Note that the same weight, 1/n, is used in (2.1) for all items yi.

2.1. Mean imputation

Mean imputation uses ȳr as the imputed value, i.e., y∗i = ȳr for all i ∈ sm.
In this case ȳI has no imputation variance because y∗i is deterministic given sr.
We have ȳI = ȳr for mean imputation, and it is unbiased for Ȳ under uniform
response.

The sample variance under mean imputation reduces to

s2
yI =

1
n − 1

[
∑
sr

(yi − ȳI)2 +
∑
sm

(y∗i − ȳI)2] =
(

r − 1
n − 1

)
s2
yr,

where s2
yr is the sample variance of respondents. Under uniform response, given

r, the sample of respondent values is a simple random sample of size r from the
finite population. Therefore,

E(s2
yI |r) =

r − 1
n − 1

S2
y

.=
r

n
S2

y , (2.2)
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where S2
y is the population variance. It follows from (2.2) that the sample variance

under mean imputation seriously underestimates S2
y when the response rate, r/n,

is not high, i.e., the variability of item values is understated due to a spike at the
point ȳr.

2.2. Random imputation

Random imputation selects a simple random sample of size m with replace-
ment from sr and then uses the associated y-values as donors, that is, y∗i = yj

for some j ∈ r. We have E∗y∗i = ȳr and E∗ȳI = ȳr, where E∗ is the expectation
under imputation given sr. It follows that ȳI for random imputation is also unbi-
ased under uniform response. But the variance of ȳI , given r, is now larger than
the variance under mean imputation by the factor 1 + p̂q̂, where p̂ = r/n is the
observed response rate and q̂ = 1 − p̂. The relative contribution of imputation
variance is equal to p̂q̂ with a maximum of 25%.

The sample variance, s2
yI , is approximately unbiased for S2

y , so that the
variability of item values is preserved under random imputation.

Rao and Shao (1992) proposed a jackknife variance estimator, vJ , of ȳI

for mean or random imputation which is approximately design-unbiased. It is
calculated in the usual way except that, whenever a respondent j ∈ sr is to
be deleted, each of the imputed values, y∗i , is adjusted by an average amount
E

(j)
∗ y∗i −E∗y∗i = ȳr(j)− ȳr to reflect the fact that the donor set is changed, where

ȳr(j) = (rȳr −yj)/(r−1) and E
(j)
∗ is the imputation expectation when the donor

set excludes respondent j. The imputed values, y∗i , remain unchanged whenever
a nonrespondent, j ∈ sm, is to be deleted because the donor set is unchanged.
Note that we need identification flags to locate observed and imputed values in
the data file and compute ȳa

I (j), the imputed estimator based on the respondent
values and the modified imputed values, for j ∈ sr and j ∈ sm.

The jackknife variance estimator of ȳI is given by

vJ =
n − 1

n

n∑
j=1

[ȳa
I (j) − ȳI ]

2 .=
1
n

(s2
yI − s2

yr) +
s2
yr

n
(1 + p̂q̂). (2.3)

For mean imputation, y∗i = ȳr, we have ȳa
I (j) = ȳr(j) for j ∈ sr and ȳa

I (j) = ȳr

for j ∈ sm.

2.3. Adjusted random imputation

The proposed adjusted random imputation simply uses ỹi = ȳr + (y∗i − ȳ∗m)
as imputed values in the data file instead of y∗i for i ∈ sm, where ȳ∗m is the mean
of y∗j for j ∈ sm, obtained from random imputation. The imputed estimator is
then given by

ȳI =
1
n

(
∑
sr

yi +
∑
sm

ỹi). (2.4)
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We can also express ỹi in terms of the residuals ε∗i = y∗i −ȳr as ỹi = ȳr+(ε∗i −ε̄∗m) =
ȳr+ ε̃i, where ε̄∗m is the mean of ε∗j for j ∈ sm. The imputed estimator, ȳI , reduces
to ȳr, noting that

∑
sm

ε̃i = 0. Therefore, imputation variance is eliminated by
using ỹi instead of y∗i for i ∈ sm.

The sample variance under adjusted random imputation, viz.,

s2
yI =

1
n − 1

[
∑
sr

(yi − ȳI)2 +
∑
sm

(ỹi − ȳI)2],

is approximately unbiased for S2
y , noting that E∗s2

yI = s2
yr. Therefore, the vari-

ability of item values is preserved under adjusted imputation.
Turning to jackknife variance estimation, we first note that y∗i is modified to

z∗i (j) = y∗i + ȳr(j)− ȳr if j ∈ sr is deleted, and it remains unchanged if j ∈ sm is
deleted, i.e., z∗i (j) = y∗i . Therefore, if j ∈ sr is deleted ỹi should be changed to

z̃i(j) = ȳr(j) + {z∗i (j) − 1
m

∑
i∈sm

z∗i (j)} = ỹi − 1
r − 1

(yj − ȳr), j ∈ sr. (2.5)

Similarly, if j ∈ sm is deleted ỹi should be changed to

z̃i(j) = ȳr +{z∗i (j)− 1
m − 1

∑
i�=j;i∈sm

z∗i (j)} = ỹi +
1

m − 1
(ỹj − ȳr), j ∈ sm. (2.6)

It is important to note that the adjusted values z̃i(j) given by (2.5) and (2.6)
depend only on the reported values in the data file, viz., yi, i ∈ sr and ỹi, i ∈ sm.

Denote the imputed estimator based on the respondent values yi and the
modified imputed values z̃i(j) as ȳa

I (j) for j ∈ sr and j ∈ sm. The jackknife
variance estimator, vJ , is again given by (2.3) using these ȳa

I (j)-values and ȳI

given by (2.4). It is readily seen that ȳa
I (j) = ȳr(j) for j ∈ sr and ȳa

I (j) = ȳr for
j ∈ sm, so that vJ is identical to the jackknife variance estimator under mean
imputation. This equivalence implies that vJ under adjusted random imputation
is approximately design-unbiased.

2.4. Distribution function

The population distribution function is given by FN (t) =
∑

j I(yj ≤ t)/N ,
where I(·) is the usual indicator function. The imputed estimator, F̂I(t), is
simply obtained from (2.1) by changing yi for i ∈ sr to I(yi ≤ t) and y∗i for
i ∈ sm to I(y∗i ≤ t). Similarly, for the adjusted imputation we change yi for
i ∈ sr to I(yi ≤ t) and ỹi for i ∈ sm to I(ỹi ≤ t). Appendix 1 part (a)
proves that the resulting estimator, F̃I(t), is consistent while Appendix 1 part
(b) proves its asymptotic normality. The imputation variance is not completely
eliminated in estimating FN (t) by the proposed method, but simulation results in
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Section 4 indicate significant reduction in mean squared error (MSE) relative to
random imputation. Appendix 1 part (c) gives a few cases where this reduction in
variance is certain, the most important of these being when the finite population
is generated from a normal superpopulation.

It is quite difficult to understand how one might adjust the jackknife in this
situation, since deleting a respondent will affect the ỹi values inside the indicators
as well as the number of indicators in the sum. Instead we consider the bootstrap
method of Shao and Sitter (1996). This method is quite general and could be
used for estimating the variance of ȳI in Section 2.3 if desired. However, the
jackknife is more stable for means and totals. We describe and investigate the
performance of the bootstrap via simulation in Section 4.

It may be noted that F̂I(t) for mean imputation will be seriously biased due
to a spike at the point I(y∗i = ȳr ≤ t).

Sarndal (1992) suggested adjusted random imputation similar to ours under
a model-assisted approach, but he did not consider its advantages in eliminating
imputation variance while preserving the distribution of item values, nor did he
study variance estimators that depend only on the reported values in the data
file.

3. Stratified Multistage Sampling

Consider now the case of stratified multistage surveys. We restrict to designs
in which the first-stage units or clusters are selected with replacement or are
so treated for variance estimation, with independent subsamples taken within
clusters which are selected more than once. Suppose nh clusters are selected
with probabilities phi with replacement or with inclusion probabilities πhi = nhphi

independently in each stratum. In the case of complete response on item y, let
Ŷh =

∑nh
i=1 Ŷhi/(nhphi) be a linear unbiased estimator of the stratum total Yh,

where Ŷhi is a linear unbiased estimator of the stratum total Yhi for a selected
cluster based on sampling at the second and subsequent stages. A linear unbiased
estimator of the total Y =

∑
Yh is given by Ŷ =

∑
Ŷh which may be written as

Ŷ =
∑

(hik)∈s

whikyhik, (3.1)

where s is the total sample of elements, and whik and yhik respectively denote
the sampling weight and the item value attached to the (hik)th sampled element
(k = 1, . . . , nhi; i = 1, . . . , nh;h = 1, . . . , L).

To construct a jackknife variance estimator of Ŷ , we need to recalculate the
weights whik each time a sample cluster gj is deleted (j = 1, . . . , ng;h = 1, . . . , L).
This is done in a straightforward manner as follows: whik(gj) = whikbgj , where
bgj = 0 if (hi) = (gj); = ng/(ng − 1) if h = g and i �= j; = 1 if h �= g. Replacing
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whik by the jackknife weights whik(gj) in (3.1) we get Ŷ(gj), and the jackknife
variance estimator is given by

vJ =
L∑

g=1

ng − 1
ng

ng∑
j=1

(Ŷ(gj) − Ŷ )2. (3.2)

Suppose now that a subsample sm of elements do not respond on item y, and
we impute the values y∗hik for the missing data based on respondents (donors) sr.
The imputed estimator of Y is then given by

ŶI =
∑
sr

whikyhik +
∑
sm

whiky
∗
hik. (3.3)

Note that the same weight whik is used in (3.3) for all items y attached to the
(hik)th sample element.

For jackknife variance estimation under imputation, we need to adjust y∗hik

by an average amount E
(gj)
∗ y∗hik − E∗y∗hik, where E∗ denotes expectation with

respect to imputation given sr, and E
(gj)
∗ denotes expectation with respect to

imputation when the donor set is modified by excluding the respondents from
sample cluster gj. The adjusted imputed values reflect the fact that the donor
set is changed when a sample cluster is deleted. Denote the imputed estimator as
Ŷ a

I(gj) when whik in (3.3) is replaced by whik(gj) and y∗hik by the adjusted imputed

value y∗hik + E
(gj)
∗ y∗hik − E∗y∗hik = z∗hik(gj). The jackknife variance estimator is

then given by (3.2) with Ŷ(gj) changed to Ŷ a
I(gj) and Ŷ to ŶI :

vJ =
L∑

g=1

ng − 1
ng

ng∑
j=1

(Ŷ a
I(gj) − ŶI)2. (3.4)

3.1. Mean imputation

Mean imputation uses Ŝ/T̂ =
∑

sr
whikyhik/

∑
sr

whik as the imputed value,
i.e. y∗hik = Ŝ/T̂ for all (hik) ∈ sm. In this case ŶI reduces to

ŶI = (Ŝ/T̂ )Û , (3.5)

where Û =
∑

s whik. This ratio estimator has no imputation variance and is
approximately unbiased under uniform response. Note (Ŝ/T̂ )Û is the weight-
adjusted estimator Ŷw.

For mean imputation, z∗hik(gj) = Ŝ(gj)/T̂(gj), where Ŝ(gj) and T̂(gj) are ob-

tained from Ŝ and T̂ using whik(gj) instead of whik. In this case Ŷ a
I(gj) reduces

to [Ŝ(gj)/T̂(gj)]Û(gj), where Û(gj) is given by Û with whik changed to whik(gj). It
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follows from Rao and Shao (1992) that the jackknife variance estimator, vJ , is
design-consistent under uniform response.

As in the case of simple random sampling, mean imputation does not preserve
the distribution of item values due to a spike at the point Ŝ/T̂ .

3.2. Random imputation

Random imputation selects the donors (gjl) ∈ sr with replacement with
probabilities whik/T̂ and uses y∗hik = ygjl to get ŶI . In this case E∗ŶI = (Ŝ/T̂ )Û ,
the estimator under mean imputation. The variance of ŶI is larger than the
variance under mean imputation because of the random imputation. However,
it preserves the distribution of item values.

The adjusted imputed values for random imputation are given by z∗hik(gj) =

y∗hik +Ŝ(gj)/T̂(gj)−Ŝ/T̂ . The resulting jackknife variance estimator, vJ , is design-
consistent under uniform response (Rao and Shao (1992)).

3.3. Adjusted random imputation

The proposed adjusted random imputation simply uses

ỹhik = Ŝ/T̂ + (y∗hik −
∑
sm

whiky
∗
hik/

∑
sm

whik) (3.6)

as imputed values in the data file instead of y∗hik for (hik) ∈ sm, where y∗hik are
the imputed values under random imputation. We may also express ỹhik in terms
of the residuals ε∗hik = y∗hik − Ŝ/T̂ as ỹhik = Ŝ/T̂ + (ε∗hik − ε̄∗m) = Ŝ/T̂ + ε̃hik,
where ε̄∗m =

∑
sm

whikε
∗
hik/

∑
sm

whik. The imputed estimator is given by

ỸI =
∑
sr

whikyhik +
∑
sm

whikỹhik (3.7)

which reduces to (3.5), the estimator under mean imputation, noting that∑
sm

whikε̃hik = 0. Therefore, the method preserves the distribution of item
values, but imputation variance is eliminated by using ỹhik instead of y∗hik for
(hik) ∈ sm. Note that the same weight whik is used for all item values y.

Turning to jackknife variance estimation, we first note that y∗hik is modified
to z∗hik(gj) = y∗hik + Ŝ(gj)/T̂(gj) − Ŝ/T̂ if the (gj)th sample cluster is deleted.
Therefore ỹhik should be changed, using the jackknife weights whik(gj), to

z̃hik(gj) = Ŝ(gj)/T̂(gj) + (z∗hik(gj) −
∑
sm

whik(gj)z
∗
hik(gj)/

∑
sm

whik(gj))

= Ŝ(gj)/T̂(gj) + ỹhik −
∑
sm

whik(gj)ỹhik/
∑
sm

whik(gj). (3.8)
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The form (3.8) follows from (3.6). Note that (3.8) depends only on the item
values reported in the data file, i.e., yhik, (hik) ∈ sr and ỹhik, (hik) ∈ sm. It
now follows from (3.8) that Ỹ a

I(gj) =
∑

sr
whik(gj)yhik +

∑
sm

whik(gj)z̃hik(gj) =

[Ŝ(gj)/T̂(gj)]Û(gj), which is identical to Ŷ a
I(gj) for mean imputation. The jackknife

variance estimator, vJ , is given by (3.2) with Ŷ(gj) changed to Ỹ a
I(gj) and Ŷ to

ỸI . Since vJ is algebraically equivalent to vJ for mean imputation, it now follows
that the jackknife variance estimator for adjusted random imputation is also
design-consistent under uniform response.

3.4. Distribution function

The population distribution function is estimated by F̂N (t) =
∑

s whikI(yhik

≤ t)/
∑

s whik, in the case of complete response. The numerator of the imputed
estimator F̂I(t) is simply obtained from (3.3) by changing yhik for (hik) ∈ sr

to I(yhik ≤ t) and y∗hik for (hik) ∈ sm to I(y∗hik ≤ t) for mean and random
imputation; the denominator remains unchanged. Similarly, for the adjusted
random imputation we change yhik for (hik) ∈ sr to I(yhik ≤ t) and ỹhik for
(hik) ∈ sm to I(ỹhik ≤ t) to get F̃I(t). The imputed estimator can be seriously
biased for mean imputation due to a spike at the point I(y∗hik = Ŝ/T̂ ≤ t). On the
other hand, it is approximately unbiased for random imputation under uniform
response. Appendix 2 proves consistency and asymptotic normality of F̃I(t)
for adjusted random imputation under some regularity conditions. Simulation
results in Section 4 verify that the relative bias is generally small for finite sample
size. The imputation variance is not completely eliminated in estimating F (t)
by the proposed method, but simulation results in Section 4 indicate significant
reduction in MSE relative to random imputation.

The jackknife variance estimator of F̂I(t) for random imputation is obtained
from (3.2) by changing Ŷ(gj) and Ŷ to F̂ a

I(gj)(t) and F̂I(t), where F̂ a
I(gj)(t) is cal-

culated by using indicator variables I(yhik ≤ t) for (hik) ∈ sr and I(y∗hik ≤ t)
for (hik) ∈ sm in the formula for Ŷ a

I(gj) and then dividing by
∑

s whik(gj). This
jackknife variance estimator for random imputation is design-consistent under
uniform response, following Rao and Shao (1992). It is difficult to understand
how one might obtain an adjusted jackknife for F̃I(t) for adjusted random impu-
tation. Instead we consider the bootstrap method of Shao and Sitter (1996) which
is applicable to stratified multi-stage sampling. Simulation results in Section 4
indicate that the bootstrap variance estimator of F̃I(t) performs well.

4. Simulation Study

In this section we compare the proposed adjusted hot deck imputation
method to the usual hot deck imputation method through a limited simula-
tion. We first generated a finite population similar to that given in Hansen
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and Tepping (1985) in the National Assessment of Educational Progress Study.
The population consisted of L = 32 strata, with Nh clusters in stratum h and
Mh = 10 ultimate units in each cluster. To create the population of yhik, we
first generated yhi i.i.d. with E(yhi) = µh and V (yhi) = v2

h for h = 1, . . . , L and

i = 1, . . . , Nh and then independently generated uhik
iid∼ N(0, σ2

uh), k = 1, . . . , 20
with σ2

uh = (1 − ρ)v2
h/ρ and ρ > 0. We considered both a normal distribution

for the yhi and a shifted gamma distribution. The results using the normal and
shifted gamma were qualitatively the same and thus only the results for the nor-
mal are presented. The ultimate units are then defined by yhik = yhi+uhik. Note
that V (yhik) = v2

h/ρ. The parameter values for the finite population are given in
Table 1.

Table 1. Parameters of the finite population.

h Nh µh vh h Nh µh vh

1 13 200 20.0 2 16 175 17.5
3 20 150 15.0 4 25 190 19.0
5 25 165 16.5 6 25 190 19.0
7 25 180 18.0 8 28 170 17.0
9 28 160 16.0 10 28 180 18.0

11 31 170 17.0 12 31 160 16.0
13 31 150 15.0 14 31 180 18.0
15 31 170 17.0 16 31 160 16.0
17 31 150 15.0 18 31 140 14.0
19 31 130 13.0 20 34 120 12.0
21 34 110 11.0 22 34 100 10.0
23 34 150 15.0 24 37 125 12.5
25 37 100 10.0 26 37 150 15.0
27 37 125 12.5 28 39 100 10.0
29 39 75 7.5 30 42 75 7.5
31 42 75 7.5 32 42 75 7.5

To obtain a sample, we drew a simple random sample with replacement of
size nh = 2 clusters from stratum h. Whenever a cluster is selected, all of the
ultimate units within the cluster were selected. Thus the total sample is of size
n = 32 · 2 · 10 = 640. Independent uniform(0,1) random variables rhik were
generated for each (hik). If rhik is less than or equal to the chosen response rate,
then (hik) ∈ sr, otherwise (hik) ∈ sm.

We then considered two methods of imputation, random imputation as de-
scribed in Section 3.2 and the proposed adjusted random imputation method as
described in Section 3.3. In this setting whik = Nh/nh = Nh/2.
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4.1. Population total

For each ρ and response rate combination, the finite population was created
and A = 10, 000 independent stratified cluster samples were drawn with obser-
vations missing at random as described above. The missing values were imputed
using random imputation and adjusted random imputation and estimated totals
were calculated for each, yielding ŶI and ỸI respectively. Note that mean impu-
tation would yield the same estimated total as adjusted random imputation and
is thus excluded. The simulated percentage relative bias and mean square error
of each estimator θ̂ were calculated as

RB(θ̂) = 100 ∗ (θ̄(·) − θ)/θ (4.1)

and

MSE(θ̂) =
1
A

A∑
a=1

{θ̂(a) − θ}2, (4.2)

where θ̄(·) =
∑

a θ̂(a)/A and θ̂(a) is the value of the particular estimate θ̂ of θ for
the a-th simulation run. To compare random imputation to adjusted random
imputation we also calculated relative efficiencies RE(ỸI) = MSE(ỸI)/MSE(ŶI)
and RE(vJ (ỸI)) = MSE(vJ (ỸI))/MSE(vJ(ŶI)). Table 2 gives the RB and RE of
ỸI for various values of response rate and ρ. One can see that the RB is negligible
in all cases and that by eliminating the variation due to random imputation, the
proposed adjusted random imputation method reduces the MSE by as much as
20% depending on the correlation and the response rate. The gains increase as
the response rate decreases and as ρ decreases.

Table 2. RB and RE for ỸI .

RB (in %) RE

Corr. Response Rate Response Rate
ρ .5 .6 .7 .8 .5 .6 .7 .8

.10 0.02 -0.03 0.03 0.02 0.79 0.79 0.82 0.85

.30 0.02 -0.02 0.02 0.02 0.81 0.80 0.82 0.85

.50 0.02 -0.02 0.02 0.02 0.81 0.81 0.82 0.85

In a similar fashion, we investigated the performance of the jackknife variance
estimator of ỸI in each case as presented in Table 3. The absolute percentage
relative biases of the jackknife variances estimator of ỸI were less than 2.7% in all
cases and less than 1% in most cases. Table 3 also illustrates that the jackknife
variance estimator of ỸI leads to significantly smaller MSE, as is demonstrated
by RE ranging between 0.63 and 0.75.
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Table 3. RB and RE for vJ (ŶI)).

RB (in %) RE

Corr. Response Rate Response Rate
ρ .5 .6 .7 .8 .5 .6 .7 .8
.10 0.46 0.00 2.65 -1.00 0.63 0.65 0.69 0.73
.30 -0.68 0.99 2.00 -0.68 0.66 0.67 0.69 0.74
.50 -1.04 1.42 1.51 -0.74 0.67 0.68 0.69 0.75

4.2. Distribution function

The same set of simulations were used to investigate the performance of
estimators of the population distribution function, F (t), for various values of
t corresponding to fixed percentiles. The weight adjustment estimator, F̂W (t),
mean imputation estimator, F̂M (t), random imputation estimator, F̂I(t), and
adjusted random imputation estimator, F̃I(t), were all considered; note that
F̂W (t) is obtained from ŶW by changing yhik to I(yhik ≤ t). The simulated
percentage relative biases and mean square errors were obtained using (4.1) and
(4.2) with θ̂ replaced by F̂ (t) and θ by F (t).

Table 4 shows that the percentage relative biases of F̃I(t) were less than 1%
in all cases. This was not the case for F̂M (t) as the “spike” at Ŝ/T̂ induces large
biases for some values of t, as high as 20-50%. These are not presented to save
space. Table 4 also shows that F̃I(t) yields significant reductions in MSE relative
to F̂I(t) as demonstrated by RE as low as 0.85.

We also investigated the performance of the bootstrap variance estimator of
Shao and Sitter (1996) in a few cases. This method selects bootstrap samples
of units i ∈ s using any bootstrap which is consistent for complete response.
The respondents in each bootstrap sample are then used to re-impute the non-
respondents using the same imputation method as in the original sample. In our
case, we selected n∗

h = nh − 1 clusters with replacement from the nh clusters in
each stratum and then used random imputation from the bootstrap donors. This
procedure is repeated large number of times, B, and the variance of F̃I(t) is esti-

mated by vB = B−1∑B
b=1(F̃

(b)
I − ¯̃F

(·)
I )2, where F̃

(b)
I is the estimated distribution

function using the bth re-imputed bootstrap sample and ¯̃F
(·)
I =

∑
b F̃

(b)
I /B. It is

important with this re-imputed bootstrap method to use ¯̃F
(·)
I in vB instead of, as

is commonly done, F̃I(t) itself (see Saigo, Shao and Sitter (1999) for discussion on
this point). We should also note that under random imputation, when nh’s are
small (i.e. nh = 2) this method has a positive bias since the size of the bootstrap
sample which is used to re-impute is smaller (half the size when nh = 2), than
the original sample. Methods to adjust the bootstrap to correct this bias in a
general setting are being considered.
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Table 4. RB and RE for F̃I(t).

RB (in %) RE

Corr. Response Rate Response Rate
ρ F (t) .5 .6 .7 .8 .5 .6 .7 .8
.10 .0625 0.29 0.23 -0.14 -0.12 0.97 0.95 0.96 0.95

.2500 -0.19 -0.05 -0.10 -0.13 0.90 0.90 0.90 0.91

.5000 -0.10 0.04 -0.04 -0.03 0.85 0.85 0.86 0.89

.7500 -0.03 0.03 -0.02 -0.03 0.86 0.87 0.89 0.91

.9375 -0.04 0.06 0.01 0.02 0.92 0.91 0.93 0.94
.30 .0625 0.40 -0.08 -0.26 -0.03 0.99 0.97 0.97 0.97

.2500 -0.54 -0.21 -0.29 -0.33 0.89 0.89 0.89 0.90

.5000 -0.11 0.07 -0.06 0.04 0.86 0.86 0.87 0.89

.7500 0.04 0.09 0.05 0.05 0.89 0.89 0.90 0.92

.9375 0.02 0.05 0.00 -0.01 0.94 0.94 0.96 0.97
.50 .0625 -0.03 -0.49 -0.60 -0.30 1.00 0.98 0.98 0.98

.2500 -0.29 -0.01 -0.13 -0.25 0.90 0.89 0.89 0.91

.5000 -0.25 -0.12 -0.12 0.00 0.86 0.87 0.87 0.90

.7500 0.01 0.08 0.02 0.02 0.91 0.91 0.92 0.93

.9375 0.02 0.05 -0.02 -0.01 0.95 0.95 0.97 0.97

Investigation of the performance of vB(F̃I) was done through a separate
simulation. The true MSE of F̃I(t) was obtained from a simulation of 50,000
runs. Then an independent simulation of A = 5, 000 runs using B = 2, 000
bootstrap samples was performed.

Table 5 illustrates that for nh = 2, moderate range of F (t) and all ρ, response
rate combinations the bootstrap variance estimator has small relative bias. How-
ever for extreme values of F (t) when ρ and the response rate are both small, the
bootstrap variance estimator of F̃I(t) yields larger relative biases. To investigate
this further, we increased the sample size to nh = 4 in each stratum. We see
from Table 5 that the perfromance is greatly improved.

5. Concluding Remarks

A simple adjusted random imputation method for the case of item nonre-
sponse in complex surveys was proposed. It removes imputation variance of es-
timated means and totals while preserving the distribution of items. In addition
it reduces the imputation variance in estimated distribution functions.

There have been other attempts to reduce imputation variance in the liter-
ature. The review paper by Brick and Kalton (1996, Sec. 2.1.4) gives a good
discussion of methods for reducing imputation variance. In the context of simple
random sampling, Kalton and Kish (1984) suggested that donors may be selected
by stratified sampling within imputation class or by systematic sampling from a
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list of respondents ordered by their y-values. They noted that by stratifying on
y the procedure can be very effective in reducing imputation varaince. However,
it is not clear how one extends these methods to the case of stratified multistage
sampling with unequal weights.

Table 5. The RB (in %) of vB for F̃I(t).

nh = 2 nh = 4
Resp Corr ρ Corr ρ

rate F (t) .1 .3 .5 .1 .3 .5
.60 .0625 17.2 10.5 8.6 6.5 5.6 5.3

.2500 11.7 10.9 8.9 3.2 5.9 5.7

.5000 10.0 8.8 8.5 3.7 2.3 2.8

.7500 10.9 8.2 7.4 5.0 3.6 1.8

.9375 16.8 12.9 10.8 6.2 3.3 2.9
.80 .0625 10.2 6.6 4.4 4.3 4.7 4.2

.2500 6.8 6.4 5.0 2.3 1.8 0.0

.5000 4.4 4.0 3.2 3.6 1.4 1.0

.7500 6.7 5.4 4.3 2.1 1.4 0.8

.9375 11.7 8.2 5.4 3.3 1.7 1.2

Another approach is to use fractional imputation which involves dividing re-
spondent’s values into parts and imputing separately to each part (Fay (1996);
Kalton and Kish (1984)). This is similar to multiple imputation (Rubin (1987))
which also reduces imputation variance. However, both these methods are oper-
ationally less convenient than single imputation.
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Appendix 1. Asymptotic Properties of F̃I(t) for SRSWOR

In Appendix 1, we study asymptotic properties of the estimator of the distri-
bution function using the proposed adjusted hot deck imputation method under
simple random sampling without replacement. We assume that there is a se-
quence of sampling designs and a sequence of finite populations, indexed by ν.
The sample size nν and the population size Nν approach infinity as ν → ∞. We
also assume uniform response and that the size, mν , of the non-respondent set
sm satisfies mν/nν → α < 1. All limiting processes are understood to be as
ν → ∞, but the index ν is suppressed to simplify notation.
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(a) Consistency of F̃I(t)

Condition 1. As N → ∞: S2
y goes to a positive constant limit; there exists a cdf

F (t) with continuous density function f(t) such that |FN (t) − F (t)| = o(1); and
for any aN = o(1), sup|δ|≤aN

|[FN (t+ δ)−FN (t)]− [F (t+ δ)−F (t)]| = o(N−1/2).

Theorem 1. Under Condition 1, F̃I(t) is consistent.

Proof. Rewrite ỹi = y∗i − an for i ∈ sm, where an = (ȳ∗m − ȳr) will be refered
to as the adjustment factor. If we then let Fr(t) and F ∗

m(t) be the empirical cdf
based on yi, i ∈ sr and y∗i , i ∈ sm respectively, F̃I(t) = (r/n)Fr(t)+(m/n)F ∗

m(t+
an).

(i) m/n → 0. The consistency of F̃I(t) is a consequence of the consistency of
Fr(t).

(ii) m/n → α, where 0 < α < 1. It is simple to verify that |F ∗
m(t) − Fr(t)|,

|Fr(t) − FN (t)| and |FN (t) − F (t)| all converge to 0, which in turn implies
that |F ∗

m(t)−F (t)| → 0. Since F (t) is a continuous cdf, we further conclude
that supt |F ∗

m(t) − F (t)| → 0, and as a result,

|F ∗
m(t + an) − F (t + an)| → 0. (A.1)

By the finiteness of the limit of S2
y , an = op(1). Consequently, by the continuity

of F (t), F (t + an) − F (t) = op(1), which together with (A.1) implies the result.

(b) Asymptotic normality of F̃I(t)

Let Hm(a) = |[F ∗
m(t+a)−F ∗

m(t)]− [Fr(t+a)−Fr(t)]|, and Hr(a) = |[Fr(t+
a) − Fr(t)] − [FN (t + a) − FN (t)]|.
Lemma 1. Under Condition 1, (i) Hm(an) = op(m−1/2) and (ii) Hr(an) =
op(m−1/2), where an is the adjustment factor.

The proofs of both (i) and (ii) are similar to the proof of Lemma 1 in Chen
and Shao (1999). Thus, they are omitted.

Theorem 2. Under Condition 1, F̃I(t) is AN(FN (t), σ̃2
n) with

σ̃2
n = (1 − r

N
){(r−1 + n−2m)FN (t)[1 − FN (t)] + n−2m[f2(t)σ2

N + 2CN (t) f(t)]},
(A.2)

where CN (t) = N−1∑N
i=1(yi − ȲN )I(yi ≤ t).

Proof. First, note that F ∗
m(t + an) − F ∗

m(t) = Fr(t + an)− Fr(t) + op(m−1/2) =
FN (t+an)−FN (t)+op(m−1/2) = f(t)an+op(m−1/2) by Lemma 1 and Condition 1.
It then follows that F̃I(t) = r

nFr(t)+ m
n F ∗

m(t)+ m
n [F ∗

m(t+an)−F ∗
m(t)] = r

nFr(t)+
m
n F ∗

m(t)+ m
n f(t)[an + op(m−1/2)]. The remainder of the proof is straightforward.
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(c) Situations where F̃I(t) will outperform F̂I(t)

Note that the first term in (A.2) is the variance of F̂I(t). Therefore,the
asymptotic variance of F̃I(t) will be smaller than that of F̂I(t) when f(t)σ2

N +
2CN (t) < 0. To shed some light on when this might be true, let us consider two
simple situations:

(i) If the finite population itself was an iid sample from a standard normal
distribution (super-population), then f(t) + 2cov(Y, I(Y ≤ t)) .= −f(t),
and thus F̃I(t) would have smaller asymptotic variance than F̂I(t). This
generalizes to any normal population.

(ii) If the finite population were generated as an iid sample from a gamma dis-
tribution instead with density f(t) ∝ td−1e−t, then f(t)σ2

N + 2cov(Y, I(Y ≤
t)) = (d − 2t)f(t) and there would be a gain in precision when t > d/2.

Appendix 2. Asymptotic Properties of F̃I(t) for Stratified Multistage
Sampling

Let us first develop some necessary notation. Let S̃ = N−1Ŝ, Ũ = N−1Û ,
T̃ = N−1T̂ , Ṽ = N−1∑

(hik)∈sm
whikI(yhik ≤ t), ahik = 1 when (hik) ∈ sr and 0

otherwise, and n =
∑

h nh.
Let us also denote Fr(t) = Ŝ−1∑

sr
whikI(yhik ≤ t) and Fm(t) = T̂−1

m

∑
sm

whikI(y∗hik ≤ t), where T̂−1
m =

∑
sm

whik. The adjustment factor then becomes
an = T̂−1

m

∑
sm

whiky
∗
hik− Ŝ−1∑

sr
whikyhik and the adjusted imputation estimate

of the distribution function can be rewritten as F̃I(t) = WrFr(t)+WmFm(t+an),
where Wr = Û−1Ŝr and Wm = Û−1T̂m.

We assume the first stage units are sampled with replacement and we need
the following additional conditions similar to those introduced in Rao and Shao
(1992).
Condition 2. n1+δ∑∑

E|r̃(l)
hi − Er̃

(l)
hi |2+δ = O(1) for l = 1, 2, 3, 4 as n → ∞,

where r̃
(l)
hi = N−1∑

k whikỹ
(l)
hik, y

(1)
hik = ahikyhik, y

(2)
hik = ahik, y

(3)
hik = ahikI(yhik ≤ t)

and y
(4)
hik = 1.

Condition 3. n× (covariance matrix of S̃, Ũ , T̃ , Ṽ ) converges to a positive
definite matrix as n → ∞.

Condition 4. maxh,i
∑

k w̃hik = O(n−1), where w̃hik = whik/N .

Condition 5.
∑∑∑

w̃hik|yhik − Ȳ |2+δ = Op(1).

Theorem 3. Under Conditions 1-5, we have F̃I(t) = WrFr(t) + WmFm(t) +
Wmf(t)an + op(n−1/2). Therefore, F̃I(t) is consistent and AN(FN (t), σ̃2) with
σ̃2 = V ar(WrFr(t) + WmFm(t) + Wmf(t)an).
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Proof. The first part is a direct consequence of Lemma 2, below. As all com-
ponents in the expansion of F̃I(t) are sums of independent random variables,
the asymptotic normality is then straightforward by using Slutsky’s theorem and
Rao and Shao (1992).

Lemma 2. Under Conditions 1-5, Fm(t + an) − Fm(t) = f(t)an + op(m−1/2).

Proof. Note that WmFm(t) − WmFm(t′) = T̂−1
m

∑
h,i

∑
j whijI(t′ < y∗hij ≤ t)

and
∑

j whijI(t′ < y∗hij ≤ t) are independent random variables for different h

or i with upper bound ∆ = maxh,i
∑

j whij. Also,
∑

h,i V ar{whijI(t′ < y∗hij ≤
t)} ≤ ∑

h,i E[w2
hijI(t′ < y∗hij ≤ t)] ≤ N [FN (t) − FN (t′)]∆. Using Bernstein’s

inequality, we have P (T̂m|WmFm(t) − WmFm(t′) − E[WmFm(t) − WmFm(t′)]| ≥
nz) ≤ 2 exp(− n2z2

2N∆[FN (t)−FN (t′)]+2nz∆/3). Recall that ∆ = O(Nn−1) by Condition
4. Thus, by choosing z′ = (nz)/N and ignoring constant factors, the right hand
side becomes

exp

(
− nz′2

[FN (t) − FN (t′)] + z′

)
,

and when |t′ − t| ≤ n−1/2, choosing z′ = n−3/4 log n implies an upper bound of
order n−1. By using the same technique as in Serfling (1980, p.97), we conclude
that for any C > 0,

sup
t′:|t′−t|≤Cn−1/2

T̂m|WmFm(t) − WmFm(t′) − E[WmFm(t) − WmFm(t′)]|

= Op(Nn−3/4 log n).

Combined with the fact that T̂m = O(N), an = Op(n−1/2), E[Fm(t)] = FN (t)
and Wm converges to a constant, this implies Fm(t) − Fm(t + an) = FN (t) −
FN (t + an) + op(m−1/2) = f(t)an + op(m−1/2). The last equality is obtained by
using Condition 1 and the differentiability of F (t) which is the limit of FN (t).
This completes the proof.
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