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Abstract: In this paper we study the estimation of a quantile function based on left
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1. Introduction

In medical follow-up or in engineering life testing studies one may not be able
to observe the variable of interest, referred to hereafter as the lifetime. Among
the different forms in which incomplete data appear, right censoring and left
truncation are common. Left truncation may occur if the time origin of the
lifetime precedes the time origin of the study. Only those individuals that fail
after the start of the study are being followed, otherwise they are left truncated.
Those that are followed are further subject to right censoring during the follow-
up period. See for example, an AIDS study by Struthers and Farewell (1989)
where “lifetime” is the incubation period, and the truncation variable is the time
from infection until entry to the study. Formally, let (X,T, Y ) denote random
variables, where X is the lifetime with continuous distribution function (d.f.) F ,
T is the random left truncation time with arbitrary d.f. G, and Y is the random
right censoring time with arbitrary d.f. H. It is assumed that X,T, Y are mutually
independent and, without loss of generality, that they are nonnegative. In the
random left truncation and right censoring (LTRC) model one observes (Z, T, δ)
if Z ≥ T , where Z = X ∧ Y = min(X,Y ) and δ = I(X ≤ Y ) is the indicator of
censoring status. When Z < T nothing is observed. Let α ≡ P (T ≤ Z) > 0, and
let W be the d.f. of Z, i.e., 1−W = (1− F )(1−H). Let (Zi, Ti, δi), i = 1, . . . , n
be an independent and identically distributed (i.i.d.) sample of (Z, T, δ) which
is observed (i.e., Zi ≥ Ti). Let C(x) = P (T ≤ x ≤ Z | T ≤ Z) = α−1G(x)(1 −
W (x−)), and consider its empirical estimate Cn(x) = n−1∑n

i=1 I(Ti ≤ x ≤ Zi).
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For LTRC data, it is important to be able to obtain nonparametric estimates
of various characteristics of the distribution function F. Tsai, Jewell and Wang
(1987) gave the nonparametric maximum likelihood estimator of F itself, called
the product-limit (PL) estimator, as

F̂n(x) =

{
1 −∏Zi≤x

(
1 − [nCn(Zi)]−1

)δi , x < Z(n),

1, x ≥ Z(n),
(1.1)

where Z(n) = max(Z1, . . . , Zn). The properties of F̂n have been studied by Wang
(1987), Gu and Lai (1990), Lai and Ying (1991), Gijbels and Wang (1993), and
Zhou (1996), among others. Nonparametric estimates of the density and hazard
rate for F have been studied by Gijbels and Wang (1993), Sun and Zhou (1998),
Uzunoḡullari and Wang (1992), Gu (1995) and Sun (1997).

One characteristic of the distribution function F that is of interest is the
quantile function. It plays an important role in various statistical applications,
especially in data modeling, reliability and medical studies. Let Q(t) ≡ F−1(t) =
inf{x : F (x) ≥ t}, 0 < t < 1, be the quantile function of F. We focus here on
estimating the quantile function based on LTRC data.

A natural estimator of Q is the PL-quantile function defined as F̂−1
n (x) =

inf{u : F̂n(u) ≥ x}, 0 < x < 1. In case Q is a continuous function, it may be
more suitable to use a smooth estimator rather than the step function F̂−1

n , since
smoothing reduces random variation in the data and allows a better display
of interesting features of the lifetime distribution function. Numerous smooth
quantile function estimators have been proposed for complete samples. In the
censored model, Padgett (1986), Lio, Padgett and Yu (1986), Xiang (1995a, b)
studied kernel-type quantile function estimators. None of their results included
the case where both left truncation and right censoring are involved however. On
the other hand, Gürler, Stute and Wang (1993) provide a strong representation of
the empirical quantile function for left truncated data, together with asymptotic
normality and the Law of Iterated Logarithm (LIL), which can be easily extended
to the LTRC model. In this paper, for the LTRC model, we propose and study
the kernel quantile function estimator of the form

Q̂n(t) = h−1
n

∫ 1

0
F̂−1

n (x)K
(x − t

hn

)
dx, (1.2)

where K is a kernel function and {hn}n≥1 is a sequence of positive bandwidths
with hn → 0 as n → ∞.

The first aim of this article is to derive the asymptotic normality of the kernel
quantile function estimator. The quality of the approximation to the distribution
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of Q̂n is an important issue of both theoretical and practical interest (for example,
construction of confidence intervals based on the asymptotic normality). Thus we
also establish a Berry-Esseen type bound of Q̂n. A small Monte Carlo simulation
study shows that, for certain values of the bandwidth hn, Q̂n performs better
than F̂−1

n in the sense of having smaller estimated mean squared errors (MSE).
For any d.f. L, denote the left and right endpoints of its support by aL =

inf{x : L(x) > 0} and bL = sup{x : L(x) < 1}, respectively. In the current
model, as discussed by Gijbels and Wang (1993) and Zhou (1996), we assume
that aG ≤ aW , bG ≤ bW and

∫ ∞

aW

dF (x)
G2(x)

< ∞. (1.3)

Condition (1.3) requires that the left truncation is not too heavy. As for the
kernel function K(x), assume
(K1) K is of bounded variation with support [−1, 1];
(K2) K is Lipschitz continuous of order one;
(K3) For some integer r ≥ 2,

1
j!

∫
xjK(x)dx =




1 if j = 0,
0 if j = 1, . . . , r − 1,
cr �= 0 if j = r.

These assumptions are the usual ones encountered in the kernel method of curve
estimation, as in Padgett (1986) and Uzunoḡullari and Wang (1992).

This article is organized as follows. Main results are stated in Section 2.
Some simulation results are presented in Section 3. Proofs of the results are
deferred to the Appendix.

2. Main Results

We first give the asymptotic normality of Q̂n.

Theorem 1. Under (K1) and (K3), assume that F is r times continuously
differentiable in a neighborhood of Q(t) with F ′(Q(t)) = f(Q(t)) > 0, aw <

Q(t) < bw, where r is the same as that in (K3). If n1/2hr
n → 0 as n → ∞,

n1/2(Q̂n(t) − Q(t)) → N(0, σ2(t)) in distribution as n → ∞, (2.1)

where the variance is

σ2(t) =
(1 − t)2

f2(Q(t))

∫ Q(t)

aW

dF (x)
C(x)(1 − F (x))

. (2.2)
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To apply this result to make some standard inferences in hypothesis testing
and construction of confidence intervals, an estimator of the variance in (2.2)
is needed and a natural nonparametric estimator is given below. Let W1(x) =
P (Z ≤ x, δ = 1|T ≤ Z) = α−1

∫ x
−∞ G(u)(1 − H(u−))dF (u). Then it can be

checked that

σ2(t) =
(1 − t)2

f2(Q(t))

∫ Q(t)

aW

dW1(x)
C2(x)

. (2.3)

Thus σ2(t) can be estimated consistently by replacing the density f in (2.3) by a
density estimate from Gijbels and Wang (1993), and all other unknown quantities
in (2.3) by their empirical estimates.

We now give a Berry-Esseen type bound for Q̂n to assess the quality of the
normal approximation in Theorem 1.

Theorem 2. Under (K1), (K2) and (K3), assume that F is r-time contin-
uously differentiable in a neighborhood of Q(t) with F ′(Q(t)) = f(Q(t)) > 0,
aW < Q(t) < bW . If aG < aW and nh2

n/ log n → ∞ as n → ∞, there exists a
positive constant M = M(t) such that for all n ≥ 1,

sup
y

∣∣∣P{n1/2(Q̂n(t) − Q(t))≤yσ(t)}−Φ(y)
∣∣∣≤M

(
n−1/2h−1

n log n+n1/2hr
n+h1/2

n

)
,

(2.4)
where σ(t) is defined by (2.2).

3. Simulation Studies

A small Monte Carlo study was performed in order to provide some small-
sample comparisons of the kernel estimator Q̂n with the PL-quantile F̂−1

n in terms
of mean squared error. The study also provides some insight into the choices of
hn that might be used to estimate Q with smaller mean squared error than F̂−1

n .

For the LTRC model, the following cases are simulated.
(i) F (x) = 1 − exp(−x), H(x) = 1 − exp(−x) and G(x) = 1 − exp(−2x), with

50% censoring and 50% truncation respectively.
(ii) F (x) = 1− exp(−x), H(x) = 1− exp(−3x/7) and G(x) = 1− exp(−30x/7),

with 30% censoring and 25% truncation respectively.
The triangular density function K(x) = (1 − |x|)I(|x| ≤ 1) was used as

the kernel function for the estimator Q̂n. The ratio of the mean squared error
of F̂−1

n (t) to that of the smoothed estimator Q̂n(t) were computed for various
values of t ∈ (0, 1) and sample size n = 100. For each case, 1000 replications were
done on S-PLUS on a PC-pentium 200 computer. The simulations were run for
various values of hn and the results show that Q̂n gives reasonable performance
for hn ≤ 0.40 only. On the other hand, the results for hn below 0.10 do not vary
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much. Some of the simulation results for hn between 0.05 and 0.40 are presented
in Tables 1-2 below, and these show that, for each value t listed, there is a range
of window widths hn such that the estimator Q̂n has smaller estimated mean
squared error than the PL-quantile estimator. In particular, this is true for the
median estimators Q̂n(0.5) and F̂−1

n (0.5).
From a range of hn values, we found that hn = 0.15 comes close to giving the

smallest discrepancy between the kernel estimator and the quantile. Figures 1-2
show the plots of the quantile, kernel estimator Q̂n and the PL-quantile estimator
F̂−1

n with hn = 0.15, from which we see that Q̂n looks better than F̂−1
n except

for large values of t.
As one would expect for censoring, truncation and bound effect, the perfor-

mance of either estimator (Q̂n or F̂−1
n ) at large values of t is not as good as that

for values near 0.5.

Table 1. Ratios of mean squared errors for Case (i): 50% censoring and 50%
truncation (n = 100).

hn

t 0.05 0.07 0.09 0.12 0.15 0.20 0.25 0.30 0.35 0.40
0.10 1.056 1.086 1.095 1.128 1.185 1.243 1.225 1.144 1.023 0.886
0.25 1.054 1.065 1.076 1.094 1.114 1.149 1.183 1.216 1.236 1.224
0.50 1.077 1.082 1.098 1.103 1.129 1.140 1.151 1.138 1.046 0.997
0.75 1.126 1.149 1.153 1.145 1.132 1.101 1.044 1.134 1.410 1.654
0.90 1.353 1.433 1.517 1.724 1.897 1.431 0.926 0.749 0.594 0.401
0.95 1.138 1.040 0.907 0.642 0.499 0.383 0.326 0.292 0.269 0.254

Note: Ratio=MSE(F̂−1
n )/MSE(Q̂n).

Table 2. Ratios of mean squared errors for Case (ii): 30% censoring and 25%
truncation (n = 100).

hn

t 0.05 0.07 0.09 0.12 0.15 0.20 0.25 0.30 0.35 0.40
0.10 1.051 1.065 1.079 1.104 1.166 1.244 1.256 1.207 1.118 1.008
0.25 1.048 1.056 1.065 1.082 1.099 1.131 1.159 1.185 1.203 1.195
0.50 1.029 1.039 1.048 1.059 1.067 1.075 1.078 1.067 1.040 0.989
0.75 1.034 1.043 1.051 1.057 1.054 1.014 0.987 0.867 1.039 1.260
0.90 1.062 1.043 0.996 1.022 1.235 0.979 0.657 0.456 0.356 0.301
0.95 1.163 1.479 1.485 0.960 0.622 0.507 0.422 0.352 0.279 0.235

Note: Ratio=MSE(F̂−1
n )/MSE(Q̂n).
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Figure 1. Plots of PL-quantile and the kernel estimator for case (i) with
n = 50 and hn = 0.15.

Q
(t)

t

Figure 2. Plots of PL-quantile and the kernel estimator for case (ii) with
n = 50 and hn = 0.15.
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Appendix. Proofs of Theorems

First we present preliminary results needed in the proofs of the theorems.
Let

Ln(x) =
∫ x

aW

d[W1n(u) − W1(u)]
C(u)

−
∫ x

aW

Cn(u) − C(u)
C2(u)

dW1(u).

From Theorem 1 of Gijbels and Wang (1993) and Theorem 2 of Zhou (1996), we
have that for aW ≤ x ≤ b < bW ,

F̂n(x) − F (x) = (1 − F (x))Ln(x) + Rn(x), (A.1)

where
sup

aW ≤x≤b
|Rn(x)| = O(n−1 log1+β n) a.s. (A.2)

with β = 0 when aG < aW , and β > 1/2 when aG = aW .

Introduce the PL-process α̂n(x) = n1/2(F̂n(x)−F (x)). The following lemma,
of interest in its own right, provides a general version of the oscillation behavior
of α̂n.

Lemma A.1. Assume that F is Lipschitz continuous of order one on [c, d],
aW < c ≤ d < bW . Let {an, n ≥ 1} be a sequence of positive constants tending to
zero with nan/ log n → ∞ as n → ∞. Then

sup
c≤x,y≤d,|x−y|≤an

|α̂n(x)− α̂n(y)| = O
(
a1/2

n (log n)1/2
)
+O

(
n−1/2(log n)1+β

)
a.s.,

(A.3)
where β is defined in (A.2).

Proof. It follows from (A.1) that

n− 1
2 (αn(x) − αn(y)) = (1 − F (x))

∫ x

y

d[W1n(u) − W1(u)]
C(u)

+(F (y) − F (x))Ln(y)

−(1 − F (x))
∫ x

y

Cn(u) − C(u)
C2(u)

dW1(u)+(Rn(x) − Rn(y))

:=
4∑

i=1

Γni(x, y). (A.4)

First, by the continuity of F together with a partitioning argument similar to
that in Burke, Csörgő and Horváth (1988), it can be shown that

sup
c≤x,y≤d,|x−y|≤an

|Γn1(x, y)| = O
(
n−1/2a1/2

n (log n)1/2
)

a.s. (A.5)

Next, in view of (1.3), the process Ln(y) is the sum of two empirical processes over
V C classes of functions with square integrable envelope on [c, d], so it satisfies
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the LIL (see, e.g. Arcones and Giné (1995)), i.e., its sup over [c, d] is a.s. of
the order (n−1 log log n)1/2. Moreover, note that Cn − C is the difference of two
empirical processes and infc≤y≤d C(y) > 0. Therefore, using the LIL for empirical
processes, we obtain that for all n sufficiently large,

sup
c≤x,y≤d,|x−y|≤an

|Γni(x, y)| = O
(
n−1/2a1/2

n (log n)1/2
)

a.s., i = 2, 3, (A.6)

and by (A.2),

sup
c≤x,y≤d,|x−y|≤an

|Γn4(x, y)| = O
(
n−1 log1+β n

)
a.s. (A.7)

Lemma A.1 now follows from (A.4)–(A.7).

Proof of Theorem 1. The proof of Theorem 1 relies on the weak asymptotic
representation for the PL-quantile function F̂−1

n as given in (A.8) below.

Let aW < Q(t1) ≤ Q(t2) < bW . If F has a continuous and positive density f

on [Q(t1) − η,Q(t2) + η] for some η > 0, it follows from similar arguments as in
Gürler, Stute and Wang (1993) that, as n → ∞,

sup
t1≤t≤t2

∣∣∣∣∣F̂−1
n (t) − Q(t) − t − F̂n(Q(t))

f(Q(t))

∣∣∣∣∣ = op(n−1/2). (A.8)

Let Q̄n(t) = h−1
n

∫ 1
0 Q(x)K

(
x−t
hn

)
dx. Using (A.1) and (A.8), we get

Q̂n(t) − Q̄n(t) = n−1
n∑

i=1

∫ t+hn

t−hn

[−ϕi(Q(x))]
1

f(Q(x))hn
K
(x − t

hn

)
dx + op(n−1/2),

where

ϕi(x) = (1 − F (x))
[
I(Zi ≤ x, δi = 1)

C(Zi)
−
∫ x

aW

I(Ti ≤ u ≤ Zi)
C2(u)

dW1(u)
]
. (A.9)

Thus an application of Liapunov’s form of the Central Limit Theorem gives

n1/2(Q̂n(t) − Q̄n(t)) → N(0, σ2(t)) in distribution as n → ∞. (A.10)

Note that
Q̂n(t) − Q(t) =

[
Q̂n(t) − Q̄n(t)

]
+
[
Q̄n(t) − Q(t)

]
. (A.11)

It follows from a Taylor expansion that

Q̄n(t) − Q(t) =
hr

n

r!

∫ 1

−1
xrK(x)Q(r)(t + hnθx)dx
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for some 0 ≤ θ ≤ 1, where Q(r) is the rth derivative of Q. Thus

n1/2|Q̄n(t) − Q(t)| = O(n1/2hr
n) → 0 as n → ∞. (A.12)

Theorem 1 then follows immediately from (A.10)–(A.12).
The following lemma is useful in proving Theorem 2.

Lemma A.2. Let U , V be two random variables. Then for any a > 0,

sup
y

|P (U + V ≤y) − Φ(y)|≤sup
y

|P (U ≤y) − Φ(y)| + a√
2π

+ P (|V | > a), (A.13)

sup
y

|P (U ≤yV ) − Φ(y)|≤sup
y

|P (U ≤y) − Φ(y)| + P (|V − 1| > a) + a. (A.14)

Proof. The first inequality follows from Lemma 2 of Chang and Rao (1989),
while the second is a consequence of Michel and Pfanzagl (1971).

In the sequel M = M(x) denotes a positive constant which will vary in
different contexts.

Proof of Theorem 2. Using a change of variable theorem (cf. Shorack and
Wellner (1986, p.25)), we have

Q̂n(t) − Q̄n(t) = −
∫ ∞

0

( ∫ (F̂n(x)−t)/hn

(F (x)−t)/hn

K(u)du
)
dx = Sn1 + Sn2, (A.15)

where

Sn1 = −
∫ ∞

0
K

(
F (x) − t

hn

)(
F̂n(x) − F (x)

hn

)
dx,

Sn2 = −
∫ ∞

0

[∫ (F̂n(x)−t)/hn

(F (x)−t)/hn

(
K(u) − K

(
F (x) − t

hn

))
du

]
dx.

From (A.1), write

Sn1 = n−1
n∑

i=1

V
(n)
i + rn (A.16)

with

V
(n)
i = −

∫ ∞

0
ϕi(x)h−1

n K
(F (x) − t

hn

)
dx,

rn = −h−1
n

∫ ∞

0
K
(F (x) − t

hn

)
Rn(x)dx,

where ϕi and Rn are defined by (A.9) and (A.1), respectively. Standard calcula-
tions yield EV

(n)
i = 0,

σ2
n ≡ Var(V (n)

i ) =
(1 − t)2

f2(Q(t))

∫ Q(t)

aW

dW1(x)
C2(x)

+ O(hn) = σ2(t) + O(hn) (A.17)
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and E|V (n)
i |3 ≤ d1

(1−t)3

f3(Q(t))

∫ Q(t)
aW

dW1(x)
C3(x) < ∞, where d1 > 0 is a constant. Thus, by

the Berry-Esseen Theorem (see Chow and Teicher (1978, p.299)), for all n ≥ 1,

sup
y

∣∣∣∣∣P{n− 1
2

n∑
i=1

V
(n)
i < yσn} − Φ(y)

∣∣∣∣∣ ≤ Mn−1/2. (A.18)

It follows from (A.14) that

sup
y

|P{n−1/2
n∑

i=1

V
(n)
i < yσ(t)} − Φ(y)|

≤ sup
y

|P{n−1/2
n∑

i=1

V
(n)
i < yσn} − Φ(y)| + P{|σ−1

n σ(t) − 1| > a} + a (A.19)

for any a > 0. It is easy to see that for any random variable V and 0 < ε < 1/2,
P{|V −1 − 1| > 2ε, V �= 0} ≤ 2P{|V − 1| > ε}. Hence, from the fact that for
y, z > 0 the relation |y − 1| > z holds if |√y − 1| >

√
z, and from (A.17), we

have

P{|σ−1
n σ(t) − 1| > a} ≤ P{|σ−2

n σ2(t) − 1| > a2} ≤ 2P{|σ2
nσ−2(t) − 1| > a2/2}

≤ 2P{d2hn > a2/2} (A.20)

for some constant d2 > 0. In view of (A.18) – (A.20) and putting a = (2d2hn)1/2,

we get

sup
y

|P{n− 1
2

n∑
i=1

V
(n)
i ≤ yσ(t)} − Φ(y)| ≤ M(n−1/2 + h1/2

n ). (A.21)

When aG < aW , from (1.15) of Gijbels and Wang (1993) we obtain that for each
x > 0 and 0 ≤ b < bW ,

P{ sup
0≤y≤b

n|Rn(y)| > x + 4θ−2} ≤ M(e−λx + (x/50)−2n + e−λx3
), (A.22)

where θ > 0 and λ > 0 are some constants. Note that for large n, there exists
a constant b such that 0 ≤ Q(t + hnu) ≤ b < bW for all |u| ≤ 1. Hence for all n

sufficiently large, it follows from (A.22) that

P{n 1
2 |rn| ≥ n−1/2h−1

n log n}
= P{

∣∣∣ ∫ 1

−1

1
f(Q(t + hnu))

K(u)Rn(Q(t + hnu))du
∣∣∣ ≥ (nhn)−1 log n}

≤ P{ sup
0≤y≤b

n|Rn(y)| ≥ d3h
−1
n log n} ≤ Mn−1, (A.23)
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where d3 > 0 is a constant. For some τ > 0 with 1 + τ ≤ (1 − t)/hn (this holds
if n is large ), write

Sn2 = ∆n1 + ∆n2 + ∆n3, (A.24)

where ∆n1 = −hn
∫ 1+τ
−1−τ K(x)dx, ∆n2 = −hn

∫ (1−t)/hn

1+τ K(x)dx and ∆n3 =
−hn

∫−1−τ
−t/hn

K(x)dx with

K(x) =
1

f(Q(t + hnx))

∫ (F̂n(Q(t+hnx))−t)/hn

x
(K(u) − K(x))du.

Since K has bounded support [−1, 1],

|∆n2|≤hn

∫ (1−t)/hn

1+τ

1
f(Q(t + hnx))

I

(
F̂n(Q(t + hnx)) − t

hn
< 1

)

×
∣∣∣∣
∫ (F̂n(Q(t+hnx))−t)/hn

x
(K(u) − K(x))du

∣∣∣∣dx

≤hn

∫ (1−t)/hn

1+τ

1
f(Q(t+hnx))

I

(
F̂n(Q(t+(1+τ)hn))−(t+(1+τ)hn)

hn
<−τ

)

×
∣∣∣∣
∫ (F̂n(Q(t+hnx))−t)/hn

x
(K(u) − K(x))du

∣∣∣∣dx. (A.25)

Using Theorem 1 of Zhu (1996), we have that for aG < aW ≤ b < bW and ε > 0,

P{ sup
aW ≤x≤b

|F̂n(x) − F (x)| > ε} ≤ d4 exp(−nd5ε
2), (A.26)

where d4 and d5 are absolute constants. Therefore, (A.25) and (A.26) imply that
for all n sufficiently large,

P{n1/2|∆n2|≥n−1/2h−1
n log n}≤P{|F̂n(Q(t+(1+τ)hn))−(t+(1+τ)hn)|≥τhn}

≤d4 exp(−nd5τ
2h2

n)≤Mn−1. (A.27)

(Recall that nh2
n/ log n → ∞, so that nd5τ

2h2
n > log n for large n.) Similarly,

P{n1/2|∆n3| ≥ n−1/2h−1
n log n} ≤ Mn−1. (A.28)

Since K is Lipschitz continuous of order one, for some constant d6 > 0, |∆n1| ≤
d6h

−1
n sup|x|≤1+τ

∣∣∣F̂n(Q(t + hnx)) − (t + hnx)
∣∣∣2. Hence, it follows from (A.26)

that

P{n1/2|∆n1| ≥ n−1/2h−1
n log n}

≤P

{
sup

|x|≤1+τ
|F̂n(Q(t+hnx))−(t+hnx)|2≥d

−1/2
6 n−1/2(log n)1/2

}
≤Mn−1.(A.29)
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Take U = n−1/2∑n
i=1 V

(n)
i , V = n1/2(rn + Sn2), and an = n−1/2h−1

n log n in
(A.13), so that n

1
2 (Q̂n(t) − Q̄n(t)) = U + V by (A.15)–(A.16). It follows from

(A.21), (A.23), (A.24) and (A.27)–(A.29) that supy |P{n1/2(Q̂n(t) − Q̄(t)) ≤
yσ(t)} − Φ(y)| ≤ M(n−1/2h−1

n log n + h
1/2
n ). Note that |Φ(x) − Φ(y)| ≤ |x −

y|, −∞ < x, y < ∞. Now, using (A.11), (A.12) and Theorem 3, we get

sup
y

∣∣∣P{n 1
2 (Q̂n(t) − Q(t)) ≤ yσ(t)} − Φ(y)

∣∣∣
= sup

y

∣∣∣P{n 1
2 (Q̂n(t) − Q̄n(t)) ≤ y′σ(t)} − Φ(y′) + Φ(y′) − Φ(y)

∣∣∣
≤ sup

y
|P{n 1

2 (Q̂n(t) − Q̄n(t)) ≤ yσ(t)} − Φ(y)| + n
1
2 |Q̄n(t) − Q(t)|/σ(t)

≤ M(n−1/2h−1
n log n + n1/2hr

n + h1/2
n ),

where y′ = y − n1/2(Q̄n(t)−Q(t))/σ(t). This completes the proof of Theorem 2.
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