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Abstract: Let Y and X be real- and Rd-valued random variables. We consider

the estimation of the nonparametric regression function m(x) = E(Y |X = x)

when s ≥ 1 independent selection-biased samples of (Y,X) are observed. This

sampling scheme, which arises naturally in biological and epidemiological studies

and many other fields, includes stratified samples, length-biased samples and other

weighted distributions. A class of local polynomial estimators of m(x) is derived by

smoothing Vardi’s nonparametric maximum likelihood estimator of the underlying

distribution function. Large sample properties, such as asymptotic distributions

and asymptotic mean squared risks, are derived explicitly. Unlike local polynomial

regression with i.i.d. direct samples, we show here that kernel choices are important

and optimal kernel functions may be asymmetric and discontinuous when the weight

functions of the biased samples have jumps. A cross-validation criterion is proposed

for the selection of data-driven bandwidths. Through a simple comparison, we show

that our estimators are superior to other intuitive estimators of m(x).

Key words and phrases: Cross-validation, local polynomials, nonparametric maxi-

mum likelihood estimator, optimal kernel and bandwidths, selection-biased sample.

1. Introduction

Let (Y,X), Y ∈ R, X = (X(1), . . . ,X(d))T ∈ Rd, d ≥ 1, be a pair of random
variables such that

Y = m(X) + ε, (1.1)

where m(x) = E[Y |X = x] and ε satisfies E(ε) = 0 and Var(ε) = σ2(X).
Let F be the underlying joint distribution function of (Y,X), and f be the
corresponding joint density with respect to the Lebesgue measure. A selection-
biased sample of (Y,X) consists of s ≥ 1 independent random samples so that
the observations of the ith sample {(Yij ,Xij); j = 1, . . . , ni} with Yij ∈ R and
Xij = (X(1)

ij , . . . ,X
(d)
ij )T have joint distribution Gi and density gi. Here, gi and

Gi depend on the underlying distribution F through

gi(y,x) =
wi(y,x)

Wi
f(y,x), (1.2)
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where wi is a known non-negative weight function and

Wi =
∫ ∫

wi(y,x)f(y,x)dydx.

This sampling scheme arises frequently in biological and epidemiological stud-
ies, economics, survey sampling and many other fields. For example, it may be
necessary in certain cases to oversample the regions where the dependent vari-
able Y takes extreme values which could be missed by simple random samples.
Stratified sampling is a common strategy to ensure observations in all regions of
interest. Other useful special cases include the weighted distributions considered
by Patil, Rao and Zelen (1988) and Patil and Taillie (1989), the length-biased
samples considered by Vardi (1982), among others.

Theory and methods for parametric and nonparametric estimations based
on {(Yij ,Xij); i = 1, . . . , s, j = 1, . . . , ni} have been extensively studied in the
literature. Under the framework of linear models with stratified dependent vari-
ables, Jewell (1985) and Jewell and Quesenberry (1986) considered estimation
of the coefficient β in m(x) = xT β, when Wi are known and wi(y,x) = 1 if
y is from the ith stratum and 0 otherwise. Bickel and Ritov (1991) general-
ized these methods and studied the large sample properties of their generalized
estimation procedures. Nonparametric maximum likelihood estimator of the un-
derlying distribution function F was originally developed by Vardi (1982, 1985)
and further systematically studied by Gill, Vardi and Wellner (1988). By smooth-
ing the nonparametric maximum likelihood estimator, Jones (1991) proposed a
kernel density estimator with length-biased data, and Ahmad (1995) investigated
a Nadaraya-Watson type kernel regression estimator with one-sample selection-
biased data. Density estimation with multi-sample biased data has been con-
sidered by Wu (1997a, b). Recently, kernel regression with size-biased data has
been studied by Sköld (1999).

In this article, we propose a class of local polynomial estimators for esti-
mating m(x) nonparametrically with multi-sample biased data {(Yij ,Xij); i =
1, . . . , s, j = 1, . . . , ni} and investigate their statistical properties. Explicit ex-
pressions of the asymptotic distributions and the asymptotic mean squared risks,
including mean squared errors and the mean integrated squared errors, are de-
rived for general local polynomials with a single covariate (d = 1) and local
linear estimators with multiple covariates (d > 1). Because local linear fittings
and low-dimensional nonparametric regressions are most practical in real appli-
cations (cf. Ruppert and Wand (1994) and Fan, Gasser, Gijbels, Brockmann and
Engel (1997)), the asymptotic results here provide useful insights for inferences
and reliability of our estimators. Our theoretical developments can be extended,
at least in principle, to higher order polynomials with multivariate covariate X.
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Such an extension would be at the expense of excessive tedious computations
and complex notations, hence will not be addressed in this article.

Unlike local polynomial regressions with i.i.d. direct data, our asymptotic
results show that the choices of kernels may significantly influence the statistical
properties of the estimators when estimating m(x) at a point, and the Epanech-
nikov kernel may not be universally optimal (Fan and Gijbels (1996) and Fan
et al., (1997)). In fact, the optimal kernels may be asymmetric and discontin-
uous when the weight functions of the biased samples have jumps. Through a
simple comparison, we also show that our estimators are asymptotically supe-
rior to another class of intuitive estimators, namely linear combinations of local
polynomials constructed from a separate sample.

We present our local polynomial estimators in Section 2, develop their asymp-
totic distributions and asymptotic risk representations in Section 3, and establish
optimal bandwidth and kernel choices and a cross-validation procedure for se-
lecting data-driven bandwidths in Section 4. Section 5 gives a simple comparison
with linear combination type estimators. Proofs of the main technical results are
deferred to the appendices. A complete account of the proofs and the results of
a Monte Carlo simulation can be found in Wu (1999).

2. Estimation Methods

2.1. Preliminary and nonparametric maximum likelihood estimates

Integrating (1.2) with respect to (y,x), Gi has the following expression:

Gi(y,x) =
∫ y

−∞

[∫ x(1)

−∞
· · ·
∫ x(d)

−∞
wi(z, t)

Wi
f(z, t)dt

]
dz,

where x = (x(1), . . . , x(d))T . Averaging Gi through all s samples, GN (y,x) =∑s
i=1 λniGi(y,x) can be written as

GN (y,x) =
∫ y

−∞

[∫ x(1)

−∞
· · ·
∫ x(d)

−∞

(
s∑

i=1

λniwi(z, t)
Wi

)
f(z, t)dt

]
dz,

where λni = ni/N and N = n1 + · · · + ns. Differentiating the right hand side of
the above equation with respect to (y,x), f and F are given by

f(y,x) =
s∑

i=1


[

s∑
r=1

λnrwr(y,x)
Wr

]−1

λnigi(y,x)


and

F (y,x) =
∫ y

−∞

∫ x(1)

−∞
· · ·
∫ x(d)

−∞

[
s∑

r=1

λnrwr(z, t)
Wr

]−1

dGN (z, t).
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In general, if there are no restrictions on wi and Wi, f may not be identifiable
from (g1, . . . , gs) in the sense that there may not be a one-to-one correspondence
between f and (g1, . . . , gs). For example, f(y,x) cannot be estimated from the
data unless

∑s
i=1[λniwi(y,x) /Wi] > 0. Let S be the support of f on Rd+1,

that is, S is the smallest closed set such that the integral of f(y,x) is one. The
following support and graph connectedness conditions are shown by Vardi (1985)
to be necessary and sufficient for F to be identifiable nonparametrically.

A1: (Support) S ⊂ [(y,x) : wi(y,x) > 0 for some i = 1, . . . , s].

A2: (Graph Connectedness) For any 1 ≤ i ≤ s and 1 ≤ j ≤ s, there exist
i1, . . . , ik having values between 1 and s for 1 ≤ k ≤ s − 2, such that∫ ∫

1[wi(y,x)>0]1[wi1
(y,x)>0]f(y,x)dydx > 0,∫ ∫

1[wik
(y,x)>0]1[wj(y,x)>0]f(y,x)dydx > 0,

and∫ ∫
1[wil

(y,x)>0]1[wil+1
(y,x)>0]f(y,x)dydx > 0, for all l = 1, . . . , k − 1.

Condition A2 is mainly used to guarantee that Wi can be estimated from the
data. When the Wi are known, A1 alone ensures the identifiability of F , which
can be naturally estimated by

FN (y,x)=D−1
N N−1

s∑
i=1

ni∑
j=1


[

s∑
r=1

λnrwr(Yij ,Xij)
Vr

]−1

1[
Yij≤y,X

(1)
ij ≤x(1),...,X

(d)
ij ≤x(d)

] ,

where Xij = (X(1)
ij , . . . ,X

(d)
ij )T , Vr = Wr/Ws and

DN = N−1
s∑

i=1

ni∑
j=1

[
s∑

r=1

λnrwr (Yij,Xij)
Vr

]−1

. (2.1)

Note that DN does not necessarily equal one. The jumps of FN are given by

N−1JN (Yij,Xij) =

[
NDN

s∑
r=1

λnrwr (Yij,Xij)
Vr

]−1

(2.2)

at each observation point (Yij,Xij), and zero elsewhere.
In practice, the Wi are generally unknown and have to be estimated from

the data. Under conditions A1 and A2, it is shown in Vardi (1985) that, when
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N is sufficiently large, the equations

V̂ −1
ni

N−1
s∑

i=1

ni∑
j=1

wi (Yij,Xij)

[
s∑

r=1

λnrwr (Yij ,Xij)
V̂nr

]−1
 = 1, i = 1, . . . , s− 1,

(2.3)
almost surely have a unique solution (V̂n1 , . . . , V̂ns−1) which forms a natural esti-
mator of (V1, . . . , Vs−1). A necessary and sufficient condition, also referred as the
strongly connected condition, for the existence and uniqueness of (V̂n1 , . . . , V̂ns−1)
is given in Theorem 1.1 of Gill, Vardi and Wellner (1988). Consequently, DN

and Wi can be estimated by

D̂N = N−1
s∑

i=1

ni∑
j=1

[
s∑

r=1

λnrwr (Yij ,Xij)
V̂nr

]−1

and Ŵni =
V̂ni

D̂N

(2.4)

for i = 1, . . . , s − 1, and Ŵns = D̂−1
N . The nonparametric maximum likelihood

estimator proposed by Vardi (1982, 1985) is

F̂N (y,x)=D̂−1
N N−1

s∑
i=1

ni∑
j=1


[

s∑
r=1

λnrwr (Yij,Xij)
V̂nr

]−1

1[
Yij≤y,X

(1)
ij ≤x(1),...,X

(d)
ij ≤x(d)

] ,

which has jumps

N−1ĴN (Yij,Xij) =

[
ND̂N

s∑
r=1

λnrwr (Yij,Xij)
V̂nr

]−1

(2.5)

at each observation point (Yij,Xij), and zero elsewhere.

2.2. Local polynomials with univariate covariate

When the data are from i.i.d. direct samples, linear smoothing methods,
such as kernel estimators, smoothing splines and local polynomials, have been
the subject of intense investigation for many years. Theory and applications
of kernel estimators and smoothing splines can be found, for example, in Stone
(1982, 1984), Rice (1984), Eubank (1988), Härdle (1990) and Wahba (1990),
among others. Compared with kernel estimators, local polynomial fittings have
the advantages of being adaptive to both random and fixed designs, and can
adjust boundary biases automatically; see, for example, Fan and Gijbels (1996),
Ruppert and Wand (1994) and Cheng, Fan and Marron (1997).

When the Wi are unknown a class of local polynomial fittings, based on (2.5)
and {(Yij ,Xij)} with Xij ∈ R and order p ≥ 1, can be obtained by minimizing

�N (x) =
1
N

s∑
i=1

ni∑
j=1


[
Yij −

p∑
k=0

(
(Xij − x)kbk(x)

)]2

ĴN (Yij ,Xij)Kh(Xij − x)

 ,

(2.6)
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with respect to (b0(x), . . . , bp(x)), where h is a positive bandwidth, Kh(u) =
h−1K(h−1u), and K(·) is a kernel function on R which satisfies

∫
K(u)du = 1.

Let
Y = (Y11, . . . , Y1n1 , . . . , Ys1, . . . , Ysns)

T ,

ZT (x) =


1 · · · 1 · · · 1 · · · 1

(X11 − x) · · · (X1n1 − x) · · · (Xs1 − x) · · · (Xsns − x)
...

...
...

...
(X11 − x)p · · · (X1n1 − x)p · · · (Xs1 − x)p · · · (Xsns − x)p


and

Th(x)=diag
(

1
N

ĴN (Y11,X11)Kh(X11−x), . . . ,
1
N

ĴN (Ysns ,Xsns)Kh(Xsns−x)
)

.

Setting the derivatives of (2.6) with respect to b0(x), . . . , bp(x) to 0, the maximizer
(b̂0(x), . . . , b̂p(x)) of (2.6) satisfies the normal equation(

ZT (x)Th(x)Z(x)
) (

b̂0(x), . . . , b̂p(x)
)T

= ZT (x)Th(x)Y. (2.7)

Assume that (ZT (x)Th(x)Z(x)) is invertible. The unique solution of (2.7) is
given by(

b̂0(x), . . . , b̂p(x)
)T

=
(
ZT (x)Th(x)Z(x)

)−1 (
ZT (x)Th(x)Y

)
. (2.8)

We define b̂k(x) to be the nonparametric maximum likelihood (NPML) local
polynomial estimator of (k!)−1m(k)(x).

When the Wi are known, the corresponding NPML local polynomial esti-
mators of (k!)−1m(k)(x) can be constructed by substituting ĴN (Yij ,Xij) of (2.6)
with JN (Yij ,Xij) defined in (2.2).

Remark 2.1. Through a local constant fitting with p = 0, nonparametric
maximum likelihood kernel estimators of m(x) and its derivatives can be easily
constructed based on (2.2) or (2.5). For example, when the Wi are unknown,

m̂(x) =

∑s
i=1

∑ni
j=1

{
Yij ĴN (Yij ,Xij)K[(Xij − x)/h]

}
∑s

i=1

∑ni
j=1

{
ĴN (Yij,Xij)K[(Xij − x)/h]

} (2.9)

is a Nadaraya-Watson type NPML kernel estimator of m(x). Similarly, when
the Wi are known, a NPML kernel estimator of m(x) can be constructed by
substituting ĴN (Yij ,Xij) of (2.9) with JN (Yij ,Xij). To save space, theoretical
development is limited to the case of local polynomial fittings (p ≥ 1).
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2.3. Local linear fittings with multivariate covariates

The formulation of Section 2.2 can be extended to multivariate covariate X
by adding multivariate Taylor expansion terms in (2.6). However, because of the
sparsity of data in high dimensions, local linear fittings are the most practical
approach for nonparametric estimation of m(x). Here a class of multivariate
local linear fittings can be obtained by minimizing

LN (x)=
1
N

s∑
i=1

ni∑
j=1

{[
Yij − b0(x)−(Xij−x)Tb1(x)

]2
ĴN (Yij,Xij)KH(Xij − x)

}
(2.10)

with respect to b0(x) and b1(x) = (b11(x), . . . , b1d(x))T , where H is a d × d

symmetric positive definite matrix, KH(u) = |H|−1K(H−1u), and K(u) is a
kernel function which maps Rd to R and satisfies

∫
K(u)du = 1. Let

ZT (x) =

(
1 · · · 1 · · · 1 · · · 1

(X11 − x) · · · (X1n1 − x) · · · (Xs1 − x) · · · (Xsns − x)

)

and

TH(x)=diag
(

1
N

ĴN (Y11,X11)KH(X11−x), . . . ,
1
N

ĴN (Ysns ,Xsns)KH(Xsns−x)
)

.

The same derivations as in Section 2.2 show that, if (ZT (x)TH(x)Z(x)) is in-
vertible, the unique minimizer of (2.10) is given by(

b̂0(x)
b̂1(x)

)
=
(
ZT (x)TH(x)Z(x)

)−1 (
ZT (x)TH(x)Y

)
. (2.11)

Then b̂0(x) is the NPML local linear estimator of m(x), and the components of
b̂1(x) are estimators of the corresponding partial derivatives of m(x).

2.4. An example of stratified sampling

The standard stratified sample considered by Jewell (1985) and Jewell and
Quesenberry (1986) involves s independent samples and each has ni, i = 1, . . . , s,
i.i.d. observations (Yij,Xij), j = 1, . . . , ni, such that Yij are observed in the ith
stratum [ai−1, ai), where a0, . . . , as are constants such that −∞ = a0 ≤ a1 ≤
· · · ≤ as−1 ≤ as = +∞. In order to make m(x) identifiable, Jewell (1985) and
Jewell and Quesenberry (1986) assumed that Pi = P (ai−1 ≤ Y < ai) is known,
i = 1, . . . , s. Thus, condition A1 is satisfied and wi(y,x) = 1[ai−1≤y<ai], Wi = Pi,
Vr = Pr/Ps and DN = P−1

s . The jumps of FN are given by N−1JN (Yij ,Xij) =
N−1λniP

−1
i at each (Yij,Xij) and zero elsewhere. Substituting these jumps into



796 COLIN O. WU

(2.10), the NPML local linear estimators b̂0(x) and b̂1(x)) can be computed by
(2.11) with

TH(x) = diag
(

λn1

NP1
KH(X11 − x), . . . ,

λns

NPs
KH(Xsns − x)

)
.

When the Pj are unknown, it is easy to verify that condition A2 fails for this
sampling scheme, so that m(x) cannot be estimated nonparametrically. However,
if there is also an extra i.i.d. sample {(Ys+1,j ,Xs+1,j); j = 1, . . . , ns+1}, such that
Ys+1,j can be observed in the whole real line R, then both A1 and A2 are satisfied
and Pi can be estimated by the empirical distribution of the (s + 1)th sample:

P̂i =
1

ns+1

ns+1∑
j=1

1[ai−1≤Ys+1,j<ai].

The unique solution of (2.3) is then given by V̂ni = P̂i for i = 1, . . . , s, and V̂ns+1 =
1. Substituting (V̂n1 , . . . , V̂ns+1) into (2.5), the NPML local linear estimators
b̂0(x) and b̂1(x) are given by (2.11) with s replaced by s + 1 and

TH(x) = diag

(
P̂1

λn1 + λns+1P̂1

KH(X11 − x), . . . ,
P̂s+1

λns+1 + λns+1P̂s+1

×KH(Xs+1,ns+1 − x)
)

.

When the sample size is small, P̂i may not be available because there may not
be enough Ys+1,j falling within the interval [ai−1, ai). When the sample size is
sufficiently large, b̂0(x) and b̂1(x) exist and are unique almost surely.

3. Asymptotic Properties

3.1. Asymptotic properties for univariate local polynomials

The asymptotic behavior of the b̂k(x) depends on whether x is an interior
point of supp(fX), the support of fX(·), or x is near the boundary. We define
x to be an interior point if x ∈ supp(fX) and |x − xb| > ch for some constant
c > 0 and any xb on the boundary of supp(fX). Let x0 be an interior point. We
consider the asymptotic mean squared risks and the asymptotic distributions of
b̂k(x0).

In addition to A1 and A2, we assume the following conditions throughout
the section.
A3: (a) The underlying regression function m(x) is at least p + 1 times differ-

entiable and its (p + 1)th derivative is continuous and bounded in a
neighborhood of x0.
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(b) The marginal density fX(x) is continuous in a neighborhood of x0.
There exists a constant ε > 0 such that the [2(p + 1) + ε]th moment of
X and the (2 + ε)th moment of Y are finite.

(c) There are constants 0 < λi < 1 such that
∑s

i=1 λi = 1 and λni → λi as
n → ∞ for all i = 1, . . . , s.

(d) The kernel K(u) is non-negative and compactly supported on the real
line. It satisfies

∫
K(u)du = 1,

∫
ukK(u)du = µk and

∫
ukK2(u)du <

νk for some constants µk and νk with k = 0, . . . , 2p+2 such that µk ≡ 0
if k is odd.

(e) The bandwidth h satisfies h → 0 and Nh → ∞, as N → ∞.

(f) For each y ∈ R, wi(y, x), i = 1, . . . , s, are piecewise continuous func-
tions of x with only countably many jumps.

Ideally, we would like to measure the adequacy of b̂k(x0) by the second mo-
ment of [̂bk(x0)−(k!)−1m(k)(x0)]. However, a minor technical inconvenience that
arises from minimizing (2.6) is that the moments of b̂k(x0) may not exist. The
usual approach in the literature for measuring the large sample risks of local poly-
nomial estimators with i.i.d. direct data is to first express their conditional mean
squared errors in a closed form, then evaluate the asymptotic approximations of
the conditional mean squared errors; see, for example, Ruppert and Wand (1994)
and Fan and Gijbels (1996). Because the jumps defined in (2.5) are random, it
is difficult to obtain the closed form of the conditional moments of b̂k(x0). As a
useful alternative, we consider a modified mean squared error of b̂k(x0).

Let b̂(x0) = (b̂0(x0), . . . , b̂k(x0))T , H = diag(1, h, . . . , hp), 1(p+1)×(p+1) be
the (p + 1) × (p + 1) matrix whose every single entry is 1,

m(x0) =
(
m(x0),m(1)(x0), . . . , (p!)−1m(p)(x0)

)T
,

and

S0 =


µ0 µ1 · · · µp
...

...
...

...
µp µp+1 · · · µ2p

 .

It can be shown by straightforward calculation that (see Wu (1999) for further
details)

ZT (x0)Th(x0)Z(x0) = fX(x0)HS0H + op

(
1(p+1)×(p+1)

)
.

If S is invertible,[
I + op

(
1(p+1)×(p+1)

)] (
b̂(x0) − m(x0)

)
= R(x0), (3.1)
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where I is the identity matrix and

R(x0) = (fX(x0))−1H−1S−1
0 H−1

{
ZT (x0)Th(x0)[Y −Z(x0)m(x0)]

}
. (3.2)

Let ek+1 be the (p + 1) × 1 vector with 1 in its (k + 1)th position, 0 elsewhere.
Because b̂k(x0) = eT

k+1b̂(x0) and (k!)−1m(k)(x0) = eT
k+1m(x0), (3.1) implies that

it is appropriate to study the asymptotic properties of eT
k+1R(x0). Thus, we

define the modified mean squared error of b̂k(x0) to be

MSE
(
b̂k(x0)

)
= E

{[
eT
k+1R(x0)

]2}
. (3.3)

For the global risk of b̂k over an interior region of supp(fX), we define the
modified mean integrated squared error of b̂k to be

MISE
(
b̂k

)
=
∫

E

{[
eT
k+1R(x)

]2}
π(x)dx, (3.4)

where π(x) is a known bounded non-negative weight function whose support is
a subset of supp(fX).

Let J(y, t) = [
∑s

r=1(λrwr(y, t)/Wr)]−1, δ(x0−) = limt↑x0 δ(t), δ(x0+) =
limt↓x0 δ(t),

δ(t) =
∫

(y − m(t))2J(y, t)f(y|t)dy

and V(x0) be the (p + 1) × (p + 1) matrix, such that, for l, q = 0, . . . , p, the
(l + 1, q + 1)th element of V(x0) is

Vl+1,q+1(x0) = δ(x0−)
∫ 0

−∞
ul+qK2(u)du + δ(x0+)

∫ ∞

0
ul+qK2(u)du.

Note that δ(x0−) = δ(x0+) if J(y, t) is continuous at x0. But, in general, δ(x0−)
may not equal δ(x0+).

Theorem 3.1. Suppose that fX(x0) > 0 and Assumptions A1, A2 and A3 are
satisfied.
(a) If h ≥ cN (r−1)/(1+k1+k2) for some c > 0, 0 < r < 1 and any k1, k2 = 0, . . . , p,

cov
(
eT
k1+1R(x0), eT

k2+1R(x0)
)

=
[

1
Nh1+k1+k2fX(x0)

]
eT
k1+1S

−1
0 V(x0)S−1

0 ek2+1 (1 + o(1)) . (3.5)

In particular, if h ≥ cN (1−r)/(1+2k) for some c > 0, 0 < r < 1 and any
k = 0, . . . , p,

var
(
eT
k+1R(x0)

)
=
[

1
Nh1+2kfX(x0)

]
eT
k+1S

−1
0 V(x0)S−1

0 ek+1(1+o(1)). (3.6)
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(b) If p − k is odd and h ≤ cN−r/2(p+1−k) for some c > 0 and 0 < r < 1,

E
[
eT
k+1R(x0)

]
= hp+1−keT

k+1[(p + 1)!]−1m(p+1)(x0)S−1
0 cp(1 + o(1)), (3.7)

where cp = (µp+1, . . . , µ2p+1)T .
(c) If p−k is even, h ≤ cN−r/2(p+2−k) for some c > 0, 0 < r < 1 and, in addition

to A3(a) and A3(b), m(p+2)(x) exists and is continuous in a neighborhood of
x0 and fX(·) is continuously differentiable in a neighborhood of x0, then

E
[
eT
k+1R(x0)

]
= hp+2−k

[
m(p+2)(x0)

(p + 2)!
+

f ′
X(x0)m(p+1)(x0)
fX(x0)(p + 1)!

]
(3.8)

×eT
k+1S

−1
0 cp+1(1 + o(1)).

Proof. See Appendix A.

Remark 3.1. One sees that (3.7) and (3.8) describe the modified asymptotic
bias and (3.6) describes the modified asymptotic variance of b̂k(x0). Because (3.7)
and (3.8) do not depend on the weight functions of (1.2), they are the same as
the asymptotic conditional bias of local polynomial estimators with i.i.d. direct
samples (Fan and Gijbels (1996, Chapter 3)). Because (3.6) depends on V(x0),
which is influenced by the specific choices of the weight functions of (1.2), the
asymptotic variance of b̂k(x0) is different from that with i.i.d. direct samples.
The effects of the biased sampling schemes only appear in the constant terms of
(3.6).

The next theorem presents some straightforward consequences of Theorem
3.1. The proof of the theorem, which essentially checks Lyapounov’s conditions
for b̂k(x0), is given in Appendix A.3 of Wu (1999).

Theorem 3.2. Suppose the assumptions of Theorem 3.1 are satisfied.
(a) If p − k is odd, h ≥ cN (1−r)/(1+2k) and h ≤ c∗N−r∗/[2(p+2−k)] for some

positive constants c, c∗, r and r∗ such that r < 1 and r∗ < 1, then, when N

is sufficiently large,

MSE
(
b̂k(x0)

)
=
{
E
[
eT
k+1R(x0)

]}2
+ var

[
eT
k+1R(x0)

]
(3.9)

with var[eT
k+1R(x0)] and E[eT

k+1R(x0)] given by (3.6) and (3.7), respectively.
In addition, when h = O(N−1/(2p+3)),

b̂k(x0) − (k!)−1m(k)(x0) − E[eT
k+1R(x0)]{

var[eT
k+1R(x0)]

}1/2
→ N (0, 1), (3.10)

in distribution as N → ∞.
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(b) If p − k is even and m(p+2)(x) exists and is continuous in a neighbor-
hood of x0, then (3.9) holds with E[eT

k+1R(x0)] given by (3.8). Furthermore,
when h = O(N−1/(2p+5)), (3.10) holds with E[eT

k+1R(x0)] given by (3.8) and
var[eT

k+1R(x0)] given by (3.6).
(c) When N is sufficiently large and the support of π(·) is a proper subset of

supp(fX) the asymptotic representation of (3.4) is

MISE
(
b̂k

)
=
∫ {[

E
(
eT
k+1R(x)

)]2
+ var

[
eT
k+1R(x)

]}
π(x)dx, (3.11)

where var[eT
k+1R(x)] is given by (3.6) and E[eT

k+1R(x)] is given by (3.7) or
(3.8) if the conditions of Theorem 3.1(b) or Theorem 3.1(c), respectively, are
satisfied.

3.2. Asymptotic properties for multivariate local linear estimators

Let Ex0,H = {t : H−1(t − x0) ∈ supp(K)} be the support of KH(· − x0).
Extending the definition of Section 3.1, x0 is an interior point of supp(fX) if Ex0,H

is a proper subset of supp(fX). We establish the local and global asymptotic mean
squared risks of the NPML local linear estimator b̂0(x0) of (2.11) at an interior
point x0.

As a modification of A3, we assume the following conditions throughout the
section.
A4: (a) The underlying regression function m(x) is twice differentiable with re-

spect to x and its second partial derivatives are continuous in a neigh-
borhood of x0.

(b) The marginal density fX(x) is continuous in a neighborhood of x0.
There exists a constant ε > 0 so that the (4 + ε)th moments of X(l),
l = 1, . . . , d, and the (2 + ε)th moment of Y are finite.

(c) There are constants 0 < λi < 1 such that
∑s

i=1 λi = 1 and λni → λi as
n → ∞ for all i = 1, . . . , s.

(d) The kernel K(u) is non-negative, compactly supported on Rd, and
satisfies

∫
K(u)du = 1. Moreover∫

u(l)u(r)K(u)du =

{
0, if l �= r,

µ2(K), if l = r,

for l, r = 1, . . . , d and some µ2(K) > 0, and
∫

u(l1) · · · u(ld)K(u)du = 0
for all non-negative integers l1, . . . , ld such that

∑d
j=1 lj is odd.

(e) The bandwidth matrix H is symmetric and positive definite, such that
N−1|H|−1 and every entry of H tend to 0 as N → ∞. In addition,
there is a fixed constant L such that the condition number of H (the
ratio of its largest to smallest eigenvalues) is at most L for all N .
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(f) For each y ∈ R, wi(y,x), i = 1, . . . , s, are piecewise continuous func-
tions of x and have only countably many jumps in Rd.

Assumptions A4(d) and A4(e) are the same as conditions (A1) and (A3),
respectively, of Ruppert and Wand (1994). Similar to the univariate case, the
moments of b̂0(x0) may not exist in general and modifications of the mean squared
errors and the mean integrated squared errors of b̂0(x0) have to be considered.
Let

m′(x0) =

(
∂m(x)
∂x(1)

∣∣∣∣
x0

, . . . ,
∂m(x)
∂x(d)

∣∣∣∣
x0

)T

.

Then, by (2.11), we have

(
ZT (x0)TH(x0)Z(x0)

)( b̂0(x0) − m(x0)
b̂1(x0) − m′(x0)

)

= ZT (x0)TH(x0)

(
Y − Z(x0)

(
m(x0)
m′(x0)

))
. (3.12)

Furthermore, we can show by similar calculations as in the derivation of (3.1)
that, when N is sufficiently large,

ZT (x0)TH(x0)Z(x0) = f(x0)

(
1 + op(1) op (11×d)
op (1d×1) µ2(K)H2 + Op

(
H2
)) . (3.13)

Multiplying [ZT (x0)TH(x0)Z(x0]−1 by the right side of (3.12), (3.13) implies
that

(1 + op(1))
(
b̂0(x0) − m(x0)

)
= R0(x0), (3.14)

where

R0(x0) =
1

fX(x0)N |H|

s∑
i=1

ni∑
j=1

[
ĴN (Yij ,Xij)∆∗

ij(x0)K
(
H−1(Xij − x0)

)]
and

∆∗
ij(x0) = Yij − m(x0) − (Xij − x0)T m′(x0).

Thus, we measure the local and global asymptotic risks of b̂0(x0) by the modified
mean squared error

MSE
(
b̂0(x0)

)
= E

[
R2

0(x0)
]

(3.15)

and the modified mean integrated squared error

MISE
(
b̂0

)
=
∫

E
[
R2

0(x)
]
π(x)dx, (3.16)
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respectively, where π(x) is a known bounded non-negative weight function on Rd

whose support is a subset of supp(fX).

Theorem 3.3. Suppose fX(x0) > 0 and Assumptions A1, A2 and A4 are satis-
fied.
(a) When N is sufficiently large,

E [R0(x0)] =
1
2
µ2(K)tr

{
Hm(x0)H2

}
(1 + o(1)) (3.17)

and

var [R0(x0)] = (N |H|fX(x0))
−1
[∫

δ∗(x0 + Hu)K2(u)du
]
(1+o(1)), (3.18)

where tr{A} is the trace of a symmetric matrix A, Hm(x0) is the Hessian
matrix of m(x) at x0, and

δ∗(x0 + Hu) =
1
4

∫
J(y,x0 + Hu)

[
(Hu)THm(x0)(Hu)

]2
f(y|x0 + Hu)dy.

(b) The asymptotic mean squared error of b̂0(x0) is obtained by substituting (3.17)
and (3.18) into (3.15). If (N |H|)1/2tr{Hm(x0)H2} ≤ c for some c > 0 and
sufficiently large N , then

b̂0(x0) − m(x0) − E[R0(x0)]
{var[R0(x0)]}1/2

→ N (0, 1) in distribution as N → ∞.

(3.19)
(c) When supp(π) is a proper subset of supp(fX), the asymptotic mean integrated

squared error of b̂0 is obtained by substituting (3.17) and (3.18) into (3.16).

Proof. See Appendix B.

Remark 3.2. Similar to local linear fittings with i.i.d. direct data (cf. Ruppert
and Wand (1994)), the leading terms of (3.17) and (3.18) are measures of the
asymptotic bias and variance of b̂0(x0), respectively. Because Hm(x0) measures
the curvature of m(·) at x0 in a particular direction, and the corresponding entry
of H provides the amount of smoothing for that direction, more smoothing and
larger curvature lead to a larger tr{Hm(x0)H2} value and an increase in the
asymptotic bias of b̂0(x0). It is also interesting to see that, because (3.17) does
not depend on the weight functions wi(y,x), the asymptotic bias of b̂0(x0) is
the same as the asymptotic conditional bias of b̂0(x0) for the i.i.d. direct data
given in equation (2.3) of Ruppert and Wand (1994). On the other hand, the
leading constant term of (3.18) depends on wi(y,x). Because δ∗(t) may not be
a continuous function of t, (3.18) does not necessarily depend on

∫
K2(u)du.
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Remark 3.3. For the special case of a diagonal bandwidth matrix H =
diag(h1, . . . , hd) with hr > 0 for r = 1, . . . , d, (3.17) and (3.18) reduce to

E [R0(x0)] =
1
2
µ2(K)

{
d∑

r=1

[
h2

r

∂2m(x)
∂(x(r))2

∣∣∣∣∣
x0

]}
(1 + o(1)) (3.20)

and

var [R0(x0)] = (Nh1 · · ·hdfX(x0))
−1
[∫

δ∗(x0 + Hu)K2(u)du
]
(1 + o(1)),

(3.21)
respectively. The asymptotic normality (3.19) also holds if

(Nh1 · · · hd)1/2
d∑

r=1

[
h2

r

∂2m(x)
∂(x(r))2

∣∣∣∣∣
x0

]
≤ C,

for some C > 0 and sufficiently large N . Although simple bandwidth struc-
tures, such as diagonal matrices, often drastically simplify the computation of
b̂0(x0) and the derivation of its theoretical properties, it is still beneficial in some
circumstances to use a full bandwidth matrix (e.g. Wand and Jones (1993)). Spe-
cific theoretical advantages of using full bandwidth matrices deserve substantial
attention but are out of the scope of this article.

3.3. Asymptotic properties for estimates near the boundary

In practice, the ranges of the covariates are usually finite so that supp(fX) is
contained in a compact set with finite end points. For i.i.d. direct data, a major
advantage of local polynomial estimators over the classical kernel estimates is
that they can automatically adjust for the boundary bias without resorting to
special boundary correction techniques, such as boundary kernels or reflection
methods (e.g. Cheng, Fan and Marron (1997)). We show here that this automatic
boundary adjustment property also holds in the current biased sampling context.

We first consider the case of local polynomials with univariate covariate
X, and assume that the support of fX(·) is [a, b] with fX(x) > 0 for all x ∈
[a, b]. Then, xa and xb are left and right boundary points, respectively, if
xa = a + hc and xb = b − hc for some c ≥ 0. Define µk(a, c) =

∫∞
−c ukK(u)du,

µk(b, c)=
∫ c
−∞ ukK(u)du, νk(a, c)=

∫∞
−c ukK2(u)du and νk(b, c)=

∫ c
−∞ ukK2(u)du,

for k = 0, . . . , 2p + 1. Let cp(a, c) = (µp+1(a, c), . . . , µ2p+1(a, c))T , cp(b, c) =
(µp+1(b, c), . . . , µ2p+1(b, c))T , S0(a, c) be the (p+1)×(p+1) matrix whose (r, l)th
element is µr+l−2(a, c), and S0(b, c) be the (p + 1)× (p + 1) matrix whose (r, l)th
element is µr+l−2(b, c). Similar to the approximation of (3.1), we get (see Lemma
A.2 of Wu (1999) for details)[

I + op

(
1(p+1)×(p+1)

)] (
b̂(xa) − m(xa)

)
= Ra(xa), (3.22)
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where

Ra(xa) = (fX(a))−1 H−1 (S0(a, c))−1 H−1
{
ZT (xa)Th(xa) [Y −Z(xa)m(xa)]

}
.

(3.23)
Furthermore, (3.22) also holds for b̂(xb) − m(xb) with a of (3.22) and (3.23)
substituted by b.

The next theorem gives the asymptotic means and variances of eT
k+1Ra(xa)

and eT
k+1Rb(xb).

Theorem 3.4. Suppose that N is sufficiently large and assumptions A1, A2 and
A3 are satisfied for xa and xb.
(a) The mean of eT

k+1Ra(xa) is given by (3.7) with (m(p+1)(x0),S0, cp) substituted
by (mp+1)(a),S0(a, c), cp(a, c)), while the variance of eT

k+1Ra(xa) is given by
(3.6) with (fX(x0),S0,V(x0)) substituted by (fX(a),S0(a, c),V(a, c)), where
V(a, c) is the (p + 1) × (p + 1) matrix whose (l + 1, q + 1)th element is
δ(a+)νl+q(a, c).

(b) The mean and variance of eT
k+1Rb(xb) are the same as that of eT

k+1Ra(xa)
with (a, a+) substituted by (b, b−), respectively.

Proof. The proof follows the same steps as in Appendix A by considering inte-
grals with appropriate boundary points.

We now consider the boundary properties of the multivariate local linear
estimators. Suppose that supp(fX) is compact, a is on the boundary of supp(fX)
and fX(a) > 0. Then xa is a boundary point if xa = a+Hc for some fixed point
c in the support of K(·). By (2.11), it is easy to see that (3.12) holds with x0

substituted by xa. Let

Dxa,H = {c : (xa + Hc) ∈ supp (fX)}
⋂

supp(K), H∗ =

(
1 0
0 H

)
,

Pxa =

(
Pxa,11 Pxa,12

Pxa,21 Pxa,22

)
=
∫
Dxa,H

(
1
u

)(
1 uT

)
K(u)du

and

Qxa =

(
Qxa,11 Qxa,12

Qxa,21 Qxa,22

)
=
∫
Dxa,H

(
1
u

)(
1 uT

)
δ∗ (xa + Hu)K2(u)du.

Then, similar to (3.13), we can show that

(1 + op(1))
[
b̂0(xa) − m(xa)

]
= R0(xa), (3.24)
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where

R0(xa) = (fX(a))−1 eT
1 (H∗PxaH

∗)−1 ZT (xa)TH(xa)

[
Y − Z(xa)

(
m(xa)
m′(xa)

)]
.

The assertions of the next theorem can be derived by a similar method (see
Wu (1999), for details) as in the proof of Theorem 3.4.

Theorem 3.5. Suppose that N is sufficiently large, and assumptions A1, A2
and A4 are satisfied for xa. The expectation of R0(xa) is

E [R0(xa)] = eT
1 P−1

xa

[∫
Dxa,H

(
1
u

)
K(u)uT (HHm(xa)H)udu

]
(1 + o(1)),

(3.25)
where Hm(xa) is the Hessian matrix of m(x) at xa. The variance of R0(xa) is

var [R0(xa)] = (N |H|fX(a))−1 eT
1 P−1

xa
QxaP

−1
xa

e1 (1 + o(1)) . (3.26)

Remark 3.4. Theorems 3.4 and 3.5 imply that, for both univariate and multi-
variate covariates, the asymptotic bias and variance of b̂k at interior points differ
from their counterparts at boundary points only in constant terms, and their
corresponding convergence rates are the same. Thus, because the π(·) of (3.4)
or (3.16) is bounded, the conclusions of Theorem 3.2(c) or Theorem 3.3(c) also
hold if the support of π(·) includes boundary points of fX(·).

4. Bandwidth and Kernel Choices

We only present the case for univariate covariates. It is certainly of both
theoretical and practical interest to investigate the optimal bandwidth matrix
and kernel choices for the general case of multivariate local linear estimators.
However, because the bandwidth matrix H is only required to be symmetric and
positive definite, the problem of minimizing the mean squared risks in Theorem
3.3 with respect to (H,K(·)) requires more sophisticated optimization techniques
than the ones used in this section.

4.1. Ideal bandwidths and kernels

Because odd order local polynomial fits are preferred to even order fits (cf.
Fan and Gijbels (1996, pp.76-83)), we consider only minimizing (3.9) with respect
to (h,K(·)). Setting the partial derivative of (3.9) with respect to h to zero,
straightforward algebra shows that, for a given kernel satisfying condition A3(d),
the ideal local bandwidth which minimizes MSE(b̂k(x0) is given by

hopt(x0)=N−1/(2p+3)

{
(1+2k)(fX(x0))−1eT

k+1S
−1
0 V(x0)S−1

0 ek+1

2(p+1−k)[((p+1)!)−1m(p+1)(x0)eT
k+1S

−1
0 cp]2

}1/(2p+3)

.

(4.1)
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Similarly, the ideal global bandwidth can be obtained by minimizing the corre-
sponding mean integrated squared error and is given by

hopt=N−1/(2p+3)

{
(1+2k)

∫
[(fX(x))−1eT

k+1S
−1
0 V(x)S−1ek+1]π(x)dx

2(p+1−k)
∫
[((p+1)!)−1m(p+1)(x)eT

k+1S−1cp]2π(x)dx

}1/(2p+3)

.

(4.2)
Substituting hopt(x0) and hopt back to (3.9) and (3.11), the corresponding

mean squared risks are

MSE
(
b̂k(x0);hopt(x0)

)
= N− 2(p+1−k)

2p+3

(
2p + 3
2k + 1

)
C1,k(K)

and

MISE
(
b̂k;hopt

)
= N− 2(p+1−k)

2p+3

(
2p + 3
2k + 1

)
C2,k(K),

where

C1,k(K) =
{
((p + 1)!)−1m(p+1)(x0)eT

k+1S
−1
0 cp

} 2+4k
2p+3 (4.3)

×
{(

1 + 2k
2(p + 1 − k)

)
(fX(x0))−1eT

k+1S
−1
0 V(x0)S−1

0 ek+1

} 2(p+1−k)
2p+3

and

C2,k(K)=
{∫

[((p + 1)!)−1m(p+1)(x)eT
k+1S

−1
0 cp]2π(x)dx

} 1+2k
2p+3

(4.4)

×
{(

1+2k
2(p+1−k)

)∫
[(fX(x))−1eT

k+1S
−1
0 V(x)S−1

0 ek+1]π(x)dx

} 2(p+1−k)
2p+3

.

The ideal local and global kernels Kopt(·) are solutions of

C1,k(Kopt) = min
K

C1,k(K) (4.5)

and

C2,k(Kopt) = min
K

C2,k(K), (4.6)

respectively, subject to the constraint that K(·) satisfies condition A3(d). Note
here that, by a rescaled kernel argument (see, for example, Marron and Nolan
(1989), or Wu (1997a, Lemma 3.1)), the optimal kernels in (4.5) and (4.6) hold
not only for the optimal bandwidths given in (4.1) and (4.2), but also for all
other bandwidth choices.
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For the special case of estimating m(x0) with a local linear estimator, i.e.,
p = 1 and k = 0, we have eT

1 S−1
0 cp = µ2 and eT

1 S−1
0 V(x0)S−1

0 e1 = V1,1(x0). Then
(4.5) is equivalent to

min
K

{[∫
u2K(u)du

] [
δ(x0−)

∫ 0

−∞
K2(u)du + δ(x0+)

∫ ∞

0
K2(u)du

]2
}

, (4.7)

subject to the constraint that K(·) satisfies A3(d). This problem has been solved
by Wu (1997a, Theorem 3.1) and leads to an optimal kernel of the form

Kopt,β(u) =
Γβ(u)
µ(β)

, (4.8)

where β = δ(x0+)/δ(x0−), µ(β) =
∫

Γβ(u)du,

Γβ(u) =


1 − (u + θ)2, if −1 − θ ≤ u < 0,

β
[
1 − (u + θ)2

]
, if 0 ≤ u ≤ 1 − θ,

0, otherwise,

and θ satisfies the equation
∫ 1−θ
−1−θ uΓβ(u)du = 0. Similarly, when p = 1 and

k = 0, it is straightforward to derive from (4.4) that (4.6) is equivalent to

min
K

{[∫
u2K(u)du

] [∫
K2(u)du

]2
}

, (4.9)

subject to the constraint that K(·) satisfies A3(d). The solution of (4.9) (cf.
Wu (1997a, Theorem 3.1)) indicates that the Epanechnikov kernel (see Härdle
(1990))

Kopt,E(u) =
3
4
(1 − u2)1[|u|≤1] (4.10)

where 1[·] is an indicator function, is globally optimal in the sense that it min-
imizes MISE(b̂0(x0); hopt(x0)). The solutions of (4.5) and (4.6) are still not
available for the general case of p ≥ 2 and k ≥ 1.

Remark 4.1. As noted in Wu (1997a), (4.8) reduces to (4.10) when δ(x) is
continuous at x0, that is, β = 1. Contrary to local polynomial fittings with i.i.d.
direct samples where the Epanechnikov kernel provides the universal optimal
weighting scheme (Fan et al. (1997)), when δ(x0−) �= δ(x0+), the optimal kernel
Kopt,β(u) established in (4.8) is discontinuous and asymmetric at zero. A large
β value would contribute to a large jump of Kopt,β(u) at u = 0.

Remark 4.2. Because β depends on m(x) and f(y|x), the optimal kernel
Kopt,β(u) given in (4.8) can not be directly implemented in practice. In the con-
text of density estimation with selection-biased data, Wu (1997a) suggested an
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adaptive procedure to construct asymptotically optimal kernel estimators based
on sample splitting. Here a similar sampling splitting adaptive procedure can
also be developed for b̂0(x0).

4.2. Cross-validation bandwidths

The ideal bandwidths derived in (4.1) and (4.2) depend on unknown compo-
nents such as the regression curve and the underlying density. Hence, for practical
purposes, it is desirable to develop a procedure to select appropriate bandwidths
based on the data at hand. For local polynomial regression with i.i.d. direct data,
two popular bandwidth selection methods are cross-validation and “plug-in” type
bandwidth selectors. Theoretical properties and practical performances of these
bandwidth procedures can be found in Chiu (1991), Gasser, Kneip and Köhler
(1991), Hall, Sheather, Jones and Marron (1991), Sheather and Jones (1991), Fan
and Gijbels (1995) and Ruppert, Sheather and Wand (1995), among others. For
density estimation with biased data, Wu (1997b) investigated the asymptotic and
finite sample properties of a cross-validation bandwidth procedure. Although it
is known that, in many situations, “plug-in” type procedures outperform cross-
validation both asymptotically and in practice (e.g. Hall, Sheather, Jones and
Marron (1991)), substantial further development is needed to establish a similar
“plug-in” bandwidth selector in the current context. We present here only a
“leave-one-out” cross-validation global bandwidth procedure.

The basic idea is to construct a cross-validation criterion so that a bandwidth
which minimizes the cross-validation score also minimizes an approximation of
the mean integrated squared error. Let b̂

−(i,j)
0 (x) be the “leave-one-out” version

of b̂0(x) given by (2.8), using the data with (Yij,Xij) left out. Because b̂
−(i,j)
0 (x)

is also a local polynomial estimator of m(x), we define our cross-validation score
to be

CV(h) = N−1
s∑

i=1

ni∑
j=1

{[
Yij − b̂

−(i,j)
0 (Xij)

]2
π(Xij)

Ŵni

wi(Yij,Xij)

}
, (4.11)

where π(·) is the non-negative weight function of (3.4). Intuitively, CV(h)
measures the weighted average prediction error of b̂

−(i,j)
0 (x). Thus, our cross-

validation global bandwidth hcv is defined to be a minimizer of (4.11).

Remark 4.3. To give a heuristic justification of (4.11) we can show that, by
straightforward algebra and the fact that Ŵni = Wi + op(N−δ) for any 0 < δ ≤
1/2 (e.g. Proposition 2.2 of Gill, Vardi and Wellner (1988) or Lemma 6.1 of Wu
(1997a)),

CV(h) ≈ N−1
s∑

i=1

ni∑
j=1

{
[Yij − m(Xij)]

2 π(Xij)Wi

wi(Yij,Xij)

}
(4.12)
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+N−1
s∑

i=1

ni∑
j=1

{[
b̂
−(i,j)
0 (Xij) − m(Xij)

]2 π(Xij)Wi

wi(Yij,Xij)

}

−2N−1
s∑

i=1

ni∑
j=1

{
(Yij − m(Xij))

(
b̂
−(i,j)
0 (Xij) − m(Xij)

) π(Xij)Wi

wi(Yij ,Xij)

}
.

The first term of the right side of (4.12) does not involve any estimator, and
hence does not depend on h. By the definition of b̂

−(i,j)
0 (x), we can verify that

the second and the third terms of the right side of (4.12) converge to MISE(b̂0)
and zero, respectively. Thus, by minimizing CV(h), hcv also approximately mini-
mizes MISE(b̂0). However, further theoretical properties of hcv and some related
computational issues require substantial development.

Remark 4.4. Extending (4.11) to the multivariate case, a cross-validation band-
width matrix Hcv can be defined to be a minimizer of a cross-validation score
CV(H) similar to (4.11). A similar approximation to the one given in (4.12) can
also be established. But, because H is generally not a diagonal matrix, the com-
putation of Hcv involves more sophisticated optimization algorithms than used
in the univariate case.

5. Comparison with Other Smoothing Methods

At least for many special circumstances, m(x) and its derivatives can also be
estimated by other, perhaps even computationally simpler, smoothing methods.
Suppose that the underlying joint density of (1.2) is identifiable from each biased
sample {(Yij ,Xij); j = 1, . . . , ni}. A natural alternative to the approach of
Section 2 is to first construct local polynomial estimators based on each separate
sample, and then estimate the regression curve and its derivatives by some linear
combinations of these local polynomials. In this section, we consider the case of
a univariate covariate and compare the NPML local polynomial estimators (2.8)
with such linear combination estimators.

Assume that wi(y, x) > 0, i = 1, . . . , s, for all y ∈ R and x ∈ R in the support
S. Then, by A1 and A2, f(y, x) is identifiable from each sample separately. Based
on the ith sample, m(x) and its derivatives can be estimated by minimizing

�(i)(x) =
1
ni

ni∑
j=1


[
Yij −

p∑
k=0

(
(Xij − x)kbk(x)

)]2

Kh(Xij − x)
W̃i

wi(Yij ,Xij)


(5.1)

with respect to bk(x), k = 0, . . . p, where

W̃i =

n−1
i

ni∑
j=1

w−1
i (Yij,Xij)


−1

(5.2)
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is an estimator of Wi. Let Tij(x) = W̃i[niwi(Yij ,Xij)]−1Kh(Xij − x), Yi =
(Yi1, . . . , Yini)

T , Th,i(x) = diag (Ti1(x), . . . , Tini(x)) and

ZT
i (x) =


1 · · · 1

(Xi1 − x) · · · (Xini − x)
...

...
...

(Xi1 − x)p · · · (Xini − x)p

 .

When ZT
i (x)Th,i(x)Zi(x) is invertible, the pth order local polynomial estimator

of m(x) = (m(x),m(1)(x), . . . , (p!)−1m(p)(x))T based on the ith sample is(
b̃0,i(x), . . . , b̃p,i(x)

)T
=
(
ZT

i (x)Th,i(x)Zi(x)
)−1 (

ZT
i (x)Th,i(x)Yi

)
. (5.3)

Let pi, i = 1, . . . , s, be non-negative weights such that
∑s

i=1 pi = 1. A linear
combination estimator of m(x) based on pi and (b̃0,i(x), . . . , b̃p,i(x))T is

b̃(x) =
(
b̃0(x), . . . , b̃p(x)

)T
=

s∑
i=1

{
pi

(
b̃0,i(x), . . . , b̃p,i(x)

)T
}

. (5.4)

Because W̃i = Wi + op(N−δ) for any 0 < δ < 1/2, it can be shown by similar
calculations as (3.1) and (3.2) that, for an interior point x0,[

I + op

(
1(p+1)×(p+1)

)] (
b̃(x0) − m(x0)

)
= R̃(x0), (5.5)

where

R̃(x0)=(fX(x0))−1 H−1S−1
0 H−1

s∑
i=1

{
pi

[
ZT

i (x0)Th,i(x0) (Yi −Zi(x0)m(x0))
]}

.

(5.6)
Thus, with the same modification as at (3.3) and (3.4), the mean squared error
of b̃k(x0) and the mean integrated squared error of b̃k can be defined by

MSE
(
b̃k(x0)

)
= E

{[
eT
k+1R̃(x0)

]2}
=
{
E
[
eT
k+1R̃(x0)

]}2
+ var

[
eT
k+1R̃(x0)

]
(5.7)

and
MISE

(
b̃k

)
=
∫

E

{[
eT
k+1R̃(x)

]2}
π(x)dx. (5.8)

Again, as in Section 4.1, odd order fits are preferred to even order fits. Thus,
our discussion is limited to the case that p−k is odd. By similar derivations as in
the proof of Theorem 3.1, the asymptotic expressions of the mean and covariance
of R̃(x0) are summarized in the following theorem, whose proof is given in Wu
(1999, Appendix C).
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Theorem 5.1. Suppose that fX(x0) > 0, Assumptions A1, A2 and A3 are
satisfied, p− k is odd and N is sufficiently large. When h ≤ c1N

−r/[2(p+1−k)] for
some constants c1 > 0 and 0 < r < 1, E[eT

k+1R̃(x0)] is given by the right side of
(3.7). When h ≥ c2N

(r−1)/(1+k1+k2) for some constants c2 > 0 and 0 < r < 1,
the covariance between eT

k1+1R̃(x0) and eT
k2+1R̃(x0) is

cov
[
eT
k1+1R̃(x0), eT

k2+1R̃(x0)
]

=
[

1
fX(x0)Nh1+k1+k2

]
eT
k1+1S

−1
0 Ṽ0(x0)S−1

0 ek2+1(1 + o(1)), (5.9)

where Ṽ0(x0) is the (p + 1) × (p + 1) matrix whose (l + 1, q + 1)th element is

Ṽl+1,q+1(x0) = δ̃(x0−)
∫ 0

−∞
ul+qK2(u)du + δ̃(x0+)

∫ ∞

0
ul+qK2(u)du

for 0 ≤ l ≤ p and 0 ≤ q ≤ p, with

δ̃(t) =
∫ {

[y − m(t)]2
[

s∑
i=1

(
p2

i Wi

λiwi(y, t)

)]
f(y|t)

}
dy. (5.10)

Remark 5.1. A direct consequence of (5.9) is that, when h ≥ c2N
(r−1)/(1+2k)

for c2 > 0 and 0 < r < 1, the variance of eT
k+1R̃(x0) is

var
[
eT
k+1R̃(x0)

]
=
[

1
fX(x0)Nh1+2k

]
eT
k+1S

−1
0 Ṽ0(x0)S−1

0 ek+1(1 + o(1)). (5.11)

Thus, when c2N
(r−1)/(1+2k) ≤ h ≤ c1N

−r/[2(p+1−k)] for c1 > 0, c2 > 0 and
0 < r < 1, explicit expressions for MSE(b̃k(x0)) and MISE(b̃k) follow immediately
from (5.7), (5.8), (3.7) and (5.11).

Remark 5.2. Comparing Theorem 5.1 with Theorem 3.1, we see that b̂(x0) and
b̃(x0) have the same asymptotic bias but different asymptotic variances. For the
special case of p = 1 and k = 0, we can deduce from (3.6) and (5.11) that

var
[
eT
1 R(x0)

]
=
(

1
fX(x0)Nh

)[
δ(x0−)

∫ 0

−∞
K2(u)du + δ(x0+)

∫ ∞

0
K2(u)du

]
and

var
[
eT
1 R̃(x0)

]
=
(

1
fX(x0)Nh

)[
δ̃(x0−)

∫ 0

−∞
K2(u)du + δ̃(x0+)

∫ ∞

0
K2(u)du

]
.

By Jensen’s inequality,

s∑
i=1

(
p2

i Wi

λiwi(y, t)

)
≥
(

s∑
i=1

λiwi(y, t)
Wi

)−1

= J(y, t) (5.12)
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for all y ∈ R, t ∈ R and pi ≥ 0 satisfying
∑s

i=1 pi = 1. When s > 1, the equal-
ity sign of (5.12) holds if and only if pi = λiwi(y, t)J(y, t)W−1

i . Then, (5.10)
and (5.12) imply that δ(t) ≤ δ̃(t) for all t ∈ R. Consequently, var[eT

1 R(x0)] ≤
var[eT

1 R̃(x0)] for any choice of pi, and equality holds if and only if pi =
λiwi(y, t)J(y, t)W−1

i . However, the two variances are identical when s = 1 (e.g.,
Ahmad (1995)). Comparison between (3.6) and (5.11) has yet to be developed
for general values of k and p.
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Appendix A

Proof of Theorem 3.1. We first compute E[eT
k+1R(x0)]. Let ∆ij(x0) =

Yij −
∑p

k=0

[
(k!)−1m(k)(x0) (Xij − x0)

k
]
. By the definitions of Y, Z(x0), Th(x0)

and m(x0), we have Y − Z(x0)m(x0) = (∆11(x0), . . . ,∆sns(x0))
T and, for k =

0, . . . , p, the (k + 1)th element of ZT (x0)Th(x0)[Y −Z(x0)m(x0)] is

eT
k+1ZT (x0)Th(x0) [Y −Z(x0)m(x0)]

=
s∑

i=1

ni∑
j=1

{
∆ij(x0) (Xij − x0)

k N−1ĴN (Yij,Xij)Kh(Xij − x0)
}

. (A.1)

Because ĴN (Yij ,Xij) involves random jumps at each observation point, we con-
sider the asymptotic expectation and variance of

A(x0) = (A0(x0), . . . , Ap(x0))T , (A.2)

where Ak(x0) =
∑s

i=1

∑ni
j=1

{
∆ij (Xij − x0)

k N−1J(Yij ,Xij)Kh(Xij − x0)
}

. Di-
rect computation with change of variables shows that

E [Ak(x0)]=
1
N

s∑
i=1

ni

∫ ∫ {[
y −

p∑
r=0

(r!)−1m(r)(x0)(t − x0)r
]

(t − x0)k

×J(y, t)Kh(t − x0)
(

wi(y, t)
Wi

)
f(y, t)

}
dydt

=

{∫ [
m(t)−

p∑
r=0

(r!)−1m(r)(x0)(t−x0)r
]

(t−x0)kKh(t−x0)fX(t)dt

}
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×(1 + o(1))

=
{∫ [

[(p + 1)!]−1m(p+1)(x0)(t − x0)p+1

+o
(
|t − x0|p+1

)]
(t − x0)kKh(t − x0)fX(t)dt

}
(1 + o(1))

=

[
hp+1+k

(p + 1)!
m(p+1)(x0)fX(x0)µp+1+k

]
(1 + o(1)). (A.3)

Note that (A.3) holds for both odd and even p − k. Thus, when p − k is odd,

(fX(x0))
−1 eT

k+1H
−1S−1

0 H−1E [A(x0)]

=

(
hp+1−k

(p + 1)!

)
m(p+1)(x0)eT

k+1S
−1
0 cp(1 + o(1)). (A.4)

Using Lemma 6.1 of Wu (1997b), A3(b) and similar calculation as in (A.3), we
can show that

E

∣∣∣∣∣∣
s∑

i=1

ni∑
j=1

{[
∆ij(x0) (Xij−x0)

k N−1Kh(Xij−x0)
] (

ĴN (Yij ,Xij)−J(Yij ,Xij)
)}∣∣∣∣∣∣

≤E


∣∣∣∣∣∣
(

sup
(x,y)

∣∣∣ĴN (y, x)−J(y, x)
∣∣∣) s∑

i=1

ni∑
j=1

[
∆ij(x0) (Xij−x0)k N−1Kh(Xij−x0)

]∣∣∣∣∣∣


=o
(
hp+1+k

)
. (A.5)

Then (3.7) is a direct consequence of (3.2), (A.1), (A.2), (A.4) and (A.5).
Under the conditions of Theorem 3.1(c), direct computation and Taylor ex-

pansions of m(t) and fX(t) show that

E [Ak(x0)] =

{
hp+1+k

(p + 1)!
m(p+1)(x0)fX(x0)µp+1+k + hp+2+kµp+2+k

×
[
m(p+1)(x0)

(p + 2)!
fX(x0) +

m(p+1)(x0)
(p + 1)!

f ′
X(x0)

]}
(1 + o(1)). (A.6)

However, when p−k is even, assumption A3(d) implies that the (k+1)th element
of S−1

0 cp is 0 (e.g., Fan and Gijbels (1996, Section 3.7)), hence

(fX(x0))
−1 eT

k+1H
−1S−1

0 H−1

[
hp+1+k

(p + 1)!
m(p+1)(x0)fX(x0)cp

]
= 0. (A.7)

Then (3.8) follows from (3.2), (A.5), (A.6) and (A.7).
To prove (3.5), we consider the following expansion:

Ak1(x0)Ak2(x0) = I(x0) + II(x0), (A.8)
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where

I(x0)=
(

1
Nh

)2 s∑
i=1

ni∑
j=1

{
(∆ij(x0))

2(J(Yij ,Xij))
2(Xij−x0)k1+k2K2

(
Xij−x0

h

)}
,

II(x0)=
(

1
Nh

)2 ∑
(i1,j1)�=(i2,j2)

{
∆i1j1(x0)J(Yi1j1 ,Xi1j1)(Xi1j1−x0)

k1K

(
Xi1j1−x0

h

)

×∆i2j2(x0)J(Yi2j2,Xi2j2) (Xi2j2 − x0)
k2 K

(
Xi2j2 − x0

h

)}
.

By the definitions of δ(t) and Vk1+1,k2+1(x0), we get

E [I(x0)] =
(

1
Nh2

)∫ ∫ 
[
y −

p∑
k=0

(
m(k)(x0)

k!
(t − x0)k

)]2

(A.9)

×(t − x0)k1+k2J(y, t)K2
(

t − x0

h

)
f(y, t)

}
dydt

=
(

1
Nh

){∫
δ(t)(t − x0)k1+k2K2

(
t − x0

h

)
fX(t)dt

}
(1 + o(1))

=
(

fX(x0)
Nh

)
hk1+k2Vk1+1,k2+1(x0)(1 + o(1)).

Because the observations are independent, it is straightforward to verify that

E [II(x0)] =
(

N(N − 1)
N2

)
{E [Ak1(x0)] E [Ak2(x0)]} . (A.10)

Combining (A.8), (A.9) and (A.10), we have

cov (Ak1(x0), Ak2(x0)) =
(

fX(x0)
Nh

)
hk1+k2Vk1+1,k2+1(x0)(1 + o(1)). (A.11)

The covariance of (f(x0))−1eT
k1+1H

−1S−1
0 H−1A(x0) and (f(x0))−1eT

k2+1H
−1S−1

0

H−1A(x0) is then computed using (A.11) and is approximated by the right side
of (3.5). Furthermore, by Lemma 6.1 of Wu (1997b) and A3(b),

E

∣∣∣∣∣∣(Nh)−2


s∑

i=1

ni∑
j=1

[
∆ij(x0)(Xij − x0)k1

×
(
ĴN (Yij ,Xij) − J(Yij ,Xij)

)
Kh(Xij − x0)

]
×

s∑
i=1

ni∑
j=1

[
∆ij(x0)(Xij − x0)k2

(
ĴN (Yij ,Xij) − J(Yij ,Xij)

)
Kh(Xij − x0)

]
∣∣∣∣∣∣

≤ E


(

sup
(x,y)

∣∣∣ĴN (y, x) − J(y, x)
∣∣∣)2
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×

 s∑
i=1

ni∑
j=1

∆ij(x0)(Xij − x0)k1Kh(Xij − x0)


×

 s∑
i=1

ni∑
j=1

∆ij(x0)(Xij − x0)k2Kh(Xij − x0)

 = O
(
N−1

)
. (A.12)

Then (A.1) and the conditions of Theorem 3.1(a) imply that (3.5) holds for the
covariance between eT

k1+1R(x0) and eT
k2+1R(x0). This completes the proof of

Theorem 3.1.

Appendix B

Proof of Theorem 3.3. Substituting ĴN (Yij ,Xij) of R0(x0) with J(Yij ,Xij),
we first consider the asymptotic mean and variance of

R∗
0(x0) =

1
fX(x0)N |H|

s∑
i=1

ni∑
j=1

[
J(Yij,Xij)∆∗

ij(x0)K
(
H−1(Xij − x0)

)]
.

By direct integration and change of variables, we get

E [R∗
0(x0)]=

1
fX(x0)N |H|

s∑
i=1

ni∑
j=1

∫ ∫
J(y, t)

wi(y, t)
Wi

[
y−m(x0)−(t−x0)T m′(x0)

]
×K

(
H−1(t − x0)

)
f(y, t)dydt

=
1

fX(x0)|H|

∫ {∫ [
y − m(x0) − (t − x0)T m′(x0)

]
f(y|t)dy

}
×K

(
H−1(t − x0)

)
fX(t)dt

=
1

2fX(x0)

∫
K(u)(Hu)THm(x0)(Hu)fX(x0 + Hu)du(1 + o(1))

=
1
2
µ2(K)tr

{
Hm(x0)H2

}
(1 + o(1)).

For the variance of R∗
0(x0) we consider R∗

0(x0) = I∗(x0) + II∗(x0), where

I∗(x0)=(N |H|fX(x0))
−2

s∑
i=1

ni∑
j=1

{
J2(Yij,Xij)

(
∆∗

ij(x0)
)2

K2
(
H−1(Xij−x0)

)}
,

II∗(x0)=(N |H|fX(x0))−2
∑

(i1,j1)�=(i2,j2)

{
J(Yi1j1 ,Xi1j1)∆

∗
i1j1(x0)

×K
(
H−1 (Xi1j1−x0)

)
J(Yi2j2,Xi2j2)∆

∗
i2j2(x0)K

(
H−1 (Xi2j2−x0)

)}
.

Because E[II∗(x0)] = [E(R∗
0(x0))]2(1 + o(1)) and

E [I∗(x0)]=(N |H|fX(x0))
−2
∫ ∫

J2(y, t)
wi(y, t)

Wi

[
y−m(x0)−(t−x0)T m′(x0)

]2
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×K2
(
H−1(t − x0)

)
f(y, t)dydt

=
(fX(x0))

−2

N |H|2
∫

δ∗(t)K2
(
H−1(t − x0)

)
fX(t)dt

=(N |H|fX(x0))
−1
[∫

δ∗(x0 + Hu)K2(u)du
]

(1 + o(1)),

the variance of R∗
0(x0) is given by the right side of (3.18).

Note that the conclusions of (A.5) and (A.12) also hold for the current mul-
tivariate context. Then, (3.17) and (3.18) hold because R∗

0(x0) and R0(x0) have
the same asymptotic expectation and variance. The assertions in (b) and (c) can
be shown by the same arguments as in the proof of Theorem 3.2.
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