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Abstract: We use a finite projective geometric approach to investigate the issue of
maximum estimation capacity in regular fractions of mixed factorials, recognizing
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set-up. Our results provide further statistical justification for the popular criterion

of minimum aberration as applied to mixed factorials.
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1. Introduction

In the context of regular fractional factorial plans, the criterion of minimum
aberration (MA) has gained much popularity over the last two decades. We
refer to Chen, Sun and Wu (1993) for an excellent review, and to Suen, Chen
and Wu (1997) for more recent results and further references. Though most of
the literature on MA designs is concerned with symmetric factorials, there has
been some progress with mixed factorials as well – see Wu and Zhang (1993) and
Mukerjee and Wu (2000).

The criterion of MA aims at controlling the wordlength pattern of a reg-
ular fraction and hence is primarily combinatorial. In a recent paper, Cheng,
Steinberg and Sun (1999) provided further statistical justification for it by in-
troducing a criterion of model robustness, namely, that of maximum estimation
capacity. Under the latter criterion the objective is to choose a design retain-
ing full information on the main effects, and as much information as possible on
the two factor interactions in the sense of entertaining the maximum possible
model diversity, under the assumption of absence of interactions involving three
or more factors. Further results of theoretical nature on maximum estimation
capacity were reported by Cheng and Mukerjee (1998). These authors worked on
symmetric factorials and noted that the approaches based on MA and maximum
estimation capacity often lead to identical designs.

The present paper initiates the study of maximum estimation capacity in
mixed factorials, an area which has been hitherto unexplored. A novel feature
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with mixed factorials is that not all two-factor interactions need have equal im-
portance; see Wu and Zhang (1993). This entails additional concerns which are
addressed here. We follow a finite projective geometric approach and pay special
attention to the role of complementary subsets. This is seen to be of particular
help in handling the nearly saturated cases which are of much practical inter-
est. The idea of complementary subsets is in the spirit of the work of Chen
and Hedayat (1996), Tang and Wu (1996) and Suen, Chen and Wu (1997) on
MA designs. Our problem and approach are, however, different from theirs – for
example, unlike them, we have to consider the aliasing pattern explicitly.

Let s(≥ 2) be a prime or a prime power. Specifically, we consider the follow-
ing two types of mixed factorial settings:
(i) (sr)× sn factorial, involving one factor at sr levels (r ≥ 2) and n factors each

at s levels;
(ii) (sr1)×(sr2)×sn factorial, involving two factors at sr1 and sr2 levels (r1, r2 ≥ 2)

and n factors each at s levels.
The cases s = 2, 3 are of special interest and typically n is large. This follows

the line of most practical situations which involve a large number of factors each
with a small number of levels and one or two factors with more levels.

We refer to Wu and Zhang (1993) for definitions of MA designs of various
types in mixed factorials. Our findings show that, even in mixed factorials, the
criteria of MA and maximum estimation capacity are quite in agreement. Thus
in addition to being of interest because of its direct statistical interpretation, the
criterion of maximum estimation capacity lends support to that of MA.

2. (sr) × sn Factorials

2.1. Definitions and preliminaries

Consider an (sr) × sn factorial with one factor, say Z0, at sr levels and n

factors, say Z1, . . . , Zn, each at s levels. Along the lines of Mukerjee and Wu
(1998), we begin by defining a regular main effect fraction for such a factorial in
st runs. Denote the set of points of the finite projective geometry PG(t − 1, s)
by P , and recall that an (r − 1)-flat of P is a subspace (of P ) with cardinality
(sr−1)/(s−1) = g, say. Also for any nonempty subset Q of P , let V (Q) denote a
matrix with columns given by the points in Q. Then a regular fraction is specified
by a pair of subsets (C0, C) of P such that (a) C0 and C are disjoint; (b) C0 is
an (r − 1)-flat of P ; (c) C has cardinality n, and (d) the matrix V (C0

⋃
C) has

full row rank. The resulting fractional factorial design is constructed as follows.
Consider the st vectors in the row space of V (C0

⋃
C). Any such vector will be of

the form (ρ1, . . . , ρg, ρg+1, . . . , ρg+n), where ρi ∈ GF (s) for each i and (ρ1, . . . , ρg)
is the contribution arising from C0. Since C0 is an (r−1)-flat, there are exactly sr

possibilities for (ρ1, . . . , ρg). Identifying each of these possibilities with a level of
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Z0, and interpreting ρg+1, . . . , ρg+n as the levels of Z1, . . . , Zn respectively, each of
the st vectors in the row space of V (C0

⋃
C) represents a treatment combination

of an (sr) × sn factorial. The collection of st treatment combinations obtained
gives a regular main effect fraction, to be denoted d = d(C0, C), of an (sr) × sn

factorial. Considering the cardinalities of C0, C and P , the above construction is
possible if and only if sr + n(s − 1) ≤ st, a condition which is supposed to hold.

We now introduce the notion of a pencil. With reference to an (sr) × sn

factorial, a typical pencil, carrying s − 1 degrees of freedom, is a nonnull vector
of the form ξ = (ξ1, . . . , ξg, ξg+1, . . . , ξg+n)′, where ξi ∈ GF (s) for all i and among
ξ1, . . . , ξg, at most one is nonzero. As with symmetric prime-powered factorials,
any two pencils with proportional coordinates are considered identical. A pencil
ξ belongs to the main effect of the (sr)-level factor Z0 if ξg+1 = · · · = ξg+n = 0.
Thus there are g = (sr − 1)/(s − 1) distinct pencils belonging to the main effect
of Z0, accounting for the sr − 1 degrees of freedom belonging to this main effect.
Similarly, a pencil ξ with ξg+i �= 0 for some i (1 ≤ i ≤ n) and ξj = 0 for every
j (�= g + i) represents the main effect of the s-level factor Zi. Any pencil with
exactly i(≥ 2) nonzero elements is an i-factor interaction pencil. An interaction
is of type 0 if it involves only the s-level factors and of type 1 if it involves the
sr-level factor as well. Thus, an interaction pencil ξ = (ξ1, . . . , ξg, ξg+1, . . . , ξg+n)′

is of the type 0 if ξ1 = · · · = ξg = 0 and of type 1 if one of ξ1, . . . , ξg is nonzero.
Since interactions of these two types may not be of equal importance, we retain
a distinction between them.

A pencil ξ appears in the defining relation of the fraction d = d(C0, C) if
V (C0

⋃
C)ξ = 0. Since C0

⋃
C consists of distinct points of P , the columns of

V (C0
⋃

C) are nonnull and no two of them are proportional to each other. Hence
each pencil appearing in the defining relation of d corresponds to an interaction
involving at least three factors, i.e., d has resolution at least three and this justifies
calling d a regular “main-effect” fraction.

Two distinct pencils ξ(1) and ξ(2), neither of which appears in the defining re-
lation, are aliased with each other if and only if V (C0

⋃
C)ξ(1) and V (C0

⋃
C)ξ(2)

are proportional to the same point of the projective geometry P . Clearly, there
are (st − 1)/(s − 1) alias sets. Since d is a regular main effect fraction, no main
effect pencil appears in the defining relation and no two distinct main effect pen-
cils are aliased with each other. Since the number of distinct main effect pencils
is g + n, there are

st − 1
s − 1

− (g + n) = f (say) (1)

alias sets, each of which contains no main effect pencil. For 1 ≤ i ≤ f and
j = 0, 1, let mij(d) be the number of distinct two-factor interaction (2fi) pencils
of type j in the ith of these f alias sets.
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As in most practical situations, we consider a scenario where the main effects
are of primary interest and, under the absence of interactions involving three of
more factors, interest lies in having as much information on the 2fi pencils as
possible. Hereafter, we assume the absence of all interactions involving three or
more factors.

For i, j = 0, 1, . . . ((i, j) �= (0, 0)), let Eij(d) be the number of models con-
taining all the main effects, i 2fi pencils of type 0, and j 2fi pencils of type
1 which can be estimated by the design d. Since there are f alias sets, clearly
Eij(d) = 0 if i+ j > f . If a design, maximizing Eij(d) for every i and j satisfying
i + j ≤ f , exists then such a design is said to have strong maximum estimation
capacity (SMEC). A design having SMEC also has maximum estimation capacity
in all other senses described below.

If interactions of type 0 are considered more serious than those of type 1,
then typically one is interested in models which include, apart from all the main
effects, proportionately more 2fi pencils of type 0 than 2fi pencils of type 1.
Since altogether there are

Q0 =

(
n

2

)
(s − 1) and Q1 = n(sr − 1)

2fi pencils of types 0 and 1 respectively, the quantities Eij(d) are of interest only
for (i, j) ∈ T0 where T0 = {(i, j) : 1 ≤ i + j ≤ f, i/Q0 > j/Q1}. If a design
maximizes Eij(d) for every (i, j) ∈ T0, it is said to have maximum estimation
capacity of type 0 [MEC(0)]. Dualizing this concept, if a design maximizes Eij(d)
for every (i, j) ∈ T1, where T1 = {(i, j) : 1 ≤ i + j ≤ f, i/Q0 < j/Q1}, it is said
to have maximum estimation capacity of type 1 [MEC(1)]. A design of the latter
kind will be appropriate if interactions of type 1 are considered more serious than
those of type 0.

Consider now the situation where interactions of the two types are supposed
to be equally important, but no design with SMEC exists. Then a weaker version
of maximum estimation capacity is worth consideration. For 1 ≤ u ≤ f , let

Eu(d) =
∑

{(i,j):i+j=u}
Eij(d)

be the number of models, containing all main effects and u 2fi pencils of the
two types taken together, which can be estimated by the design d. If a design
maximizes Eu(d) for every u (1 ≤ u ≤ f), it is said to have maximum overall
estimation capacity (MOEC).

Turning to the situation where interactions of type 0 are more serious than
those of type 1 but no design having MEC(0) exists, one can look for a design
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which has weak maximum estimation capacity of type 0 [WMEC(0)] in the sense
of maximizing

E0
u(d) =

∑
{(i,j):i+j=u, (i,j)∈T0}

Eij(d)

for every u(1 ≤ u ≤ f). Observe that E0
u(d) is the number of models containing

all main effects and u 2fi pencils, with proportionately more 2fi pencils of type 0
than of type 1, which can be estimated by the design d. Similarly, if interactions
of type 1 are more serious than those of type 0 but no design having MEC(1)
exists, one can define and consider a design which has weak maximum estimation
capacity of type 1 [WMEC(1)]. For i = 0, 1, a design with MEC(i) has WMEC(i).

Before concluding this section, we note that

Eij(d) =
∑

mh10(d) · · ·mhi0(d)mk11(d) · · ·mkj1(d), if 1 ≤ i + j ≤ f, (2)

where the sum extends over h1, . . . , hi, k1, . . . , kj such that h1 < · · · < hi, k1 <

· · · < kj , and {h1, . . . , hi} and {k1, . . . , kj} are disjoint subsets of {1, . . . , f}.

2.2. Role of a complementary subset

Recall that for each pencil ξ belonging to the same alias set of d = d(C0, C),
the vector V (C0

⋃
C)ξ is proportional to the same point of the projective geome-

try P . This establishes a one-to-one correspondence between the (st − 1)/(s− 1)
alias sets and the (st − 1)/(s − 1) points of P . If the alias set does not con-
tain any main effect pencil, then the corresponding point must belong to the
complementary subset F of C0

⋃
C in P . By (1), the cardinality of F is f . Let

F = {α1, . . . , αf}. For 1 ≤ i ≤ f and j = 0, 1, let wij(d) be the number of distinct
2fi pencils ξ of type j such that V (C0

⋃
C)ξ is proportional to αi. Defining

M(d) =

[
m10(d) · · · mf0(d)
m11(d) · · · mf1(d)

]
, W (d) =

[
w10(d) · · · wf0(d)
w11(d) · · · wf1(d)

]
,

the following proposition is evident.

Proposition 1. The matrix M(d) can be obtained by permuting the columns of
W (d).

We continue to write F = {α1, . . . , αf}. Let C0 = {αf+1, . . . , αf+g}, C =
{αf+g+1, . . ., αf+g+n}. For 1 ≤ i ≤ f , let

φi0(d) = Number of linearly dependent triplets {αi, αj , αk} such that
αi, αj , αk are distinct members of C0

⋃
F and j < k;

φi1(d) = Number of linearly dependent triplets {αi, αj , αk} such that
αj ∈ F, αk ∈ C0 and j �= i;

φi2(d) = Number of linearly dependent triplets {αi, αj , αk} such that
αi, αj , αk are distinct members of F and j < k.
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Since C0 is a subspace, for 1 ≤ i ≤ f , there does not exist any linearly
dependent triplet {αi, αj , αk} such that αj and αk are distinct members of C0

and j < k. Hence

φi0(d) = φi1(d) + φi2(d), 1 ≤ i ≤ f. (3)

In particular, for s = 2, one can interpret φi0(d) as the number of lines in C0
⋃

F
that pass through αi and φi2(d) as the number of lines in F that pass through
αi. Also, for s = 2, φi1(d) can be interpreted as the number of lines that pass
through αi, another point in F and a point in C0.

Theorem 1. For 1 ≤ i ≤ f ,
(a) wi0(d) = 1

2(s − 1){st−1
s−1 − 2(g + f) + 1} + φi0(d),

(b) wi1(d) = g(s − 1) − φi1(d).

Proof. For any three distinct members i, j, k of {1, . . . , f + g + n}, let the
indicator θijk assume the value 1 if αi, αj and αk are lineraly dependent, and the
value 0 otherwise. Then for 1 ≤ i ≤ f ,

wi0(d) = Σ0θijk, wi1(d) = Σ1θijk, (4)

where Σ0 is the sum over j, k such that f + g + 1 ≤ j < k ≤ f + g + n, and Σ1 is
the sum over j, k such that f + 1 ≤ j ≤ f + g and f + g + 1 ≤ k ≤ f + g + n.

Since C0 is a subspace, it is clear that θijk = 0 for 1 ≤ i ≤ f , whenever j
and k are distinct members of {f + 1, . . . , f + g}. Hence by (4), for 1 ≤ i ≤ f ,

wi0(d) + wi1(d) = Σ2θijk, (5)

where Σ2 is the sum over j, k such that f +1 ≤ j < k ≤ f + g +n. From the first
equation in (4), proceeding as in the proof of Lemma 2.2 of Cheng and Mukerjee
(1998), the validity of (a) follows. Similarly, from (5) one gets

wi0(d) + wi1(d) =
1
2
(s − 1)

(st − 1
s − 1

− 2f + 1
)

+ φi2(d).

Then by (3) and part (a), the validity of (b) follows.

Observe that it is enough to consider the set C0
⋃

F to get φi0(d) and
φi1(d), 1 ≤ i ≤ f . Hence, when applied in conjunction with (2) and Proposition
1, Theorem 1 greatly simplifies the study of maximum estimation capacity, espe-
cially in the practically important nearly saturated cases where f is small, and
therefore it is much easier to handle the set F than the set C.

2.3. Examples and tables

Example 1.
(a) If f =0 or 1, all designs are isomorphic. The same is true when f = 2, if

t = r + 1.
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(b) If f = 2 and t ≥ r + 2, there are two distinct possibilities for F :
(i) F = {β1, β1 + ρβ0} for some β1 /∈ C0, β0 ∈ C0 and ρ(�= 0) ∈ GF (s);
(ii) F = {β1, β2}, where β1 /∈ C0, β2 /∈ C0 and V (C0

⋃{β1, β2}) has rank
r + 2.

Let d1 and d2 be designs associated with (i) and (ii), respectively. Then φi0(d1) =
φi1(d1) = 1 (i = 1, 2); φi0(d2) = φi1(d2) = 0 (i = 1, 2). Since f = 2 and
g = (sr − 1)/(s − 1), Theorem 1 yields

wi0(d1) =
1
2
(st − 2sr − 3s + 6), wi1(d1) = sr − 2 (i = 1, 2);

wi0(d2) =
1
2
(st − 2sr − 3s + 4), wi1(d2) = sr − 1 (i = 1, 2).

Then by (2) and Proposition 1,

E10(d1) = st−2sr−3s+6, E01(d1) = 2sr−4, E20(d1) =
1
4
(st−2sr−3s+6)2,

E11(d1) = (st − 2sr − 3s + 6)(sr − 2), E02(d1) = (sr − 2)2;

E10(d2) = st−2sr−3s+4, E01(d2) = 2sr−2, E20(d2) =
1
4
(st−2sr−3s+4)2,

E11(d2) = (st − 2sr − 3s + 4)(sr − 1), E02(d2) = (sr − 1)2;

E1(d1) = st − 3s + 2 = E1(d2), E2(d1) =
1
4
(st − 3s + 2)2 = E2(d2).

Thus, no design with SMEC exists and both d1 and d2 have MOEC. Here
T0 = {(1, 0), (2, 0)}, T1 = {(0, 1), (0, 2), (1, 1)}, hence d1 has MEC(0) and d2 has
MEC(1). Following Mukerjee and Wu (1998), d1 has minimum aberration (MA)
of type 0 and d2 has MA of type 1. Thus the criteria of MA and maximum
estimation capacity are in agreement in this example.

Example 2. In the set-up of a 4 × 2n factorial, let f = 3 and, to avoid triviali-
ties, suppose t ≥ 4. We denote a typical point of PG(t − 1, 2) by i1 · · · ih, which
represents a t × 1 vector with 1 in the ith1 , . . . , ithh positions and 0 elsewhere.
Up to isomorphism, there are five distinct designs, say d1, . . . , d5, for each of
which C0 = {1, 2, 12}, the choices of F associated with d1, . . . , d5 being given by
{3, 4, 34}, {3, 4, 13}, {3, 4, 134}, {3, 13, 23}, {3, 4, 5}, respectively. The last possi-
bility arises only when t ≥ 5. We employ Theorem 1, Proposition 1 and (2) for
the calculations shown in Table 1. Here µ = 2t−1 − 6 (> 0).

Table 1 shows that no design having SMEC exists and that d1 has MOEC. By
(1), here n = 2t − 7. Thus T0 = {(1, 0), (2, 0), (3, 0)}, T1 = {(0, 1), (1, 1), (0, 2),
(2, 1), (1, 2), (0, 3)}, if t ≥ 5, and T0 = {(1, 0), (2, 0), (3, 0), (2, 1)}, T1 = {(0, 1),
(1, 1), (0, 2), (1, 2), (0, 3)}, if t = 4. Hence d1 has MEC(1) for every t ≥ 4, while
d4 has MEC(0) for every t ≥ 5. For t = 4, no design with MEC(0) exists but d4
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can be seen to have WMEC(0). Comparing with Mukerjee and Wu (2000), d1

has minimum overall aberration as well as MA of type 1, while d4 has MA of type
0 for each t ≥ 4. Hence the two criteria of minimum aberration and maximum
estimation capacity are again in agreement.

Table 1. Calculations for Example 2.

Design
d1 d2 d3 d4 d5

φ10(d) 1 1 0 2 0
φ20(d) 1 0 0 2 0
φ30(d) 1 1 0 2 0
φ11(d) 0 1 0 2 0
φ21(d) 0 0 0 2 0
φ31(d) 0 1 0 2 0
w10(d) µ + 1 µ + 1 µ µ + 2 µ

w20(d) µ + 1 µ µ µ + 2 µ

w30(d) µ + 1 µ + 1 µ µ + 2 µ

w11(d) 3 2 3 1 3
w21(d) 3 3 3 1 3
w31(d) 3 2 3 1 3
E10(d) 3µ + 3 3µ + 2 3µ 3µ + 6 3µ

E01(d) 9 7 9 3 9
E1(d) 3µ + 12 3µ + 9 3µ + 9 3µ + 9 3µ + 9
E20(d) 3(µ + 1)2 3µ2 + 4µ + 1 3µ2 3(µ + 2)2 3µ2

E11(d) 18µ + 18 14µ + 10 18µ 6µ + 12 18µ
E02(d) 27 16 27 3 27
E2(d) 3(µ + 4)2 3(µ + 3)2 3(µ + 3)2 3(µ + 3)2 3(µ + 3)2

E30(d) (µ + 1)3 µ(µ + 1)2 µ3 (µ + 2)3 µ3

E21(d) 9(µ + 1)2 7µ2 + 10µ + 3 9µ2 3(µ + 2)2 9µ2

E12(d) 27(µ + 1) 16µ + 12 27µ 3(µ + 2) 27µ

E03(d) 27 12 27 1 27
E3(d) (µ + 4)3 (µ + 3)3 (µ + 3)3 (µ + 3)3 (µ + 3)3

In Tables 2 and 3, we explore the issue of maximum estimation capacity
for (a) 4 × 2n designs in 16 runs, and (b) 9 × 3n designs in 27 runs. As in the
last two examples, Theorem 1, in conjunction with Proposition 1 and (2), is of
much help in preparing these tables, especially for large n (and hence small f).
In these tables, we report only a design having SMEC provided such a design
exists. Otherwise designs having MOEC, MEC(0) and MEC(1), if they exist, are
reported. For i = 0, 1, if no design having MEC(i) exists but a design having
WMEC(i) is available, then we report the latter. In Table 2 we denote a typical
point of PG(t − 1, 2) by i1 · · · ih, which represents a t × 1 vector with 1 in the



REGULAR FRACTIONS OF MIXED FACTORIALS 1125

ith1 , . . . , ithh positions and 0 elsewhere. Similarly, in Table 3, a typical point of
PG(t − 1, 3) is ij11 · · · ijh

h , which represents a t × 1 vector with j1, . . . , jh in the
ith1 , . . . , ithh positions and 0 elsewhere.

Comparing Table 2 with the findings in Wu and Zhang (1993) and Mukerjee
and Wu (2000), the following facts emerge: (i) all designs with SMEC have MA
of types 0 and 1, and also minimum overall aberration (MOA); (ii) all designs
with MOEC, except the first design for n = 10, have MOA; (iii) all designs with
MEC(1) have MA of type 1; (iv) all designs with MEC(0) or WMEC(0) have
MA of type 0. Thus, in the set-up of Table 2, the criteria of minimum aberration
and maximum estimation capacity are quite in agreement.

In the set-up of Table 3, only MA designs of type 0 are known in the literature
(Mukerjee and Wu (1998)), and it can be seen that the designs reported here as
SMEC have MA of type 0 as well.

Table 2. Designs having maximum estimation capacity for 4 × 2n factorials
in 16 runs. Here C0 = {1, 2, 12}.

n Criterion C

3 SMEC {3, 4, 134}

4 MOEC, WMEC(0) {3, 4, 23, 134} Remark: This design almost has

and MEC(1) SMEC; it maximizes Eij(d) for

every (i, j) except (4, 4).

5 MOEC, WMEC(0) {3, 4, 134, 23, 24} Remark: This design almost has SMEC;

and MEC(1) it maximizes Eij(d) for every (i, j)

except (i, j) = (5, 0), (6, 0), (7, 0) and (6, 1)

6 SMEC {3, 4, 134, 23, 24, 1234}

7 MOEC, MEC(1) {3, 4, 134, 23, 34, 14, 123} Remark: No design with even WMEC(0)

exists; however the design shown at

left maximizes E0
u(d) for u = 3, 4, 5.

The design with C0 = {1, 2, 12},
C = {3, 4, 23, 14, 13, 124, 24} maximizes

E0
u(d) for u = 1, 2.

8 MOEC, MEC(1) {3, 4, 134, 23, 34, 14, 234, 124}

WMEC(0) {3, 13, 23, 123, 4, 14, 24, 124}

9 MOEC, MEC(1) {3, 4, 134, 23, 34, 14, 234, 124, 123}

WMEC(0) {3, 4, 134, 23, 34, 13, 234, 1234, 123}

10 MEC(1) {3, 4, 134, 23, 34, 14, 234, 124, 13, 24} Remark: Both designs have

MOEC.

MEC(0) {3, 4, 134, 23, 34, 13, 234, 1234, 123, 14}

11,12 Up to isomorphism there is a unique design
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Table 3. Designs having maximum estimation capacity for 9 × 3n factorials
in 27 runs. Here C0 = {1, 2, 12, 122}.

n Criterion C

3 SMEC {3, 13, 23}
4 SMEC {3, 13, 23, 123}
5 SMEC {232, 123, 1232, 1223, 12232}
6 SMEC {23, 232, 123, 1232, 1223, 12232}
2,7,8,9 Up to isomorphism there is a unique design

3. (sr1) × (sr2) × sn Factorials

3.1. Definitions and preliminaries

Consider now the set-up of an (sr1)×(sr2)×sn factorial with two factors, say
Z01 and Z02, at sr1 and sr2 levels (r1, r2 ≥ 2) and n factors, say Z1, . . . , Zn, each
at s levels; as before, s(≥ 2) is a prime or prime power. We consider a regular
fraction of such a factorial in st runs. Denote the set of points of PG(t − 1, s)
by P . Then a regular fraction is specified by a triplet of subsets (C1, C2, C) of
P such that (a) C1, C2 and C are mutually exclusive; (b) Cj is an (rj − 1)-flat
of P, (j = 1, 2); (c) C has cardinality n, and (d) V (C1

⋃
C2
⋃

C) has full row
rank. The resulting regular fraction, to be denoted d = d(C1, C2, C), consists
of the st treatment combinations represented by the vectors in the row space
of V (C1

⋃
C2
⋃

C), with the contribution arising from Cj in any such vector
identified with a level of the (srj)-level factor Z0j (j = 1, 2). Considering the
cardinalities of C1, C2, C and P , this construction is possible if and only if r1 +
r2 ≤ t and sr1 + sr2 + n(s − 1) − 1 ≤ st, a condition which is hereafter assumed
to hold.

With reference to an (sr1) × (sr2) × sn factorial, a typical pencil, carrying
s − 1 degrees of freedom, is a nonnull vector of the form

ξ = (ξ1, . . . , ξg1, ξg1+1, . . . , ξg1+g2, ξg1+g2+1, . . . , ξg1+g2+n)′

where gj = (srj − 1)/(s− 1) (j = 1, 2), ξi ∈ GF (s) for all i (1 ≤ i ≤ g1 + g2 + n),
among ξ1, . . . , ξg1 at most one is nonzero, and among ξg1+1, . . . , ξg1+g2 at most
one is nonzero. As before, any two pencils with proportional coordinates are
considered identical. Such a pencil ξ belongs to the main effect of the (sr1)-level
factor Z01 if ξg1+1 = · · · = ξg1+g2+n = 0, and the main effect of the (sr2)-level
factor Z02 if ξ1 = · · · = ξg1 = ξg1+g2+1 = · · · = ξg1+g2+n = 0. Similarly, a pencil
ξ with ξg1+g2+i �= 0 for some i (1 ≤ i ≤ n) and ξj = 0 for every j (�= g1 + g2 + i)
represents the main effect of the s-level factor Zi. Any pencil with exactly i (≥ 2)
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nonzero elements is an i-factor interaction pencil. An interaction is of type 0 if
it involves only the s-level factors; of type 1 if it involves exactly one of the two
(srj)-level factors (j = 1, 2) together with some s-level factors; and of type 2 if it
involves both the (srj)-level factors (j = 1, 2) possibly together with some s-level
factors. Since interactions of these three types may not be of equal importance,
we retain a distinction among them.

As in Section 2, d = d(C1, C2, C) has resolution at least three and, analo-
gously to (1), there are

st − 1
s − 1

− (g1 + g2 + n) = f, say, (6)

alias sets each of which contains no main effect pencil. For 1 ≤ i ≤ f and
j = 0, 1, 2, let mij(d) be the number of distinct 2fi pencils of type j in the ith
of these f alias sets.

We continue to consider a scenario where the main effects are of primary
interest and, assuming the absence of interactions involving three or more factors,
interest also lies in having as much information on the 2fi pencils as possible.
For i, j, k = 0, 1, . . . ((i, j, k) �= (0, 0, 0)), let Eijk(d) be the number of models
containing all the main effects, i 2fi pencils of type 0, j 2fi pencils of type 1
and k 2fi pencils of type 2, which can be estimated by the design d. Clearly,
Eijk(d) = 0 if i + j + k > f . If a design maximizes Eijk(d) for every i, j, k

satisfying i + j + k ≤ f , it is said to have strong maximum estimation capacity
(SMEC). A design having SMEC also has maximum estimation capacity in all
other senses described below.

Suppose interactions of types 0,1 and 2 are not all equally important. As
noted in Wu and Zhang (1993) and Mukerjee and Wu (2000), commonly interac-
tions of type 0 are most serious and those of type 2 are least serious. We consider
this situation here. Other orderings of the three types of interactions can be han-
dled in a similar manner; see, for example, Remark 1 below. In our situation one
is interested in models which include, apart from the main effects, proportion-
ately more 2fi pencils of type 0 than 2fi pencils of type 1, and proportionately
more 2fi pencils of type 1 than 2fi pencils of type 2. Since altogether there are

Q0 =

(
n

2

)
(s−1), Q1 = n(sr1 +sr2−2), and Q2 = (sr1−1)(sr2−1)/(s−1)

2fi pencils of types 0, 1 and 2 respectively, the quantities Eijk(d) are of interest
only for (i, j, k) ∈ T ∗

0 where T ∗
0 = {(i, j, k) : 1 ≤ i + j + k ≤ f, i/Q0 > j/Q1 >

k/Q2}. If a design maximizes Eijk(d) for every (i, j, k) ∈ T ∗
0 , it is said to have

maximum estimation capacity of type 0 [MEC(0)]. If no design having MEC(0)
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exists, one can look for a design which has weak maximum estimation capacity
of type 0 [WMEC(0)] in the sense of maximizing

E0
u(d) =

∑
{(i,j,k):i+j+k=u, (i,j,k)∈T ∗

0 }
Eijk(d)

for every u (1 ≤ u ≤ f). Clearly, a design with MEC(0) has WMEC(0).
Consider now the situation where interactions of the three types are supposed

to be equally important but no design with SMEC exists. Then one can look for
a design which has maximum overall estimation capacity (MOEC) in the sense
of maximizing

Eu(d) =
∑

{(i,j,k):i+j+k=u}
Eijk(d)

for every u (1 ≤ u ≤ f).
Before concluding this section, we note that, analogously to (2),

Eijk(d) = Σmh10(d) · · ·mhi0(d)ml11(d) · · ·mlj1(d)mu12(d) · · ·muk2(d),
if i + j + k ≤ f, (7)

where the sum extends over h1, . . . , hi, l1, . . . , lj , u1, . . . , uk such that h1 < · · · <
hi, l1 < · · · < lj, u1 < · · · < uk and {h1, . . . , hi}, {l1, . . . , lj} and {u1, . . . , uk}
are disjoint subsets of {1, . . . , f}.

3.2. Role of complementary subset

Let F be the complementary subset of C1
⋃

C2
⋃

C in P . By (6), the cardi-
nality of F is f . Let F = {α1, . . . , αf}. For 1 ≤ i ≤ f and j = 0, 1, 2, let wij(d)
be the number of distinct 2fi pencils ξ of type j such that V (C1

⋃
C2
⋃

C)ξ is
proportional to αi. Defining the matrices

M(d) =


m10(d) · · · mf0(d)

m11(d) · · · mf1(d)
m12(d) · · · mf2(d)


 , W (d) =


w10(d) · · · wf0(d)

w11(d) · · · wf1(d)
w12(d) · · · wf2(d)


 ,

we have:

Proposition 2. The matrix M(d) can be obtained by permuting the columns of
W (d).

We continue to write F = {α1, . . . , αf}. Let C1 = {αf+1, . . . , αf+g1}, C2 =
{αf+g1+1, . . . , αf+g1+g2} and C = {αf+g1+g2+1, . . . , αf+g1+g2+n}. For 1 ≤ i ≤ f ,
define

φi0(d) = Number of linearly dependent triplets {αi, αj , αk} such that
αi, αj , αk are distinct members of C1

⋃
C2
⋃

F and j < k ;
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φi1(d) = Number of linearly dependent triplets {αi, αj , αk} such that
αj ∈ F, αk ∈ C1

⋃
C2 and j �= i;

φi2(d) = Number of linearly dependent triplets {αi, αj , αk} such that
αj ∈ C1 and αk ∈ C2;

φi3(d) = Number of linearly dependent triplets {αi, αj , αk} such that
αi, αj , αk are distinct members of F and j < k.

Since C1 and C2 are subspaces,

φi0(d) = φi1(d) + φi2(d) + φi3(d). (8)

Theorem 2. For 1 ≤ i ≤ f ,
(a) wi0(d) = 1

2(s − 1){st−1
s−1 − 2(g1 + g2 + f) + 1} + φi0(d),

(b) wi1(d) = (g1 + g2)(s − 1) − φi1(d) − 2φi2(d),
(c) wi2(d) = φi2(d).

Proof. From the definitions of wi2(d) and φi2(d), one has (c). Now for any three
distinct members i, j, k of {1, . . . , f + g1 + g2 + n}, define the indicator θijk as in
the proof of Theorem 1. Then for 1 ≤ i ≤ f ,

wi0(d) = Σ0θijk, wi1(d) = Σ1θijk, wi2(d) = Σ2θijk, (9)

where Σ0 denotes the sum over j, k such that f + g1 + g2 + 1 ≤ j < k ≤
f + g1 + g2 + n, Σ1 denotes the sum over j, k such that f + 1 ≤ j ≤ f + g1 +
g2, f + g1 + g2 + 1 ≤ k ≤ f + g1 + g2 + n, and Σ2 denotes the sum over j, k

such that f + 1 ≤ j ≤ f + g1, f + g1 + 1 ≤ k ≤ f + g1 + g2. Since C1 and C2

are subspaces, θijk equals 0 (1 ≤ i ≤ f) if either f + 1 ≤ j < k ≤ f + g1, or
f + g1 + 1 ≤ j < k ≤ f + g1 + g2. Hence by (9), for 1 ≤ i ≤ f ,

wi0(d) + wi1(d) + wi2(d) = Σ3θijk, (10)

where Σ3 denotes the sum over j, k such that f + 1 ≤ j < k ≤ f + g1 + g2 + n.
Using the first equation in (9), proceeding as in the proof of Lemma 2.2 of

Cheng and Mukerjee (1998), the validity of (a) follows. Similarly, from (10),

wi0(d) + wi1(d) + wi2(d) =
1
2
(s − 1)

{st − 1
s − 1

− 2f + 1
}

+ φi3(d),

so that, using (8) and parts (a) and (c), (b) follows.

3.3. Examples and tables

Example 3.
(a) If f = 0 then all designs are isomorphic. The same happens for f = 1 if

t = r1 + r2.
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(b) Continuing with f = 1, suppose t > r1 + r2. Then there are two distinct
possibilities for F : (i) the single point in F is spanned by the points in
C1
⋃

C2; (ii) the single point in F is not spanned by the points in C1
⋃

C2.
Let d1 and d2 be designs associated with (i) and (ii), respectively. Then

φ10(d1) = 1, φ11(d1) = 0, φ12(d1) = 1, φ10(d2) = 0, φ11(d2) = 0, and φ12(d2) =
0. Hence by (7), Proposition 2 and Theorem 2, noting that f = 1,

E100(d1) = E100(d2) + 1 = 1
2(s − 1)

{
st − 1
s − 1

− 2(g1 + g2) − 1

}
+ 1,

E010(d1) = E010(d2) − 2 = (g1 + g2)(s − 1) − 2, E001(d1) = 1, E001(d2) = 0.

Thus no design with SMEC exists but both d1 and d2 have MOEC, and d1

has MEC(0). Following Mukerjee and Wu (2000), d1 also has MA of type 0.

Remark 1. In the set-up of Example 3(b), E010(d1) < E010(d2) and E001(d1) >

E001(d2). Hence, if interactions of type 1 are considered most serious d2 will be
preferred to d1, while if interactions of type 2 are considered most serious then
d1 will be preferred to d2.

Example 4. Consider a regular fraction of a 42 × 27 factorial in 16 runs. Then
s = 2, t = 4, g1 = g2 = 3, n = 7 and, by (6), f = 2. Up to isomorphism, there are
two distinct designs d1, d2 for each of which C1 = {1, 2, 12}, C2 = {3, 4, 34}, the
choices of F associated with d1 and d2 being {13, 14} and {13, 24} respectively.
Then φi0(d1) = 2, φi1(d1) = 1, φi2(d1) = 1, (i = 1, 2) φi0(d2) = 1, φi1(d2) = 0,
φi2(d2) = 1, (i = 1, 2). Hence by (7), Proposition 2 and Theorem 2, we get
Table 4, which shows that no design with SMEC exists while both d1 and d2

have MOEC. Here T ∗
0 = {(1, 0, 0),(2, 0, 0),(1, 1, 0)}. Hence from Table 4, d1 has

MEC(0). Following Wu and Zhang (1993), it can be seen that d1 also has MA
of type 0.

Table 4. Calculations for Example 4. Here ijk refers to Eijk(d).

Design 100 010 001 200 110 101 020 011 002
d1 4 6 2 4 12 4 9 6 1
d2 2 8 2 1 8 2 16 8 1

In Table 5, we explore the issue of maximum estimation capacity for 42 × 2n

designs in 16 runs. As in the last two examples, Theorem 2, in conjunction with
Proposition 2 and (7), facilitates preparation of the table. In it, we report only
a design having SMEC provided such a design exists. Otherwise, designs having
MOEC and MEC(0), if they exist, are reported. Comparing with Wu and Zhang
(1993), one can check that any design, reported as having SMEC or MEC(0) in
Table 5, has MA of type 0.
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Table 5. Designs having maximum estimation capacity for 42 × 2n factorials
in 16 runs. Here C1 = {1, 2, 12} and C2 = {3, 4, 34}.

n Criterion C

2 SMEC {13, 24}

3 MOEC {13, 24, 1234}

MEC(0) {13, 14, 234}

4 MOEC, MEC(0) {13, 14, 234, 1234}

5 MOEC {13, 24, 123, 234, 1234} Remark: No design with even WMEC(0)

exists; however the design shown here

maximizes E0
u(d) for every u

except u = 1.

6 MOEC {13, 14, 24, 123, 234, 1234} Remark: No design with even WMEC(0)

exists; however the design given by

C1 = {1, 2, 12}, C2 = {3, 4, 34}, and

C = {13, 14, 134, 23, 24, 234} maximizes

Eijk(d) for every (i, j, k) ∈ T ∗
0 except

(i, j, k) = (1, 2, 0). This design also

has MA of Type 0.

7 MOEC, MEC(0) {134, 23, 24, 234, 123, 124, 1234}

1,8,9 Up to isomorphism there is a unique design
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