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Abstract: A two-stage symmetric regression quantile is considered as an alternative

for estimating the population quantile for the simultaneous equations model. We in-

troduce a two-stage symmetric trimmed least squares estimator (LSE) based on this

quantile. It is shown that, under mixed multivariate normal errors, this trimmed

LSE has asymptotic variance much closer to the Cramér-Rao lower bound than

some usual robust estimators. It can even achieve the Cramér-Rao lower bound

when the contaminated variance goes to infinity. This suggests that the symmetric-

type quantile function is as efficient in other statistical applications, such as outlier

detection. A Monte Carlo study under asymmetric error distribution and a real

data analysis are also presented.
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1. Introduction

The two-stage LSE, developed by Anderson and Rubin (1949) in the simul-
taneous equations model, is highly efficient under certain conditions. However, in
the presence of heavy-tail errors, the two-stage LSE’s efficiency can be markedly
reduced. To overcome this, some robust techniques have been applied. Amemiya
(1982) and Powell (1983) investigated the large sample property of a two-stage
�1-norm estimator. Krasker (1985) considered a two-stage bounded influence
estimator. Chen and Portnoy (1996) applied the regression quantile technique
of Koenker and Bassett (1978) to develop a two-stage trimmed LSE. However,
from the comparison of the estimator’s asymptotic variance with the Cramér-
Rao (C-R) lower bound under mixed normal distributions (shown in Table 1
of this paper), the existing robust estimators are not really efficient under such
heavy-tail errors. Is there an efficient technique for identifying outliers so that
the corresponding trimmed LSE is efficient in such a way that the asymptotic
variances are much closer to the C-R lower bound than the usual robust estima-
tors?
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On the basis of trimmed means for the location model (Kim (1992)) and the
linear regression model (Chen and Chiang (1996)), a symmetric-type two-stage
quantile for the simultaneous equations model is introduced. Then the two-stage
symmetric trimmed LSE based on this symmetric quantile is introduced. It is
observed that under mixed multivariate normal errors this two-stage symmetric
trimmed LSE has asymptotic variance much closer to the C-R lower bound than
the usual robust estimators. Moreover, when the contaminated variances tend
to infinity, the asymptotic variance of this estimator achieves the C-R lower
bound. In a Monte Carlo study under asymmetric distributions and an analysis of
Australian wine data, the symmetric trimmed LSE produces satisfactory results.
We note here that other research on the efficiency and high breakdown point
estimation has also been done; see for example, He, Jureckova, Koenker and
Portnoy (1990) and Coakley and Hettmansperger (1993).

2. Two-Stage Symmetric Trimmed Least Squares Estimator

Consider the simultaneous equations model

y = β01n + Y1β1 + Z1β2 + λ, (2.1)

where Y = (y, Y1) is an n × p0 observation matrix of p0 endogenous variables
(i.e., dependent variables), Z1 is an n × (p1 − 1) observation matrix of p1 − 1
exogenous variables (i.e., independent variables), λ is a vector of independent
and identically distributed (i.i.d.) disturbance variables, and 1n is an n-vector of
1’s. We are interested in the estimation of the parameters β = (β′1, β0, β

′
2)

′.
Let Y follow a multivariate regression model Y = ZΠ + V , known as the

reduced form of the simultaneous equations model, where Z = (1n, Z1, Z2) is the
set of all exogenous variables, Z2 is an n × p2 matrix, and the rows of V are
i.i.d. random vectors of variables v1, . . . , vp0 with an unknown joint distribution
function. Let Π = (π1,Π2) and V = (V1, V2) be partitioned to correspond with
the dimension of (y, Y1). Then the reduced form can be represented as

(y, Y1) = Z(π1,Π2) + (V1, V2). (2.2)

In two-stage estimation of the model parameters in (2.1), the first stage is the
estimation of Π2 in (2.2) by an initial estimator Π̂2. Define Ŷ1 = ZΠ̂2. From
equations (2.1), (2.2) and the identification condition (see, for example, Theil
(1971)) that V1 − V2β1 = λ, we have

y = Dnβ + U, (2.3)

where Dn = (ZΠ̂2, 1n, Z1) and U = V1 − Z(Π̂2 − Π2)β1. We also denote D̃n =
(ZΠ2, 1n, Z1). The second stage of the estimation is carried out from the above
induced model form.
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Let β̂I be an initial estimator of β for model (2.3). For 0 < γ < 1, we define
the γ-th symmetric type error quantile as

â(γ) = argmina>0

n∑
i=1

(|yi − d′iβ̂I | − a)(γ − I(|yi − d′iβ̂I | < a)). (2.4)

Let f1 be the marginal probability density function (p.d.f) of v1. For conve-
nience, denote f+

γ = f1(F̃−1
1 (γ))+f1(−F̃−1

1 (γ)), f−γ = f1(F̃−1
1 (γ))−f1(−F̃−1

1 (γ)),
and let v11, . . . , v1n be the elements of V1. A set of conditions on Z, Π̂2, β̂I and
the distribution of the error term, listed in the Appendix, is assumed to be true
throughout this paper. A representation of the error quantile term â(γ) is stated
in the following theorem.

Theorem 2.1. If 0 < γ < 1, then

n1/2(â(γ) − F̃−1
1 (γ)) = (f+

γ )−1{n−1/2
n∑

i=1

[γ − I(|v1i| < F̃−1
1 (γ))]

+f−γ θ
′n1/2(

[
Ip1

0p2×p1

]
(β̂I − β) + (Π̂2 − Π2)β1)} + op(1),

where F̃−1
1 (γ) satisfies P (−F̃−1

1 (γ) < v1 < F̃−1
1 (γ)) = γ, θ= limn→∞n−1∑n

i=1 zi,
where z′i is the i-th row of Z.

For 0 < γ < 1, a two-stage symmetric trimmed LSE β̂s(γ) is defined as
any vector b solving the standard equations (D′

nADn)b = D′
nAy, where A =

diag(ai : i = 1, . . . , n) with indicator function ai = I(d′iβ̂I − â(γ) < yi <

d′iβ̂I + â(γ)). This β̂s(γ) can also be formulated as β̂s(γ) = (D′
nADn)−D′

nAy

where B− is a generalized inverse of matrix B.
A representation of β̂s is given in the following theorem.

Theorem 2.2. If 0 < γ < 1, then

γΣn1/2(β̂s(γ) − β)

=

[
Ip1

0p2×p1

]′
[−γQ+ F̃−1

1 (γ)(f−γ )2(f+
γ )−1θθ′ + F̃−1

1 (γ)f+
γ Q]n1/2(Π̂2 − Π2)β1

+[F̃−1
1 (γ)(f−γ )2(f+

γ )−1θθ′
[

Ip1

0p2×p1

]′
+F̃−1

1 (γ)f+
γ

[
Ip1

0p2×p1

]′
Q]n1/2(β̂I−β)

+

[
Ip1

0p2×p1

]′
[F̃−1

1 (γ)f−γ (f+
γ )−1θn−1/2

n∑
i=1

(γ − I(|v1i| ≤ F̃−1
1 (γ)))

+n−1/2
n∑

i=1

ziv1iI(|v1i| ≤ F̃−1
1 (γ))] + op(1),
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where Q = limn→∞n−1Z ′Z and Σ = limn→∞n−1D̃′
nD̃n.

If the distribution function F1 is symmetric, then f−γ = 0, and β̂s(1−2α), 0 <
α < 0.5, has the following representation.

n1/2(β̂s(1 − 2α) − β) = ((1 − 2α)Σ)−1{
[

Ip1

0p2×p1

]′
[−(1 − 2α)Q

+2F−1
1 (1 − α)f1(F−1

1 (α))Q]n1/2(Π̂2 − Π2)β1

+2F−1
1 (1 − α)f1(F−1

1 (α))Σn1/2(β̂I − β)

+n−1/2
n∑

i=1

d̃iv1iI(|v1i| ≤ F−1
1 (1 − α))} + op(1). (2.5)

Is β̂s(1 − 2α) efficient enough for some choices of the first stage estimator Π̂2

and initial estimator β̂I? To answer this question, consider the decomposition
Π2 = (π2, π3, . . . , πp0) and, for a consistent use of symmetric type estimation, let
π̂j, j = 2, . . . , p0, be the symmetric trimmed mean of πj that uses the �1-norm
estimator as the initial estimator. The representation of π̂j (see Chen and Chiang
(1996)) is

n1/2(π̂j − πj) = Q−1n−1/2
n∑

i=1

ziψ(vji) + op(1), (2.6)

with ψ(vji) = (1 − 2α)−1(fj(F−1
j (α))F−1

j (1 − α)f−1
j (0)sgn(vji) + vjiI(|vji| ≤

F−1
j (1 − α))), where fj and Fj represent the p.d.f. and distribution function,

respectively, of vj . From (2.6), we have the following further representation of
β̂s(1 − 2α).

n1/2(β̂s(1 − 2α) − β)

=((1 − 2α)Σ)−1{n−1/2
n∑

i=1

d̃i(1,−β′1)(v1iI(|v1i| ≤ F−1
1 (1 − α)),

. . . , vp0iI(|vp0i| ≤ F−1
p0

(1 − α))′

+2F−1
1 (1 − α)f1(F−1

1 (1 − α))[

[
Ip1

0p2×p1

]′
Qn1/2(Π̂2 − Π2)β1

+Σn1/2(β̂I−β)]−
p0∑

j=2

fj(F−1
j (α))F−1

j (1−α)f−1
j (0)n−1/2

n∑
i=1

d̃isgn(vji)}+op(1).

The following theorem states an interesting property of this symmetric trimmed
LSE.

Theorem 2.3. Assume that the error vector (v1, . . . , vp0) has a mixed p0-variate
normal distribution

(1 − δ)Np0(0,Γ1) + δNp0(0, sΓ2), (2.7)
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where 0 < δ < 1, s > 0, and Γ1 and Γ2 are positive definite matrices. It is also
assumed that Π̂2 is the symmetric trimmed mean with �1-norm estimator and β̂I

has a representation with a bounded influence function. Then, as s → ∞, the
asymptotic covariance matrix of β̂s(1 − δ) achieves the C-R lower bound

n−1(1 − δ)−1(1,−β′1)Γ1(1, β′1)
′Σ−1. (2.8)

This is a property of efficiency that most robust estimators do not share. For
further comparison of a symmetric trimmed LSE with some robust estimators for
the simultaneous equations model, we let β̂I be the two-stage �1-norm estimator
with symmetric trimmed mean as the first-stage estimator of Π2. Then, from
Chen and Portnoy (1996, Theorem 3.1), we have the following result.

Corollary 2.4. If the distribution functions Fj , j = 1, . . . , p0 are symmetric, Π̂2

is the symmetric trimmed mean for the reduced form (2.2) with �1-norm initial
estimator, and β̂I is the two-stage �1-norm estimator, then

n1/2(β̂s − β) = Σ−1n−1/2
n∑

i=1

d̃i(1,−β′1)(ψ(v1i), . . . , ψ(vp0i))′ + op(1).

It is observed that the two-stage estimators, least squares, �1-norm, and
trimmed LSE based on the regression quantiles, and the symmetric trimmed LSE,
all have multivariate normal distributions with zero mean and covariance matrices
of the form σ2(α)Σ−1 where σ2(α) = (1,−β′1)Cov(ψ(v1), . . . , ψ(vp0))

′(1,−β′1)′ for
the two-stage symmetric trimmed LSE. Hence to compare the efficiencies of these
estimators one only needs to compare the values of σ2(α).

For a simple comparison, let us consider a simultaneous equations model
with p0 = 2 and p1 = 2 . The random error is assumed to have a contaminated

bivariate normal distribution (1 − δ)N2((
0
0
),

(
1 ρ
ρ 1

)
) + δN2((

0
0
),

(
s2 0
0 s2

)
).

The parameter values are set for ρ = .2, β1 = 1 and s = 3, 5, 10, 25 and ∞.
Table 1 provides the efficiencies of the two-stage LSE, two-stage �1 norm estima-
tor, two-stage trimmed LSE and two-stage symmetric trimmed LSE, where an
estimator’s efficiency is defined as (Asymptotic variance of estimator)/ (Cramer-
Rao lower bound).
Conclusions from the above table of asymptotic variances are the following.
(a) The two-stage LSE is not as efficient as the other three estimators, and per-

forms poorly as the contaminated variance becomes high. The inefficiency of
the two-stage LSE is due to the influence function being unbounded in the
space of error variables.
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(b) Except for the two-stage LSE, the other three estimators have influence func-
tions bounded in the space of the error variables (see Chen and Portnoy (1996)
and (2.5)), so their asymptotic variances are all bounded by a constant. How-
ever, it is seen that the two-stage �1-norm estimator is less efficient than the
two-stage trimmed LSE, which is in turn less efficient than the two-stage
symmetric trimmed LSE.

Table 1. Asymptotic variances and efficiencies of the two-stage estimators.

(δ, s) 2 stage 2 stage 2 stage 2 stage C-R
LSE �1 TLSE STLSE bound

(.1, 3)
3.24

(.599)
3.190
(.608)

2.689
(.721)

2.185
(.888)

1.941

(.1, 5)
6.44

(.293)
3.283
(.574)

2.805
(.672)

2.137
(.883)

1.887

(.1, 10)
21.44
(.085)

3.356
(.543)

2.893
(.630)

2.015
(.904)

1.823

(.1, 25)
126.4
(.014)

3.400
(.526)

2.947
(.607)

1.900
(.941)

1.789

(.1,∞)
∞

(.000)
3.423
(.519)

2.965
(.600)

1.777
(1)

1.777

(.2, 3)
4.88

(.474)
3.753
(.616)

3.270
(.707)

2.808
(.824)

2.314

(.2, 5)
11.28
(.196)

3.995
(.554)

3.545
(.625)

2.724
(.813)

2.216

(.2, 10)
41.28
(.050)

4.193
(.498)

3.765
(.555)

2.489
(.840)

2.092

(.2, 25)
251.2
(.008)

4.318
(.468)

3.902
(.518)

2.257
(.896)

2.024

(.2,∞)
∞

(.000)
4.383
(.456)

3.950
(.500)

2.000
(1)

2.000

(c) Except for the two-stage symmetric trimmed LSE, the asymptotic variances
of the other three estimators are not close to the C-R lower bound. As stated
in Theorem 2.3, the asymptotic variance of the two-stage symmetric trimmed
LSE achieves the C-R lower bound when the contaminated variance of the
mixed normal distribution reaches infinity.

(d) When s goes up, the asymptotic variance of the two-stage symmetric trimmed
LSE goes down like the C-R lower bound. This exceptional property does
not appear in the usual estimators, whether they are robust or not. It also
shows that the symmetric quantile â(λ) is a powerful outlier detector and
will serve as a good tool for other statistical applications.
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In order to study two-stage estimators for the simultaneous equations model
with asymmetric error distributions, we perform a Monte Carlo simulation for the
simple simultaneous equations model y = β0+β1y1+β2x1+β3x2+λ with reduced
form (y, y1) = (1, x1, x2)(Π1,Π2) + (v1, v2). We denote by (exp1(1), exp2(1)) a
vector of two independent exponential random variables with mean 1. We assume
that the error vector in the reduced form follows the mixed model

(v1, v2) = (1 − δ)

(√
1 − ρ2 ρ

0 1

)(
exp1(1) − 1
exp2(1) − 1

)
+ δs

(
exp1(1) − 1
exp2(1) − 1

)
.

This design ensures that (v1, v2) has an asymmetric distribution with mean 0,

drawn with probability (1−δ) from a distribution with covariance matrix

(
1 ρ
ρ 1

)
,

and with probability δ from a distribution with covariance matrix s2I2, where
large values of s may produce outliers.

We also design (Π1,Π2) such that βj = 0.5, j = 0, 1, 2, 3 and ρ = 0.3. More-
over, we take sample size n = 40 and samples (x1, x2) randomly generated from
a bivariate normal distribution. With 1000 replications, we generate the observa-
tions (y, y1, x1, x2), obeying the assumptions above, and compute the two-stage
�1 norm estimates, the trimmed LSE and the symmetric trimmed LSE. Tables
2, 3 and 4 display the results in terms of average mean squares errors (MSE).

Table 2. MSE for two-stage �1-norm estimator.

δ = 0 δ = 0.1 s = 5 s = 10 s = 20
s = 3

2.627 20.22 10.55 15.62 77.69

Table 3. MSE for two-stage trimmed LSE.

trim δ = 0 δ = 0.1 s = 5 s = 10 s = 20
percent s = 3

5% 0.383 0.343 1.166 0.528 0.593
10% 0.463 0.922 6.167 0.502 5.548
15% 1.115 0.417 1.318 0.701 2.894
20% 0.441 0.596 1.178 0.571 14.24
25% 11.49 1.018 0.395 0.492 1.337
30% 7.083 1.295 4.952 0.488 1.226

We have the following brief conclusions for the results in Tables 2, 3 and 4.

(a) The two-stage symmetric trimmed LSE is not only relatively more efficient
than the other two robust estimators, it is also more stable with respect to
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the number of observations being trimmed.
(b) The disadvantages of the other two estimators are that (1) the two-stage �1-

norm estimator estimates the population median, which is not identical to the
mean that we aim to estimate, and (2) the outliers produced by asymmetric
distributions are, in general, unbalanced with respect to the mean. This
makes the trimmed LSE with equal trimming percentage remove both bad
and good observations in the trimming process.

Table 4. MSE for two-stage symmetric trimmed LSE.

trim δ = 0 δ = 0.1 s = 5 s = 10 s = 20
# s = 3
4 0.081 0.121 0.133 0.508 0.991
5 0.083 0.129 0.147 0.517 1.530
6 0.081 0.113 0.141 0.509 1.214
7 0.078 0.124 0.148 0.504 1.384
8 0.072 0.136 0.147 0.438 1.205
9 0.074 0.123 0.140 0.554 1.392
10 0.077 0.125 0.143 0.439 1.059

3. An Example

In this section, the results obtained are contrasted with various estimates
on the wine industry data (see Maddala (1988)) of 20 observations in Australia
from the year 1955-1956 to 1974-1975. A reasonable demand model is

y1 = β0 + βpwy2 + βpbz1 + βdz2 + βez3 + λ

where all the variables are in logs. In this model, y1 and y2 are endogenous
variables representing consumption and the price of wine, respectively, whereas,
zi, i = 1, 2 and 3, are exogenous variables representing the price of beer, dispos-
able income, and advertising expenditure. According to the theory of economics,
it is anticipated that the true regression equation or the underlying main trend
that represents their relationship should have a negative sign for the parameter
βpw and a positive sign for βpb, βd and βe. There is an available instrumental
variable z4, which is the index for storage costs. Detailed specifications for this
model are given in Maddala (1988).

Maddala analyzed the data using the LSE and two-stage LSE (2SLS). Be-
sides these two nonrobust estimators, we carry out a comparison with sev-
eral robust estimators, all of whose first-stage estimators are based on the �1-
norm. These include the two-stage �1-norm estimator (2�1) and Huber’s M-
estimator (M) that solves the problem

∑n
i=1 ψ((y1i−d′ib)/k)di = 0, where ψ(a) =
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max(−1.25,min(a, 1.25)), k = k0/0.6745 and k0 is the median of the absolute val-
ues of the residuals based on 2�1. The estimates are listed in Table 5.

Two conclusions can be drawn from Table 5.
(a) It is quite obvious that the LSE, two-stage LSE and Huber’s M-estimate do

not catch the right trend since the signs of their estimates are partly wrong.
(b) The two stage �1-norm estimate finds the right trend in the data since the

signs of the estimates are as expected.

Table 5. Some estimates in the Australian data.

Estimates β0 βpw βpb βd βe

LSE -23.65 1.158 -0.275 3.212 -0.603
2SLS -26.19 0.643 -0.139 4.082 -0.985
M -27.84 0.511 0.088 4.333 -1.063
2�1 -25.87 -0.619 1.868 2.642 0.830

Tables 6 and 7 give the estimates, with various trimming proportions, of the
two-stage trimmed LSE based on regression quantiles and the two-stage symmet-
ric trimmed LSE.

Table 6. Two-stage trimmed LSE for the Australian data.

trim β0 βpw βpb βd βe

percent
0.05 -29.50 -4.088 -3.533 11.14 -3.776
0.10 -29.85 -3.496 -2.619 9.625 -2.666
0.15 -20.59 1.176 -0.306 2.382 0.008
0.20 -29.45 0.984 0.880 3.511 -0.534
0.25 -31.56 0.346 1.206 4.085 -0.573
0.30 -26.02 5.485 5.672 -4.699 3.162

Explanation and conclusion drawn from Tables 6 and 7.
(a) The two-stage trimmed LSE is computed by sequentially increasing the trim-

ming proportion α. Unfortunately, none of them give the signs suggested by
theory.

(b) The two-stage symmetric trimmed LSE is computed by removing observa-
tions with larger absolute residuals, with the number increasing sequentially.
After 6, 7, 9 or more observations are removed, the estimates match the
signs correctly. The symmetric type trimmed LSE is much better than the
trimmed LSE based on regression quantiles for this data set.

(c) The two-stage symmetric trimmed LSE with fifteen observations trimmed is
identical to 2�1. This illustrates the theorem (Theorem. 3.1) of Koenker and
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Bassett (1978) that a quantile can be formulated as the LSE in an observation
subset of size equal to the number of parameters, five in this example.

Table 7. Two-stage symmetric trimmed LSE for the Australian data.

trim β0 βpw βpb βd βe

#
4 -24.43 0.348 0.529 2.918 0.181
5 -23.77 0.086 0.552 2.919 0.277
6 -23.59 -0.297 0.504 3.264 0.123
7 -22.61 -0.569 0.766 2.959 0.441
8 -17.61 0.095 0.189 1.877 0.817
9 -18.37 -0.046 0.392 1.954 0.847
10 -21.17 -0.122 0.788 2.293 0.700
11 -16.60 -0.355 0.514 1.577 1.247
12 -21.17 -0.906 1.566 1.936 1.406
13 -23.30 -0.914 1.828 2.197 1.272
14 -25.18 -0.723 1.884 2.531 0.941
15 -25.87 -0.619 1.868 2.642 0.830
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Appendix

The following assumptions are similar to the standard ones for linear regres-
sion models as given in Koenker and Portnoy (1987) and Welsh (1987).
(a) Conditions concerning the matrix Z, estimators Π̂2 and β̂I are these.

(a.1) n−1∑n
i=1 z

4
ij = O(1) for all j, and n−1/4maxij|zij | = O(1);

(a.2) n−1∑n
i=1 zi = θ + o(1) and n−1Z ′Z = Q + o(1), where Q is positive

definite;

(a.3) Σ =

[
Ip1

0p2×p1

]′
Q

[
Ip1

0p2×p1

]
is a positive definite matrix;

(a.4) n1/2(Π̂2 − Π2) = Op(1) and n1/2(β̂I − β) = Op(1).
(b) Both f1 and f ′1 are bounded away from 0 in a neighborhood of F̃−1

1 (γ) for
γε(0, 1). Moreover, fj, and f ′j, j = 2, . . . , p0, are bounded away from 0 in a
neighborhood of F−1

j (0).

Proof of Theorem 2.1. Let H(t) = n−1/2∑n
i=1[γ − I(|v1i − n−1/2z′itn| <

n−1/2t0 + F̃−1
1 (γ))], where t = (t0, t′n)′. From Chen and Chiang (1996), we have,
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for k > 0,

H(T )−H(0)−n−1
n∑

i=1

(f1(F̃−1
1 (γ))(1, z′i)+f1(−F̃−1

1 (γ))(1,−z′i))T = op(1) (A.1)

for any random vector T with T = Op(1). Following Ruppert and Carroll (1980),
we have

n−1/2
n∑

i=1

[γ − I(|yi − d′iβ̂I | < â(γ)] = op(1). (A.2)

By rearrangement, the following equations hold:

y −Dnβ̂I = −n−1/2ZnTn + V1 (A.3)

with

Tn = n1/2(

[
Π̂2

Ip1

0p2×p1

]
(β̂I − β) + (Π̂2 − Π2)β1). (A.4)

We use the method of Jureckova (1977, proof of Lemma 5.2) and (A.1), to show
that for δ > 0 there exist positive values η, k and N0 such that

P (inf|t0|≥kn
−1/2|

n∑
i=1

[γ−I(|v1i−n−1/2z′iTn| < n−1/2t0+F̃−1
1 (γ))| < η) ≤ δ, (A.5)

where Tn is any sequence of random vectors with Tn = Op(1). Combining equa-
tions (A.2) and (A.5), we have

n1/2(â(γ) − F̃−1
1 (γ)) = Op(1). (A.6)

The theorem follows by combining equations (A.4), (A.6) and (A.1).

Proof of Theorem 2.2. From equation (2.3), β̂s can be formulated as

n−1(D′
nADn)(β̂s − β) = −n−1D′

nAZ(Π̂2 − Π2)β1 + n−1D′
nAV1.

From Jureckova (1984) we have

n−1(D′
nADn) = γΣ + op(1) and n−1D′

nAZ = γ

[
Ip1

0p2×p1

]′
Q+ op(1). (A.7)

The rest is to find a representation for the term n−1/2Z ′AV1 from n−1D′
nAV1 =

n−1

[
Π̂2

Ip1

0p2×p1

]′
Z ′AV1. From (A.3) and (A.4) we can see that

n−1/2Z ′AV1 = n−1/2
n∑

i=1

ziv1i{[I(v1i < n−1/2(1, z′i)(T0, T
′
n)′ + F̃−1

1 (γ))

−I(v1i < F̃−1
1 (γ))] − [I(v1i < n−1/2(−1, z′i)(T0, T

′
n)′ − F̃−1

1 (γ))

−I(v1i < −F̃−1
1 (γ))] + n−1/2

n∑
i=1

ziv1iI(|v1i| < F̃−1
1 (γ))},
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where Tn is defined as in (A.4) and T0 = n1/2(â(γ) − F̃−1
1 (γ)).

From Lemma 3.1 of Jureckova (1984) we have

n−1/2Z ′AV1 = F̃−1
1 (γ)(f1(F̃−1

1 (γ)) − f1(−F̃−1
1 (γ)))θn1/2(â(γ) − F̃−1

1 (γ))

+F̃−1
1 (γ)(f1(F̃−1

1 (γ)) + f1(−F̃−1
1 (γ)))Qn1/2[

[
Π̂2

Ip1

0p2×p1

]
(β̂I − β)

+(Π̂2 − Π2)β1] + n−1/2
n∑

i=1

ziv1iI(|v1i| < F̃−1
1 (γ)) + op(1).

Replacing n1/2(â(γ)− F̃−1
1 (γ)) with the representation in Theorem 2.1, by (A.7)

and condition (a.4), Theorem 2.2 is proved.

Proof of Theorem 2.3. Denote by gΓ1 and gs the p.d.f.′s of Np0(0,Γ1) and the
mixed distribution of (2.7), respectively. The C-R bound for β is

(1,−β′1)(Eg̃s

∂lng̃s(v1, . . . , vp0)
∂(v1, . . . , vp0)′

∂lng̃s(v1, . . . , vp0)
∂(v1, . . . , vp0)

)−1(
1

−β1
)(D̃′

nD̃n)−1

which converges to the matrix in (2.8) as s → ∞. On the other hand, the con-
taminated normal distribution at (2.7) satisfies vjfj(vj) → 0 as vj → ∞. Since
both Π̂2 and β̂I have bounded influence functions, the asymptotic covariance
matrix of β̂s(1 − δ) is

n−1(1 − δ)−2(1,−β′1)limn→∞EgΓ1
(v1I(|v1| ≤ F−1

1 (1 − δ/2), . . . , vp0I(|vp0 |≤F−1
p0

·(1 − δ/2))′(v1I(|v1|≤F−1
1 (1−δ/2), . . . , vp0I(|vp0 |≤F−1

p0
(1 − δ/2))(1,−β′1)′Σ−1.

As s → ∞, F−1
j (1 − δ/2) → ∞ for j = 1, . . . , p0. Then the above covariance

matrix reduces to (2.8). This proves the theorem.

References

Amemyia, T. (1982). Two stage least deviations estimators. Econometrica 50, 689-711.

Anderson, T. W. and Rubin, H. (1949). Estimation of the parameters of a single equation in a

complete system of stochastic equations. Ann. Math. Statist. 20, 46-63.

Bickel, P. J. (1975). One-step Huber estimates in the linear model. J. Amer. Statist. Assoc.

70, 428-433.

Chen, L.-A. and Portnoy, S. (1996). Regression quantiles and trimmed least squares estimators

for structural equations models. Commun. Statist. A 25, 1005-1032.

Chen, L.-A. and Chiang, Y. C. (1996). Symmetric quantile and trimmed means for location

and linear regression model. J. Nonparametr. Statist. 7, 171-185.

Coakley, C. W. and Hettmansperger, T. P. (1993). A bounded influence, high breakdown,

efficient regression estimator. J. Amer. Statist. Assoc. 88, 872-880.

He, X., Jureckova, J., Koenker, R. and Portnoy, S. (1990). Tail behavior of regression estimators

and their breakdown points. Econometrica 58, 1195-1214.



THE SYMMETRIC TYPE TWO-STAGE TRIMMED LEAST SQUARES 1255

Jureckova, J. (1977). Asymptotic relations of M-estimates and R-estimates in linear model.

Ann. Statist. 5, 464-472.

Jureckova, J. (1984), Regression quantiles and trimmed least squares estimator under general

design. Kybernetika 20, 345-357.

Kim, S. J. (1992). The metrically trimmed mean as a robust estimator of location. Ann. Statist.

20, 1534-1547.

Koenker, R. W. and Bassett, G. W. (1978). Regression quantiles. Econometrica 46, 33-50.

Koenker, R. W. and Portnoy, S. (1987). L estimation for linear model. J. Amer. Statist. Assoc.

82, 851-857.

Krasker, W. S. (1985). Two stage bounded-influence estimators for simultaneous equations

models. J. Business Economic Statist. 4, 432-444.

Maddala, G. S. (1988). Introduction to Econometrics. Macmillan, New York,

Powell, J. L. (1983). The asymptotic normality of two-stage least absolute deviations estimators.

Econometica 51, 1569-1576.

Ruppert, D. and Carroll, R. J. (1980). Trimmed least squares estimation in the linear model,

J. Amer. Statist. Assoc. 75, 828-838.

Theil, H. (1971). Principles of Econometrics. Wiley, New York.

Welsh, A. H. (1987). The trimmed mean in the linear model. Ann. Statist. 15, 20-36.

Institute of Statistics, National Chiao Tung University, 1001 Ta Hsueh Road, hsinchu 30050,

Taiwan.

E-mail: lachen@stat.nctu.edu.tw

Mathematics Department, Wabash College, Crawfordsville, IN 47933, U.S.A.

E-mail: thompsop@wabash.edu

(Received April 1998; accepted December 1999)


