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Abstract: Partially ordered Markov models (POMMs) are Markov random fields

(MRFs) with neighborhood structures derivable from an associated partially or-

dered set. The most attractive feature of POMMs is that their joint distributions

can be written in closed and product form. Therefore, simulation and maximum

likelihood estimation for the models is quite straightforward, which is not the case

in general for MRF models. In practice, one often has to modify the likelihood

to account for edge components; the resulting composite likelihood for POMMs is

similarly straightforward to maximize. In this article, we use a martingale approach

to derive the asymptotic properties of maximum (composite) likelihood estimators

for POMMs. One of our results establishes that under regularity conditions that

are fairly easy to check, and Dobrushin’s condition for spatial mixing, the maxi-

mum composite likelihood estimator is consistent, asymptotically normal, and also

asymptotically efficient.
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1. Introduction

Partially ordered Markov models (POMMs), introduced by Cressie and
Davidson (1998), are a natural extension of one-dimensional Markov chains and
a generalization of two-dimensional Markov mesh models (Abend, Harley and
Kanal (1965)). The models are actually Markov random field (MRF) models
with neighborhood structures derivable from an associated partially ordered set
(poset). That poset determines the conditional distribution of a datum at any
site s, conditioned on data at sites that are less than s by the partial order;
specifically, the conditional distribution depends only on the data at the adjacent
lower neighborhood of s. This development of POMMs in the spatial context has
direct parallels to models on acyclic directed graphs and causal network models
(e.g., Lauritzen and Spiegelhalter (1988); Lauritzen, Dawid, Larson and Leimer
(1990)).
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Generally, the maximum likelihood estimator (MLE) for a MRF model is
analytically intractable and numerical solutions are usually computationally in-
tensive. Therefore several alternative estimation procedures, which are compu-
tationally efficient but less efficient than maximum likelihood (ML), have been
proposed. For example, Besag (1974, 1975) proposed the coding and the maxi-
mum pseudo-likelihood methods, and Possolo (1986) proposed the logit method
for binary Markov random fields. However on a large sub-class of MRFs, namely
the POMMs, the joint distributions can be written in closed and product form,
and hence ML estimation is relatively straightforward. In practice one often has
to modify the likelihood to account for edge components; the resulting composite
likelihood can be similarly maximized in a straightforward manner.

Many authors have considered the consistency and the asymptotic normality
of ML estimation. The literature for one-dimensional dependent processes in a
multi-parameter framework includes Basawa, Feigin and Heyde (1976), Crowder
(1976), Sweeting (1980), Heijmans and Magnus (1986a, b), and Sarma (1986).
Unfortunately, only a small proportion of the literature on ML estimation is
concerned with higher dimensional, dependent random fields. Gidas has proved
the consistency (1988) and asymptotic normality (1993) of the MLE for a MRF
model under certain conditions. However, his parameterization is somewhat
restricted in the sense that the potential function of his MRF model is linear
in the parameters. That is, his MRF model belongs to a certain exponential
family (which is typically not the case for POMMs). In this article, we adapt a
martingale approach used by Crowder (1976) to derive the asymptotic properties
of maximum (composite) likelihood estimators for POMMs. For example, one
of our results establishes that, under regularity conditions that are fairly easy
to check and Dobrushin’s condition (Dobrushin (1968)) for spatial mixing, the
maximum composite likelihood estimator is consistent, asymptotically normal,
and also asymptotically efficient. Although the approach by Sweeting (1980)
may also be used to derive the asymptotic properties of the ML estimator, some
stronger uniform-convergence condition has to be imposed, which may not be as
easy to check in practice as the approach we are using.

In Section 2, we define a POMM on ZZd, which is extended from Cressie and
Davidson’s (1998) definition for a POMM defined on a finite set of sites. The
consistency and asymptotic normality of the maximum (composite) likelihood
estimator for POMMs are established in Section 3. Section 4 contains an example
in which the composite-likelihood results of Section 3 are applied to a specific
spatial process on a two-dimensional square lattice. Proofs of the results stated
in Section 3 are given in the Appendix.
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2. Partially Ordered Markov Models

We give the basic definitions associated with a partially ordered Markov
model (POMM); Cressie and Davidson (1998), Davidson and Cressie (1993),
and Davidson, Cressie and Hua (1999) can be consulted for further details.

Consider first the notion of a partial order. Let D be a set of elements. Then
(D,≺) is said to be a partially ordered set, or a poset, with partial order ≺, if
for any s, s′, s′′ ∈ D, the following three conditions are satisfied: (a) s ≺ s; (b)
s ≺ s′ and s′ ≺ s implies s = s′; (c) s ≺ s′ and s′ ≺ s′′ implies s ≺ s′′.

Next we introduce the notion of directed graphs and briefly discuss the rela-
tion between directed graphs and partial orders. A directed graph is a pair (V, F ),
where V denotes the set of vertices (or nodes) and F denotes the set (possibly
empty) of directed edges between vertices. A directed edge is an ordered pair
(v, v′) that represents a directed connection from a vertex v to a different ver-
tex v′. A directed path in a directed graph is a sequence of vertices v1, . . . , vk,
k > 1, such that (vi, vi+1) is a directed edge for each i = 1, . . . , k − 1. A cycle
in a directed graph is a path (v1, . . . , vk) such that v1 = vk. An acyclic directed
graph (ADG) is a directed graph that has no cycles in it. We shall use an acyclic
directed graph to specify the spatial interdependencies between locations for a
POMM and, as a consequence, the results given here in a spatial context might
be adapted to the nonspatial models of Lauritzen, Dawid, Larson and Leimer
(1990).

To construct a poset from an ADG (V, F ), we define a binary relation ≺ on
V such that v ≺ v′ if either v = v′ or there exists a directed path from v to v′.
Then it is straightforward to check that (V,≺) is a poset on V with the partial
order ≺.

Before giving the definition of a POMM on ZZd, the d-dimensional integer
lattice, we introduce some notation and definitions. Consider a real-valued ran-
dom field {Z(s) : s ∈ ZZd}. For any set D ⊂ ZZd, let Z(D) ≡ {Z(s) : s ∈ D}.
For any finite D′ ∈ D, let p(z(D′)) denote the probability density (or probability
mass function) of Z(D′). For any finite D1,D2 ⊂ D, let p(z(D1)|z(D2)) denote
the conditional probability density (or conditional probability mass function) of
Z(D1) conditioned on Z(D2) = z(D2).

For s, s′ ∈ ZZd, let d(s, s′) ≡ max1≤i≤d |si − s′i|, where s = (s1, . . . , sd) and
s′ = (s′1, . . . , s′d). For any D1,D2 ⊂ ZZd, let d(D1,D2) ≡ inf{d(s1, s2) : s1 ∈
D1, s2 ∈ D2}. For any D ⊂ ZZd, let diam D ≡ sup{d(s, s′) : s, s′ ∈ D}.

Consider now some definitions that are related to an ADG (ZZd, F ) and its
associated poset (ZZd,≺ ). For any s ∈ ZZd, the cone of s is the set cone s ≡
{s′ ∈ ZZd \ {s} : s′ ≺ s}, and the adjacent lower neighborhood of s is the set
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adjl s ≡ {s′ ∈ ZZd : (s′, s) ∈ F}. Throughout this article, we only consider ADGs
that yield finite adjacent lower neighborhoods. For any D ⊂ ZZd, the cover of D

is the set covr D ≡ {s ∈ ZZd \D : adjl s ⊂ D}, and D is said to be a lower set if
there exists an s ∈ ZZd such that cone s ⊂ D.

Definition 1. A set D ⊂ ZZd is said to be bounded below, or a b-set, if for
any s ∈ D there exists an element s′ ∈ L0 such that s′ ≺ s, where L0 ≡ {s ∈
D : for any s′ ∈ D, either s ≺ s′ or s, s′ are unrelated} is the set of minimal
elements of D.

It is not difficult to see that the complement of a lower set D ⊂ ZZd, denoted
by Dc, is bounded below.

Definition 2. The level sets of a b-set D ⊂ ZZd are a sequence of nonempty cover
sets {Ln : n = 0, 1, . . .}, defined recursively as Ln ≡ covr {∪n−1

k=0L
k ∪ Dc} ∩ D,

n ∈ IN ≡ {1, 2, . . .}, where L0 is defined in Definition 1.

For example, consider a directed graph (ZZ2, F ) with

F = ∪(u,v)∈ZZ2

{(
(u, v − 1), (u, v)

)
,
(
(u − 1, v), (u, v)

)
,
(
(u − 1, v − 1), (u, v)

)}
.

Then cone (u, v) = {(u′, v′) : u′ ≤ u or v′ ≤ v}, which is also a lower set, and
adjl (u, v) = {(u, v − 1), (u − 1, v), (u − 1, v − 1)}. Also, if D = cone (0, 0), then
covr D = {(0, 0)}, and if D = {(u, v) : u ≥ 0 and v ≥ 0}, then the level sets of D

for n = 0, 1, . . ., are given by Ln = {(u, v) ∈ D : u + v = n}.
It is straightforward to see that, for D a b-set, ∪∞

n=0L
n = D and Li∩Lj = ∅,

i 
= j. Also note that the elements in each level set Ln, n = 0, 1, . . ., are mutually
unrelated by the partial order ≺, and an element in Li cannot be larger than an
element in Lj if i < j. Therefore, for D a finite b-set with |D| = m, we can write
D = {s1, . . . , sm} such that si ≺ sj only if i < j, i, j = 1, . . . ,m. This kind of
ordering based on level sets is important for proving the asymptotic properties
of maximum (composite) likelihood estimators.

Definition 3. Let (ZZd, F ) be an ADG with its associated poset (ZZd,≺ ), and
let L∗ be a nonempty lower set of ZZd. Let Us denote any finite set such that
adjl s ⊂ Us ⊂ cone s, and let Vs denote any finite set of points not related to s

by the partial order ≺. Then {Z(s) : s ∈ ZZd} is said to be a partially ordered
Markov model (POMM) on ZZd if, for all s ∈ ZZd \ L∗ and for any Us and Vs,
p(z(s)|z(Us ∪ Vs)) = p(z(s)|z(adjl s)).

Notice that the POMM defined by Cressie and Davidson (1998) is on a
finite set of sites. The existence of a POMM on ZZd can be proved by using
Kolmogoroff’s Extension Theorem (see Kolmogoroff (1933); Durrett (1991)). A
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special case of a POMM is the Markov Mesh Model, until now defined on a
finite subset of ZZ2. It was introduced by Abend, Harley and Kanal (1965) and
has attracted some interest for fast generation of textures (e.g., Devijver (1988);
Goutsias (1989); Gray, Kay and Titterington (1994)).

3. Limit Theorems for Maximum (Composite) Likelihood Estimation

From now on, let Z(ZZd) be a POMM with lower set L∗ and level sets{
L0, L1, . . .

}
. Let {Λn : n = 1, 2, . . .} be a strictly increasing sequence of finite

subsets of ZZd \ L∗ that satisfy

lim
n→∞ |Λ∗

n|/|Λn| = 1, (1)

where for each n ∈ IN , Λ∗
n ≡ {s ∈ Λn : adjl s ⊂ Λn} is the set of the interior

points of Λn. Then for each n ∈ IN, the set of the edge points of Λn is En ≡
Λn \Λ∗

n. That is, we assume that the proportion of the edge points within Λn is
asymptotically negligible as n → ∞. Using the idea of level sets, we can assume
without loss of generality that

Λn = {sn,1, . . . , sn,|Λn|}, n ∈ IN, (2)

such that sn,i ≺ sn,j only if i < j, i, j = 1, . . . , |Λn|. It has to be noticed that
for m,n ∈ IN and a given i ∈ {1, . . . , |Λm|}, sm,i may not be the same as sn,i if
m < n, since the collection of the level sets of Λm is typically not a subcollection
of the level sets of Λn. In the spatial context of POMMs, Cressie and Davidson
(1998) give the joint probability density (or mass) function of Z(Λn) as

p (z(Λn))=
|Λn|∏
k=1

p (z(sn,k)|z(sn,1), . . . , z(sn,k−1))

=
∏

sn,k∈En

p(z(sn,k)|z(sn,1), . . . , z(sn,k−1))
∏

s∈Λ∗
n

p (z(s)|z(adjl s)) , n∈IN.

In the context of graphical models, this result can be found in, inter alia, Kiiveri,
Speed and Carlin (1984) and Lauritzen and Spiegelhalter (1988), although it
should be noted that their results do not deal with the edge effects, arising from
z(En), in as much generality. The asymptotic properties of maximum likelihood
estimators developed below are given in the spatial setting.

We assume that, for s ∈ ZZd \L∗, the conditional probability density p(z(s)|
z(adjl s);θ) depends on the vector of parameters θ ∈ Θ, where Θ is an open
connected subset of IRp. Hence, for each n ∈ IN , the log-likelihood function of
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Z(Λn) is

ln(θ) =
∑

sn,k∈En

log {p (Z(sn,k)|Z(sn,1), . . . , Z(sn,k−1);θ)}

+
∑

s∈Λ∗
n

log {p (Z(s)|Z(adjl s);θ)} . (3)

In practice, with only the parametric form of p (z(s)|z(adjl s);θ) given, we
may not know the parametric structure of p (z(sn,k)|z(sn,1), . . . , z(sn,k−1);θ) for
sn,k ∈ En, n ∈ IN . So we consider the second part of the log-likelihood function,
without edge components, given by

l∗n(θ) =
∑

s∈Λ∗
n

log {p (Z(s)|Z(adjl s);θ)} . (4)

We call (4) a composite likelihood after Lindsay (1988). Note that, by (1),
|En|/|Λn| → 0 as n → ∞; hence the first part of the log-likelihood function
contains comparatively little information, as is borne out by our efficiency results
for maximum composite likelihood estimators.

Suppose that θ0 is the vector of true values of the parameters. For each
n ∈ IN , let θ̂n be a solution of the likelihood equation, ∂ln(θ)/∂θ = 0. We call θ̂n

the maximum likelihood estimator (MLE) if θ̂n is the global maximum of ln(θ).
Further, let θ̂

∗
n be a solution of the composite-likelihood equation, ∂l∗n(θ)/∂θ = 0.

We call θ̂
∗
n the maximum composite likelihood estimator (MCLE) if θ̂

∗
n is the

global maximum of l∗n(θ).
For each n ∈ IN and for sn,k ∈ Λn, k = 1, . . . , |Λn|, let

b(n)(sn,k;θ) ≡
(
b
(n)
1 (sn,k;θ), . . . , b(n)

p (sn,k;θ)
)T

≡ ∂

∂θ
log {p (Z(sn,k)|Z(sn,1), . . . , Z(sn,k−1);θ)} ,

A(n)(sn,k;θ) ≡
(
A

(n)
j,k (sn,k;θ)

)
p×p

≡ ∂2

∂θ2 log {p (Z(sn,k)|Z(sn,1), . . . , Z(sn,k−1);θ)} .

Then, by the Mean Value Theorem, the likelihood equation can be written as

∂ln(θ)
∂θ

=
∑

s∈Λn

b(n)(s;θ0) +
∑

s∈Λn

Ã
(n)

(s;θ0,θ)(θ − θ0) = 0, n ∈ IN, (5)

where Ã
(n)

(s;θ0,θ) denotes A(n)(s;θ) with rows evaluated at possibly different
points on the line segment between θ0 and θ.
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In the following subsections, asymptotic results are established for the
M(C)LE. Proofs are given in the Appendix.

3.1. Consistency of the maximum (composite) likelihood estimator

Several approaches have been taken in proving the consistency and asymp-
totic normality of the generic MLE. Here, a martingale approach used by Crowder
(1976) is adapted to the spatial models we are considering. For each n ∈ IN , let
Fn,0 ≡ {Ω, ∅}, and let Fn,k ≡ σ{ω : Z(sn,1), . . . , Z(sn,k)} be the σ-algebra gen-
erated by Z(sn,1), . . . , Z(sn,k), for k = 1, . . . , |Λn|. Throughout the paper we
assume that for all θ ∈ Θ, the distributions Pθ of Z(ZZd) have common support,
and for θ ∈ Θ, sn,k ∈ Λn, n ∈ IN , and j = 1, 2,

∫
∂j

∂θj p (z(sn,k)|z(sn,1), . . . , z(sn,k−1);θ) dz(sn,k)

=
∂j

∂θj

∫
p (z(sn,k)|z(sn,1), . . . , z(sn,k−1);θ) dz(sn,k) = 0. (6)

Note that (6) implies that the following conditions hold for all sn,k ∈ Λn,
n ∈ IN :

E
{
b(n)(sn,k;θ0)

∣∣∣Fn,k−1

}
= 0,

E
{
−A(n)(sn,k;θ0)

∣∣∣Fn,k−1

}
= var

{
b(n)(sn,k;θ0)

∣∣∣Fn,k−1

}
.

From (6) we have the following result.

Proposition 1. Consider the log-likelihood function given by (3), and suppose
the true value of the parameter is θ0. For each n ∈ IN , k = 1, 2, . . . , |Λn|, let
Mn,k ≡∑k

i=1 b(sn,i;θ0) and W n,k ≡∑k
i=1{A(sn,i;θ0)−E(A(sn,i;θ0)|Fn,i−1)},

where the {sn,i} are given by (2). Then {Mn,k, Fn,k} and {W n,k, Fn,k} are
triangular martingale arrays.

The Weak Law of Large Number for a martingale array is given next.

Proposition 2. Assume that {(Sn,i, Fn,i) : n ∈ IN, i = 1, . . . , kn} is a trian-
gular martingale array, where kn → ∞ as n → ∞. Let Xn,1 = Sn,1, and
Xn,i = Sn,i − Sn,i−1, n ∈ IN , i = 2, . . . , kn. Suppose that

(i)
kn∑
i=1

P (|Xn,i| > kn) → 0, as n → ∞;

(ii)
1
kn

kn∑
i=1

E
(
Xn,iI(|Xn,i| ≤ kn)

∣∣∣Fn,i−1

)
p−→ 0, as n → ∞;
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(iii)
1
k2

n

kn∑
i=1

{
E (Xn,iI(|Xn,i| ≤ kn))2 − E

(
E (Xn,iI(|Xn,i| ≤ kn)|Fn,i−1)

)2
}
→0,

as n → ∞.

Then as n → ∞, Sn,kn/kn
p−→ 0.

Corollary 1. Assume that {(Sn,i, Fn,i) : n ∈ IN, i = 1, . . . , kn} is a triangular
martingale array, where kn → ∞ as n → ∞. Let Xn,1 = Sn,1 and Xn,i =
Sn,i − Sn,i−1, n ∈ IN , i = 2, . . . , kn. If supn,i E |Xn,i|1+δ < ∞ for some δ > 0,
then as n → ∞, Sn,kn/kn

p−→ 0.

We are now able to establish the consistency of the MLE for POMMs.

Theorem 1. Consider the log-likelihood function given by (3) and suppose the
true value of the parameter is θ0. Assume

(A.1) sup
|Λn|‖θ−θ0‖≤1

1
|Λn|

|Λn|∑
i=1

{
A(n)(sn,i;θ) − A(n)(sn,i,θ0)

}
p−→ 0, as n → ∞;

(A.2) sup
n,i,j

E
(∣∣∣b(n)

j (sn,i;θ0)
∣∣∣q) < ∞, for some q > 1;

(A.3) P

{
−1
|Λn|

|Λn|∑
i=1

cT A(n)(sn,i;θ0)c > ε

}
→ 1, as n → ∞ for all ‖c‖ = 1 and

for some ε > 0.

Then there exists a solution θ̂n of the likelihood equation (5) such that, as n → ∞,
θ̂n

p−→ θ0. If in addition

(A.4) P

{
−1
|Λn|

|Λn|∑
i=1

A(n)(sn,i;θ) is positive-definite for all θ∈Θ

}
→1, as n→∞,

then with probability tending to 1, θ̂n is the MLE.

In practice, the second part of the log-likelihood function, given by (4), is all
that we can use for inference. For each n ∈ IN , let {s∗n,k = sn,mk

: k = 1 . . . , |Λ∗
n|}

be the subsequence of {sn,1, . . . , sn,|Λn|} such that Λ∗
n = {s∗n,1, s

∗
n,2, . . . , s

∗
n,|Λ∗

n|},
and define F∗

n,0 ≡ {Ω, ∅} and F∗
n,k ≡ Fn,mk

, k = 1, . . . , |Λ∗
n|. Then p(z(s∗n,k)|

F∗
n,k−1) = p(z(s∗n,k)|z(adjl s∗n,k)), s∗n,k ∈ Λ∗

n, k = 1, . . . , |Λ∗
n|. Similar to Theorem

1, we have the following result for the MCLEs.

Corollary 2. Consider the log-likelihood function given by (3) and suppose the
true value of the parameter is θ0. Assume

(A.1′) sup
|Λ∗

n|‖θ−θ0‖≤1

1
|Λ∗

n|
|Λ∗

n|∑
i=1

{
A(n)(s∗n,i;θ) − A(n)(s∗n,i,θ0)

}
p−→ 0, as n → ∞;
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(A.2′) sup
n,i,j

E
(∣∣∣b(n)

j (s∗n,i;θ0)
∣∣∣q) < ∞, for some q > 1;

(A.3′) P

{
−1
|Λ∗

n|
|Λ∗

n|∑
i=1

cT A(n)(s∗n,i;θ0)c > ε

}
→ 1 as n → ∞, for all ‖c‖ = 1 and

for some ε > 0.

Then there exists a solution θ̂
∗
n of the composite-likelihood equation ∂l∗n(θ)/∂θ =

0 such that, as n → ∞, θ̂n
p−→ θ0. If in addition

(A.4′) P

{
−1
|Λ∗

n|
|Λ∗

n|∑
i=1

A(n)(s∗n,i;θ) is positive-definite for all θ∈Θ

}
→1, as n→∞,

then with probability tending to 1, θ̂
∗
n is the maximum composite likelihood esti-

mator.

3.2. Asymptotic normality of the maximum (composite) likelihood
estimator

The asymptotic normality of MLEs for POMMs is established in the following
theorem.

Theorem 2. Assume the conditions of Theorem 1 hold except that (A.2) holds
for some q > 2. Define Bn ≡ var(

∑|Λn|
i=1 b(n)(sn,i;θ0)), n ∈ IN . Assume

(A.5)
1

c′Bnc

|Λn|∑
i=1

E

((
cT b(n)(sn,i;θ0)

)2
∣∣∣∣Fn,i−1

)
p−→ 1, as n→∞, for all ‖c‖=1.

Then as n → ∞, B1/2
n

(
θ̂n − θ0

)
d−→ N(0, Ip).

Note that Bn in the statement of Theorem 2 is actually the Fisher informa-
tion matrix of θ0 contained in Z(Λn). Further, we have as n → ∞,

B1/2
n

{
θ̂n − θ0 − B−1

n

|Λn|∑
i=1

b(n)(sn,i;θ0)

}

=B1/2
n

{
−

|Λn|∑
i=1

Ã
(n)

(sn,i;θ0, θ̂n)

}−1{ |Λn|∑
i=1

b(n)(sn,i;θ0)

}
−B−1/2

n

|Λn|∑
i=1

b(n)(sn,i;θ0)

=

{
B1/2

n

(
−

|Λn|∑
i=1

Ã
(n)

(sn,i;θ0, θ̂n)

)−1

B1/2
n −Ip

}{
B−1/2

n

|Λn|∑
i=1

b(n)(sn,i;θ0)

}
p−→0.

Therefore, θ̂n is also asymptotically efficient (see Basawa and Rao (1980, Sec-
tion 7.2.4); Rao (1973, Section 5c.2)).
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Corollary 3. Assume the conditions of Theorem 2. Let B̂n ≡ −∑|Λn|
i=1 A(n)(sn,i;

θ̂n) for all n ∈ IN . Then as n → ∞, B̂
1/2
n (θ̂n − θ0)

d−→ N(0, Ip), and a
100(1−α)% asymptotic confidence region of θ0 is given by {θ : (θ− θ̂n)T B̂n(θ−
θ̂n) ≤ χ2

p;1−α}, where χ2
p;1−α is the 100(1 − α) percentile of a χ2

p distribution.

Similar to Theorem 2, we have the following results for the MCLEs.

Corollary 4. Assume that the conditions of Corollary 2 hold except that (A.2′)
holds for some q > 2. Define B∗

n ≡ var(
∑|Λ∗

n|
i=1 b(n)(s∗n,i;θ0)), n ∈ IN . Assume

(A.5′)
1

c′B∗
nc

|Λ∗
n|∑

i=1

E

((
cT b(n)(s∗n,i;θ0)

)2
∣∣∣∣F∗

n,i−1

)
p−→1, as n→∞, for all ‖c‖=1.

Then as n → ∞, (B∗
n)1/2(θ̂

∗
n −θ0)

d−→ N(0, Ip). Moreover, θ̂n is asymptotically
efficient.

3.3. Mixing conditions sufficient for consistency and asymptotic nor-
mality of the maximum composite likelihood estimator

In this section, we show that under a certain mixing condition a solution θ̂
∗
n

of the composite-likelihood equation, ∂l∗n(θ)/∂θ = 0, is consistent and asymp-
totically normal. We also introduce Dobrushin’s condition, which can be used to
ensure this mixing condition.

Consider a random field Z(D), D ⊂ ZZd. Let FZ
B denote the σ-algebra

generated by Z(B) for B ⊂ D. The strong-mixing coefficients for Z(D) are
defined as

αZ
m,l(n) ≡ sup {αZ(B1, B2) : |B1| ≤ m, |B2| ≤ l, d(B1, B2) ≥ n, B1, B2 ⊂ D} ,

(7)
where n ∈ IN , m, l ∈ IN∪{∞}, and αZ(B1, B2) ≡ sup{|P (A1∩A2)−P (A1)P (A2)|
: A1 ∈ FZ

B1
, A2 ∈ FZ

B2
}. For m, l ∈ IN , let m∧l ≡ min{m, l}. We use the following

Proposition (Doukhan (1994, Chapter 1, Theorem 1)).

Proposition 3. Consider a random field Z(D), D ⊂ ZZd. Assume there is a
δ > 0 such that E

(
|Z(s)|2+δ

)
< ∞ and E (Z(s)) = 0, for s ∈ D. If

∑∞
n=1(n +

1)2d−1[αZ
1,1(n)]δ/(2+δ) < ∞, then there is a constant C > 0, depending only on

{αZ
1,1(n) : n ∈ IN}, such that E(|∑s∈B Z(s)|2) ≤ C

∑
s∈B{E(|Z(s)|2+δ)}2/(2+δ)

for any finite set B ⊂ D.

Applying the Markov inequality, we have the following.
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Corollary 5. Suppose the assumptions of Proposition 3 hold. Let {Bn : n ∈ IN}
be an increasing sequence of finite subsets of D such that |Bn| → ∞, as n → ∞.
If sups∈∪Bn

E(|Z(s)|2+δ) < ∞, then as n → ∞, 1
|Bn|

∑
s∈Bn

Z(s)
p−→ 0.

Dobrushin’s condition for spatial mixing is given as follows.

Definition 4. Consider a random field Z(D), D ⊂ ZZd. Let πZ
s (·|x) denote

the conditional probability measure of Z(s) given that Z (D \ {s}) = x, and
let ‖ν‖var denote the total variation norm of a signed measure ν. For s ∈
D, t ∈ D \ {s}, let γZ

s,t ≡ 1
2 supx,x̃ ‖πZ

s (·|x) − πZ
s (·|x̃)‖var, where the sup is

taken over all configurations x and x̃ identical except at site t. Then a random
field Z(D) is said to satisfy Dobrushin’s condition (Dobrushin (1968)) if Γ ≡
sups∈D

∑
t∈D\{s} γZ

s,t < 1.

We need one more definition before we establish the lemmas that are used
to prove Theorem 3 below.

Definition 5. A random field Z(D), D ⊂ ZZd, is said to be k-Markovian,
where k > 0 is an integer, if p (z(V )|z(U)) = p (z(V )|z((V )k)) for any finite
set V ⊂ D, and for any finite set U such that (V )k ⊂ U ⊂ D \ V , where
(V )k ≡ {s ∈ D \ V : d(s, V ) ≤ k}.

Under Dobrushin’s condition, we can prove the following two results for
strong-mixing coefficients. The first one can be found in Guyon (1995, Theo-
rem 2.1.3) and Doukhan (1994, Section 2.2.2), and the second follows directly
from the first (see the Appendix).

Lemma 1. Assume a random field Z(D), D ⊂ ZZd, satisfies Dobrushin’s condi-
tion. If Z(D) is k-Markovian, then there exist positive constants C1 and C2 such
that for any n ∈ IN and m, l ∈ IN ∪{∞}, αZ

m,l(n) ≤ C1(m∧ l) exp(−C2n), where
αZ

m,l(n) is given by (7).

Lemma 2. Assume a random field Z(D), D ⊂ ZZd, satisfies Dobrushin’s con-
dition and is k-Markovian. For each s ∈ D, let W (s) ≡ fs (Z(Vs)) for some
measurable functions fs : IR|V | → IR, where Vs ≡ (V + s) ∩D. Then there exist
positive constants C3 and C4 such that for any n ∈ IN and m, l ∈ IN ∪ {∞},
αW

m,l(n) ≤ C3(m ∧ l) exp(−C4n), where αW
m,l(n) is defined by (7).

The asymptotic normality of MCLEs for POMMs can be established under
some regularity conditions, including Dobrushin’s condition, which are relatively
easy to check.

Theorem 3. Let Z(ZZd) be a POMM with lower set L∗. Assume (A.1′) holds
and (A.2′) holds for some q > 4. Suppose the random field Z(ZZd \ L∗) satisfies
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Dobrushin’s condition, sup{diam (adjl s ∪ {s}) : s ∈ ZZd \ L∗} ≤ k < ∞, and

lim inf
n→∞

1
|Λ∗

n|
cT B∗

nc > 0, (8)

for all ‖c‖ = 1, where B∗
n ≡ var(

∑|Λ∗
n|

i=1 b(n)(s∗n,i;θ0)), n ∈ IN . Then
(i) There exists a solution θ̂

∗
n of the composite-likelihood equation, ∂l∗n(θ)/∂θ =

0, such that as n → ∞, θ̂
∗
n

p−→ θ0.
(ii) As n → ∞, (B∗

n)1/2
(
θ̂
∗
n − θ0

)
d−→ N(0, Ip), and θ̂n is asymptotically effi-

cient.
(iii) If, in addition, (A.4′) holds, then with probability tending to 1, θ̂

∗
n is the

maximum composite likelihood estimator.

4. Example: Conditional Binomial Distributions

Consider the poset (ZZ2,≺) with partial order defined by the adjacent lower
neighbors as follows:

adjl (u, v)={(u − 1, v), (u − 1, v − 1), (u, v − 1), (u + 1, v − 1)}, (u, v)T ∈ ZZ2.

This type of dependence was used by Cressie and Davidson (1998) and Davidson
et al. (1999) for the analysis of textures on a finite, rectangular array of pixels.
Suppose that the POMM is defined by

Z(u, v)|Z(adjl (u, v)) ∼ Bin

(
G − 1,

exp(Tu,v(θ))
1 + exp(Tu,v(θ))

)
,

where G ∈ {2, 3, . . .} is the number of grey levels, and Tu,v(θ) ≡ θT H(u, v)
with the vector of parameters θ ≡ (β0, β1, β2, β3, β4)T and H(u, v) ≡ (1, Z(u −
1, v), Z(u − 1, v − 1), Z(u, v − 1), Z(u + 1, v − 1))T . Let Λn = {(u, v) : 0 ≤
u ≤ n, 0 ≤ v ≤ n, u, v ∈ ZZ}, n ∈ IN . Then {Λn : n ∈ IN} is a sequence
of finite subsets of ZZ2 that satisfy (1) with Λ∗

n ≡ {s ∈ Λn : adjl s ⊂ Λn} =
{(u, v) : 1 ≤ u ≤ n − 1, 1 ≤ v ≤ n, u, v ∈ ZZ} , n ∈ IN. Hence, (4) can be written
as

l∗n(θ)=
∑

(u,v)∈Λ∗
n

{
log

(
CG−1

Z(u,v)

)
+Z(u, v)Tu,v(θ)−(G − 1) log (1+exp(Tu,v(θ)))

}
,

where CG−1
Z(u,v) ≡ (G − 1)!/ {(Z(u, v))!(G − 1 − Z(u, v))!}. The first and second

partial derivatives of p (z(u, v)|z(adjl (u, v));θ) can be calculated as

b(n)(u, v;θ) =

(
Z(u, v) − (G − 1)

exp(Tu,v(θ))
1 + exp(Tu,v(θ))

)
H(u, v), (u, v)T ∈ ZZ2,

A(n)(u, v;θ) =
−(G − 1) exp(Tu,v(θ))
(1 + exp(Tu,v(θ)))2

H(u, v)H(u, v)T , (u, v)T ∈ ZZ2.
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To prove the consistency and asymptotic normality of θ̂
∗
n, we use Theorem 3.

It is easy to check that all the assumptions are satisfied if Dobrushin’s condition
holds. Not surprisingly, further restrictions are needed on the spatial-dependence
parameters for the model to satisfy Dobrushin’s condition. An example for G = 2
is displayed in Figure 1, which shows the values of Γθ for different values of θ =
(β0, β1, β2, β3, β4)T , where Γθ is defined in Definition 4. Recall that Dobrushin’s
condition is satisfied if and only if Γθ < 1 and notice how this region changes as
certain parameters are varied while others are held fixed.

As a result of Theorem 3, we may conclude that the maximum composite
likelihood estimator θ̂

∗
n is consistent, asymptotically normal, and asymptotically

efficient, provided Dobrushin’s condition is satisfied.
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Appendix

This appendix contains proofs of the results stated in Section 3.

Proof of Proposition 2. Let S′
n,kn

=
∑kn

i=1 Xn,iI(|Xn,i| ≤ kn), n ∈ IN . Since
P (Sn,kn 
= S′

n,kn
) ≤ ∑kn

i=1 P (|Xn,i| > kn) → 0 as n → ∞, we only have to show

that S′
n,kn

/kn
p−→ 0 as n → ∞. On account of (ii), it suffices to prove that as

n → ∞,

1
kn

kn∑
i=1

{
Xn,iI(|Xn,i| ≤ kn) − E

(
Xn,iI(|Xn,i| ≤ kn)|Fn,i−1

)}
p−→ 0.

This follows from (iii) by using Chebyshev’s inequality.

Proof of Corollary 1. It is sufficient to show that Conditions (i), (ii), and (iii)
of Proposition 2 hold. First, note that supn,i E|Xn,i|1+δ < ∞ for some δ > 0
implies that {Xn,i : n ∈ IN, i = 1, . . . , kn} is uniformly integrable. So as n → ∞,
kn∑
i=1

P (|Xn,i| > kn) ≤ sup
i

knP (|Xn,i| > kn) ≤ sup
i

E
(
|Xn,i|I (|Xn,i| > kn)

)
→ 0,

and

P

(∣∣∣∣ 1
kn

kn∑
i=1

E
(
Xn,iI (|Xn,i|≤kn)

∣∣∣Fn,i−1

)∣∣∣∣>ε

)
≤ 1

εkn

kn∑
i=1

E
(
|Xn,i|I (|Xn,i|>kn)

)

≤ 1
ε

sup
i

E
(
|Xn,i|I (|Xn,i|>kn)

)
→0.
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Figure 1. Three-dimensional plots and contour plots of Γθ (where Γθ is de-
fined in Definition 4, except that now the parameter θ is featured) versus β1

and β3. Dobrushin’s condition is satisfied if and only if Γθ < 1; the contour
Γθ = 1 is made bold in the plots. (a), (b): β0 = −3, β2 = 0, β4 = 0; (c),
(d): β0 = 0, β2 = 0, β4 = 0; (e), (f): β0 = 3, β2 = 0, β4 = 0.
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This establishes Conditions (i) and (ii) of Proposition 2. Now

1
k2

n

kn∑
i=1

{
E
(
Xn,iI(|Xn,i| ≤ kn)

)2 − E
(
E(Xn,iI(|Xn,i| ≤ kn)|Fn,i−1))

)}

≤ 1
k2

n

kn∑
i=1

{
E
(
Xn,iI(|Xn,i| ≤ kn)

)2
}

≤ 1
k2

n

kn∑
i=1

{
k1−δ

n E
(
Xn,iI(|Xn,i| ≤ kn)

)1+δ
}

≤ 1
kδ

n

sup
n,i

E |Xn,i|1+δ → 0, as n → ∞,

so Condition (iii) of Proposition 2 is satisfied.

Proof of Theorem 1. By Proposition 1 and Corollary 1, Assumption (A.2)
implies that, as n → ∞,

1
|Λn|

|Λn|∑
i=1

b(n)(sn,i;θ0)
p−→ 0, (9)

where {sn,i} is given by (2). Recall from (5) that for each n ∈ IN ,

∂ln(θ)
∂θ

=
|Λn|∑
i=1

b(n)(sn,i;θ0) +
|Λn|∑
i=1

{
Ã

(n)
(sn,i;θ0,θ) − A(n)(sn,i;θ0)

}
(θ − θ0)

+
|Λn|∑
i=1

A(n)(sn,i;θ0)(θ − θ0).

Pre-multiplying by 1
|Λn|(θ − θ0)T , then (9) and Assumptions (A.1) and (A.3)

together imply there exists ∆ > 0 such that, as n → ∞, P{sup‖θ−θ0‖=δ
1

|Λn|(θ −
θ0)T

∂ln(θ)

∂θ
< 0} → 1, for any 0 < δ < ∆. It follows from Lemma 2 of Aitchison

and Silvey (1958) that as n → ∞, P{∂ln(θ)

∂θ
has a zero at θ̂n such that ‖θ̂n −

θ0‖ < δ} → 1, for any 0 < δ < ∆. Therefore, θ̂n
p−→ θ0 as n → ∞. Moreover,

if Assumption (A.4) holds, then with probability tending to 1, θ̂n is the point of
the global maximum of ln(θ), and hence the MLE.

Proof of Theorem 2. From Assumption (A.3), we have

lim inf
n→∞

{
inf

‖c‖=1
cT
(

1
|Λn|Bn

)
c

}
≥ ε, (10)
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for some ε > 0. It follows that Bn is positive-definite for large n. Moreover,
Assumptions (A.1) and (A.3) imply that the inverse of

∑
Λn

Ã
(n)

(s;θ0, θ̂n) exists
with probability tending to 1. Therefore, with probability tending to 1,

B1/2
n (θ̂n − θ0)

= B1/2
n

{
−

|Λn|∑
i=1

Ã
(n)

(sn,i;θ0, θ̂n)

}−1{ |Λn|∑
i=1

b(n)(sn,i;θ0)

}

=

{
B−1/2

n

(
−

|Λn|∑
i=1

Ã
(n)

(sn,i;θ0, θ̂n)

)
B−1/2

n

}−1{
B−1/2

n

|Λn|∑
i=1

b(n)(sn,i;θ0)

}
.

Applying Slutsky’s Theorem it is enough to show that, as n → ∞,

{
B−1/2

n

(
−

|Λn|∑
i=1

Ã
(n)

(sn,i;θ0, θ̂n)

)
B−1/2

n

}−1
p−→ Ip, (11)

B−1/2
n

|Λn|∑
i=1

b(n)(sn,i;θ0)
d−→ N(0, Ip). (12)

It follows from (10) that the largest eigenvalue of ( 1
|Λn|Bn)−1/2 is bounded above

as n tends to ∞. Therefore by Assumptions (A.1) and (A.5), Proposition 1 and
Corollary 1,

B−1/2
n

{
−

|Λn|∑
i=1

Ã
(n)

(sn,i;θ0, θ̂n)

}
B−1/2

n − Ip

= B−1/2
n

{
−

|Λn|∑
i=1

Ã
(n)

(sn,i;θ0, θ̂n) − Bn

}
B−1/2

n

=
(

1
|Λn|Bn

)−1/2
{

−1
|Λn|

|Λn|∑
i=1

(
Ã(sn,i;θ0, θ̂n) − A(n)(sn,i;θ0)

)}( 1
|Λn|Bn

)−1/2

+
(

1
|Λn|Bn

)−1/2
{

1
|Λn|

|Λn|∑
i=1

(
A(n)(sn,i;θ0) − E

(
A(n)(sn,i;θ0)

∣∣∣∣Fn,i−1

))}

·
(

1
|Λn|Bn

)−1/2

+B−1/2
n

{
−

|Λn|∑
i=1

E
(
A(n)(sn,i;θ0)

∣∣∣Fn,i−1

)
− Bn

}
B−1/2

n
p−→0,

as n → ∞.

This gives (11). It remains to prove (12). It is not difficult to show that Assump-



ASYMPTOTIC PROPERTIES OF MLES FOR POMMS 1341

tion (A.2) with q > 2 implies the following Lindeberg condition:

1
c′Bnc

|Λn|∑
i=1

E

(∣∣∣cT b(n)(sn,i;θ0)
∣∣∣2 I

(∣∣∣cT b(n)(sn,i;θ0)
∣∣∣2≥ε(c′Bnc)

)∣∣∣∣Fn,i−1

)
p−→0

(13)
as n → ∞, for all ‖c‖ = 1 and any ε > 0. By Assumption (A.5), (13), and
the Central Limit Theorem for a martingale array (e.g., Durrett and Resnick
(1978, Theorem 2.3)), we have (cT Bnc)−1/2∑|Λn|

i=1 cT b(n)(sn,i;θ0)
d−→ N(0, 1) as

n → ∞, for all ‖c‖ = 1. It follows that B−1/2
n

∑|Λn|
i=1 b(n)(sn,i;θ0)

d−→ N(0, Ip)
as n → ∞, by the Cramer-Wold device (see Cramer and Wold (1936); Durrett
(1991)).

Proof of Corollary 3. Using the same arguments as for (11) in the proof of
Theorem 2, it can be shown that B−1/2

n B̂nB−1/2
n

p−→ Ip as n → ∞. It follows

that B̂
1/2
n B−1/2

n
p−→ Ip as n → ∞. By Slutsky’s Theorem we have, as n → ∞,

B̂
1/2
n (θ̂n − θ0) = (B̂

1/2
n B−1/2

n )B1/2
n (θ̂n − θ0)

d−→ N(0, Ip), (θ̂n − θ0)T B̂n(θ̂n −
θ0)

d−→ χ2
p. This completes the proof.

Proof of Corollary 4. The asymptotic normality can be obtained using the
same arguments as in the proof Theorem 2. We therefore give only a proof for
the asymptotic efficiency of θ̂

∗
n. First, note that Bn ≡ var(

∑
s∈Λn

b(n)(s;θ0))
= −E(

∑
s∈Λn

A(n)(s;θ0)) = −E(
∑

s∈En
A(n)(s;θ0) +

∑
s∈Λ∗

n
A(n)(s;θ0)) =

−E(
∑

s∈En
A(n)(s;θ0)) + B∗

n, n ∈ IN. From (10) in the proof of Theorem 2, the
smallest eigenvalue of 1

|Λn|Bn is bounded away from zero for large n and, since
1

|Λn|E(
∑

s∈En
A(n)(s;θ0)) ≤ 1

|Λ|
∑

s∈En
E(b(n)(s;θ0)(b(n)(s;θ0))T ) → 0, as n →

∞, we have B−1
n B∗

n → In as n → ∞. So

B1/2
n

{
θ̂
∗
n − θ0 − B−1

n

|Λn|∑
i=1

b(n)(sn,i;θ0)

}

=B1/2
n

{
−

|Λ∗
n|∑

i=1

Ã
(n)

(s∗n,i;θ0, θ̂
∗
n)

}−1{ |Λ∗
n|∑

i=1

b(n)(s∗n,i;θ0)

}
−B−1/2

n

|Λn|∑
i=1

b(n)(sn,i;θ0)

=(B∗
n)1/2

{
−

|Λ∗
n|∑

i=1

Ã
(n)

(s∗n,i;θ0, θ̂
∗
n)

}−1{ |Λ∗
n|∑

i=1

b(n)(s∗n,i;θ0)

}

−(B∗
n)−1/2

|Λ∗
n|∑

i=1

b(n)(s∗n,i;θ0) + op(1)

=

{
(B∗

n)1/2

(
−

|Λn|∑
i=1

Ã
(n)

(s∗n,i;θ0, θ̂
∗
n)

)−1

(B∗
n)1/2 − Ip

}
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·
{

(B∗
n)−1/2

|Λ∗
n|∑

i=1

b(n)(s∗n,i;θ0)

}
+ op(1)

p−→ 0.

That is, θ̂n is asymptotically efficient (see Basawa and Rao (1980, Section 7.2.4);
Rao (1973, Section 5c.2)).

Proof of Lemma 2. Consider any finite set B ⊂ D. Let B∗ ≡ ∪s∈BVs. Then
FW

B ⊂ FZ
B∗ , since W (s) ≡ fs(Z(Vs)), s ∈ D. Assume that diam V = v. Suppose

B1, B2 ⊂ D with |B1| ≤ m, |B2| ≤ l, and d(B1, B2) ≥ n ≥ v. Let B∗
i ≡ ∪s∈BiVs,

i = 1, 2. Then |B∗
1 | ≤ mv, |B∗

2 | ≤ lv, and d(B∗
1 , B∗

2) ≥ n − v + 1. So, by
Lemma 1, αW

m,l(n) ≤ αZ
mv,lv(n− v + 1) = C1{(mv)∧ (lv)} exp{−C2(n− v + 1)} =

C3(m ∧ l) exp(−C4n), for some positive constants C1, C2, C3 and C4. This
completes the proof.

Proof of Theorem 3. By Corollary 2 and Corollary 4, it suffices to prove (A.3′)
and (A.5′). Since sup{diam (adjl s ∪ {s}) : s ∈ ZZd \ L∗} ≤ k, it follows that
Z(ZZd \ L∗) is k-Markovian. For any ‖c‖ = 1, define

F (s) ≡
{

cT A(n)(s∗n,i;θ0)c − E
(
cT A(n)(s∗n,i;θ0)c

)
, if s = s∗n,i ∈ ∪Λ∗

n,

0, otherwise.

Then by Lemma 2 we have for all n ∈ IN ,

αF
1,1(n) ≤ r1 exp(−nr2), (14)

for some positive constants r1 and r2. Also by (A.2′) (with q > 4), for any
‖c‖ = 1 we have

sup
s∈∪Λ∗

n

E
(
|F (s)|q/2

)
< ∞. (15)

Applying Corollary 5 to {F (s) : s ∈ ∪Λ∗
n}, (14) and (15) imply that as n → ∞,

1
|Λ∗

n|
|Λ∗

n|∑
i=1

{
cT A(n)(s∗n,i;θ0)c − E

(
cT A(n)(s∗n,i;θ0)c

)}
p−→ 0 (16)

for all ‖c‖ = 1. Since lim infn→∞ 1
|Λ∗

n|c
T B∗

nc is a continuous function of c, and {c :

‖c‖ = 1} is a compact set of IRp, by (8) we have inf‖c‖=1 lim infn→∞ 1
|Λ∗

n|
∑|Λ∗

n|
i=1

E(−cT A(n)(s∗n,i;θ0)c) = inf‖c‖=1 lim infn→∞ 1
|Λ∗

n|c
T B∗

nc = δ > 0. It follows that

as n → ∞, P{ −1
|Λ∗

n|
∑|Λ∗

n|
i=1 (cT A(n)(s∗n,i;θ0)c) > δ

2} → 1 for all ‖c‖ = 1. This
proves (A.3′). Similarly, for any ‖c‖ = 1, define

G(s)≡

E

((
cT b(n)(s∗n,i;θ0)

)2
∣∣∣∣F∗

n,i−1

)
−E

(
cT b(n)(s∗n,i;θ0)

)2
, if s=s∗n,i∈∪Λ∗

n,

0, otherwise.
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Applying Corollary 5 to {G(s) : s ∈ ∪Λ∗
n} as in the proof for (16), we obtain as

n → ∞, 1
|Λ∗

n|
∑|Λ∗

n|
i=1 {E(cT b(n)(s∗n,i;θ0)|F∗

n,i−1) − cT B∗
nc} p−→ 0, for all ‖c‖ = 1.

It follows that as n → ∞, 1
cTB∗

nc
∑|Λ∗

n|
i=1 {E(cT b(n)(s∗n,i;θ0)|F∗

n,i−1) − cT B∗
nc} =

|Λ∗
n|

cT B∗
nc

1
|Λ∗

n|
∑|Λ∗

n|
i=1 {E(cT b(n)(s∗n,i;θ0)|F∗

n,i−1) − cT B∗
nc} p−→ 0 for all ‖c‖ = 1.

This proves (A.5′) and completes the proof.
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