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Abstract: We study a problem of sequential detection in a continuous time change-

point model with a transition period. Let W denote a Brownian motion process

which has zero drift during the time interval [0, ν) and drift θh(t − ν) during the

time interval [ν,∞). Here h is a known deterministic function and θ and ν are

unknown parameters. The goal is to find a stopping time T of W that stops as

soon and as reliably as possible after the change-point ν. We consider stopping

rules based on mixtures of likelihoods and show that they are approximately Bayes

optimal.
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1. Introduction

Suppose one continuously monitors a process which initially is “in control”.
At some future time point this process may go “out of control” and it is then
desirable to react. A convenient mathematical model for this situation is as
follows. Let (Wt; 0 ≤ t < ∞) denote a Brownian motion process with drift zero
during the time interval [0, ν) and drift θ > 0 during [ν,∞) for some time point
ν. Let P(θ,ν) denote the corresponding probability and E(θ,ν) the expectation
with respect to P(θ,ν). Let P∞ denote the probability when ν = ∞ and E∞ the
expectation with respect to P∞. Note that W is a standard Brownian motion
under P∞. The unknown time point ν is usually referred to as the “change-point”
and one wants to detect it as fast as possible without raising a false alarm too
frequently. The objectives “quick detection” and “low false alarm rate” are still
informal and have to be specified further. Moreover the two goals are conflicting.

Shiryayev (1963) considered an exponential prior ρ for ν and studied the
Bayes risk ∫ ∞

0

{
P∞(T < ν) + cE(θ,ν)((T − ν)+)

}
ρ(dν)

for some c > 0. He proved that it is then optimal to stop as soon as the posterior
probability of a change exceeds a certain level depending on c. Note that P∞(T <

ν) = P(θ,ν)(T < ν). Pollak and Siegmund (1985) considered the minimization
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of supν E(θ,ν)(T − ν|T ≥ ν) under the constraint that E∞(T ) ≥ A for some
A > 0. They studied in particular the performance of the so-called CUSUM and
Shiryayev-Roberts procedures. See also Lai (1995), Siegmund (1994) and Zacks
(1983) for an extensive overview on different optimality concepts for change-point
detection problems.

One might think of situations where the assumption of an abrupt change is
not appropriate. Discrete time change-point models with a transition period are
for example considered by Huang and Chang (1993), Boukai and Zhou (1997)
and Huskova (1999) in the context of nonparametric retrospective estimation of
the change-point ν. We transfer their approach to continuous time sequential
detection. The drift of W then does not change instantaneously but increases
gradually from 0 to θ > 0. More precisely W is a Brownian motion process which
has drift zero during the time interval [0, ν) and drift θh(t − ν) during [ν,∞),
where h is some nondecreasing function with limt→∞ h(t) = 1.

It turns out that the monotonicity of h is not essential for our arguments. We
therefore study the following slightly more general setup. Let h denote a given
measurable function on [0,∞) such that h(t) > 0 for t ≥ 0. Let P(θ,ν) denote the
probability measure on σ(Ws; 0 ≤ s <∞) under which W is a Brownian motion
process with zero drift during the time interval [0, ν), and drift θh(t− ν) during
[ν,∞). This means that the process

Wt − θ

∫ t

ν∧t
h(u− ν)du (1)

is a standard Brownian motion under P(θ,ν). Let E(θ,ν) again denote the ex-
pectation with respect to P(θ,ν). Continuous time change-point models with a
translated signal of known shape are suggested in Kolmogorov, Prokhorov and
Shiryayev (1990). Note that for h(t) = 1[0,∞)(t) this model reduces to the one
considered above.

We study the Bayes risk

L(c, T ) = P∞(T <∞)+c
∫ ∞

0
I(θ)

∫ ∞

0

[
E(θ,ν)

(∫ T

ν∧T
h2(u− ν)du

)]
ρ(dν)G(dθ),

where ρ and G are probability distributions on [0,∞) and (0,∞) respectively, and
I(θ) = θ2/2. See Beibel (1997) for a related setup where h(t) = 1[0,∞)(t) and G

is a normal distribution. The idea to put a constraint on P∞(T <∞) in order to
control the rate of false alarms goes back to Pollak and Siegmund (1975). See also
the discussion in Assaf, Pollak, Ritov and Yakir (1993) and Yakir (1996). Our
costs for stopping late are proportional to the square of the current drift. The
Kullback-Leibler information of P(θ,ν) with respect to P∞ on σ(Ws; 0 ≤ s ≤ t)
is given by I(θ)

∫ t
ν∧t h

2(u − ν)du. This links our delay costs to the expected
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amount of incoming information. See also the discussion in Tartakovsky (1995).
The basic idea lying behind this approach is that it should be easier to detect the
change-point ν when the signal θh(t−ν) is large. This means that we standardize
problems according to their difficulty. Our loss structure is also convenient from
a mathematical point of view since it is closely related to the observed likelihood,
see Proposition 3 below. It is not clear how to treat other delay costs in a similar
way. See however Corollary 1 below for a partial result concerning the weighted
delay I(θ)(T −ν)+. For h(t) = 1[0,∞)(t) our delay costs are the average weighted
delay. The more general loss structure

P∞(T <∞) + c

∫ ∞

0
C(θ)

∫ ∞

0

[
E(θ,ν)

(∫ T

ν∧T
h2(u− ν)du

)]
ρ(dν)G(dθ)

for some positive weights C(θ) with
∫
Ω[C(θ)/I(θ)]G(dθ) <∞ may also be treated

by introducing a prior distribution G̃(dθ) proportional to [C(θ)/I(θ)]G(dθ). All
conditions on G then become conditions on G̃.

The goal is to minimize L(c, T ) over all stopping times T of W . We study
the case c → 0. When the costs for stopping late become small, one allows for
more post-change observations. The asymptotic analysis of L(c, .) for c → 0
therefore is in essence a large sample asymptotic. We provide an asymptotic
expansion of the minimal Bayes risk when the costs c become small. Moreover we
show that certain mixture stopping rules are asymptotically optimal. This is the
content of Theorem 1 and Theorem 2 below. We also examine the performance
of non-optimal mixture stopping rules, see Theorem 3 below. This covers in
particular the case of a (slightly) misspecified signal h. Our results show that
the effect of the transition period does not appear in the leading terms c log(1/c)
and (c/2) log log(1/c). The effect of the transition period only appears in the
constants K(ρ,G, h) and ∆((h, ρ,G), (h̃, ρ̃, G̃)) of Theorem 2 and Theorem 3
respectively. Hence this effect is of order O(c) as c→ 0. Such a difference seems
to be negligible from a practical point of view. Of particular interest is the case
h̃(t) = 1[0,∞)(t), ρ̃ = ρ and G̃ = G in Theorem 3.

Let L∗
c = infT L(c, T ), where the infimum is taken over all stopping times T of

W . Let Sb = inf{t > 0|
∫∞
0

∫∞
0 ey

∫ t

s∧t
h(u−s)dWu− y2

2

∫ t

s∧t
h2(u−s)duρ(ds)g(y)dy > b}

and β(c) = 1/c.
We impose the following conditions on h, ρ, and G:

(A1)
∫ t
0 h

2(s)ds <∞ for all t > 0.
(A2)

∫∞
0 h2(s)ds = +∞.

(B)
∫∞
0

∫∞
0 [h(t) − h(t− s)1{s≤t}]2dtρ(ds) <∞.

(C1) The distribution G has an absolutely continuous Lebesgue density g on
[0,∞) with g(0) <∞.
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(C2)
∫∞
0 y2+δg(y)dy <∞ for some δ > 0.

(C3)
∫∞
0 |H(y) log |H(y)||g(y)dy <∞, where H(y) = g′(y)/g(y).

A few words on our conditions are in order. Let B denote a standard Brownian
motion. Then the distribution of Bs+θ

∫ s
0 h(u)du is equivalent to the distribution

of Bs for 0 ≤ s ≤ t if and only if
∫ t
0 h

2(u)du < ∞. Condition (A1) therefore
implies that the measures P(θ,0) and P∞ are equivalent on σ(Ws; 0 ≤ s ≤ t) for
all 0 ≤ t < ∞. Condition (A2) implies that P(θ,0) and P∞ are orthogonal on
σ(Ws; 0 ≤ s < ∞). The Kullback-Leibler information of P(θ,ν) with respect to
P(θ,0) on σ(Ws; 0 ≤ s <∞) is given by

E(θ,ν)

(
log

dP(θ,ν)

dP(θ,0)

∣∣∣∣
σ(Ws;0≤s<∞)

)
= I(θ)

∫ ∞

0
[h(t) − h(t− ν)1{ν≤t}]2dt.

So, condition (B) implies that the averaged Kullback-Leibler information∫ ∞

0
E(θ,ν)

(
log

dP(θ,ν)

dP(θ,0)

∣∣∣∣
σ(Ws;0≤s<∞)

)
ρ(dν)

is finite. If h is nondecreasing, then∫ ∞

0
[h(t) − h(t− s)1{s≤t}]2dt ≤ s lim

t→∞h2(t).

Condition (B) is therefore satisfied whenever h is nondecreasing with limt→∞ h(t)
<∞ and

∫∞
0 sρ(ds) <∞. Note also that the Conditions (A1) and (A2) are triv-

ially satisfied whenever h is nondecreasing with limt→∞ h(t) <∞. The conditions
(C1) to (C3) are of a more technical nature and are needed in an approximation
argument below, see Proposition 5 in the Appendix. Note however that condition
(C2) implies

∫∞
0 y2g(y)dy <∞ and so provides, together with condition (B), the

finiteness of∫ ∞

0

∫ ∞

0

[
E(θ,ν)

(
log

dP(θ,ν)

dP(θ,0)

∣∣∣∣
σ(Ws;0≤s<∞)

)]
ρ(dν)g(θ)dθ.

Theorem 1. Let h, ρ, and G satisfy the conditions (A1), (A2), (B), and (C1)
to (C3). Then L∗

c = L(c, Sβ(c)) + o(c) when c→ 0 .

Theorem 2. Let h, ρ, and G satisfy the conditions (A1), (A2), (B), and (C1)
to (C3). Then L(c, Sβ(c)) = c[ log(1/c) + 1

2 log log(1/c) +K(ρ,G, h)] + o(c) when
c→ 0 for some constant K(ρ,G, h).

See Remark 3 in Section 3 for a more explicit expression for K.
Let L̃(c, T )=P∞(T <∞)+c

∫∞
0 I(θ)

∫∞
0 [E(θ,ν)(T−ν)+]ρ(dν)G(dθ). Then ob-

viously L̃(c, T )=L(c, T )+c
∫∞
0 I(θ)

∫∞
0 [E(θ,ν)(

∫ T
ν∧T [1−h2(u−ν)]du)]ρ(dν)G(dθ).

The asymptotic results of Theorem 1 and Theorem 2 therefore immediately yield
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Corollary 1. Let h, ρ, and G satisfy the conditions (B) and (C1) to (C3). If in
addition 0 < h ≤ 1 and

∫∞
0 [1 − h(u)2]du <∞, then

inf
T
L̃(c, T ) = L∗

c + c

∫ ∞

0

y2

2
G(dy)

∫ ∞

0
[1 − h2(u)]du+ o(c)

= L(c, Sβ(c)) + c

∫ ∞

0

y2

2
G(dy)

∫ ∞

0
[1 − h2(u)]du+ o(c)

as c→ 0.

Let h̃ denote a positive function on [0,∞). Let P̃(θ,ν) for θ ∈ (0,∞) and
ν ∈ [0,∞) denote the probability measure on σ(Ws; 0 ≤ s <∞) under which the
process Wt − θ

∫ t
0 h̃(u− ν)1{ν≤u}du is a standard Brownian motion. Let ρ̃ and G̃

be probability distributions on [0,∞). Let

S̃b = inf
{
t > 0|

∫ ∞

0

∫ ∞

0
ey
∫ t

s∧t
h̃(u−s)dWu− y2

2

∫ t

s∧t
h̃2(u−s)duρ̃(ds)g̃(y)dy > b

}
.

Theorem 3. Let (h, ρ,G) and (h̃, ρ̃, G̃) both satisfy (A1), (A2), (B), and (C1) to
(C3). Let

∫∞
0 [h(u)− h̃(u)]2du <∞ and suppose that ρ̃ and G̃ are dominated by ρ

and G respectively with
∫∞
0 log (dρ(u)/dρ̃(u))ρ(du) < ∞ and

∫∞
0 log (g(y)/g̃(y))

g(y)dy < ∞. Then L(c, S̃β(c)) = L∗
c + c∆((h, ρ,G), (h̃, ρ̃, G̃)) + o(c) when c →

0, where ∆((h, ρ,G), (h̃, ρ̃, G̃)) = EP [ log (dP/dP̃ |σ(Ws; 0 ≤ s <∞))] equals the
Kullback-Leibler information of P̃ =

∫∞
0

∫∞
0 P̃(θ,ν)ρ̃(dν)G̃(dθ) relative to P =∫∞

0

∫∞
0 P(θ,ν)ρ(dν)G(dθ) on σ(Ws; 0 ≤ s <∞).

Remark 1. If ρ̃ = ρ and G̃ = G, then ∆ ≤
∫∞
0 I(y)g(y)dy

∫∞
0 [h̃(u) − h(u)]2du.

The rest of this paper is organized as follows. In Section 2 we construct
a suitable model and establish some key facts. Section 3 contains the proof of
Theorem 2. Theorem 1 is then proved in Section 4 and Theorem 3 is proved
in Section 5. Most of our arguments are analogous to those of Beibel (1997).
The Appendix contains an approximation argument which we need in the proof
of Proposition 3 in Section 3. These arguments extend some of the results of
Paulsen (1999) to our setting.

2. Some Results on the Structure

We assume throughout this article that the conditions (A1), (A2), (B), and
(C1) to (C3) are satisfied. Let B denote a standard Brownian motion. Let Y be
a positive random variable with P (Y ≤ y) =

∫ y
0 g(s)ds and τ be a nonnegative

random variable with P (τ > t) =
∫
(t,∞) ρ(ds) for all t ≥ 0. Let B, Y and τ be

independent under P . Put Wt = Bt +
∫ t
0 Rsds, where Rs = Y h(s − τ)1{τ≤s}.
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Let Ft = FW
t = σ(Ws; 0 ≤ s ≤ t) and FB,Y,τ

t = σ(Bs; 0 ≤ s ≤ t, Y, τ). Let P∞
denote the probability measure on σ(Bs, 0 ≤ s <∞, Y, τ) given by

dP∞
dP

∣∣∣FB,Y,τ
t

= exp

{
−Y

∫ t

τ∧t
h(s − τ)dBs −

Y 2

2

∫ t

τ∧t
h2(s− τ)ds

}

for all 0 ≤ t < ∞. Obviously the P∞-distribution of (Y, τ) coincides with the
distribution of (Y, τ) under P . Moreover (Wt,Ft; 0 ≤ t < ∞) is a standard
Brownian motion and independent of (Y, τ) under P∞. This implies

dP

dP∞

∣∣∣∣Ft

=
∫ ∞

0

∫ ∞

0
ey
∫ t

s∧t
h(u−s)dWu− y2

2

∫ t

s∧t
h(u−s)2duρ(ds)g(y)dy.

Let ψt = dP
dP∞ |Ft . Then

L(c, T ) = P∞(T <∞) + cE

(∫ T

0
R2

sds

)
. (2)

We first derive a stochastic differential equation for logψt. Let R̂t = E(Rt|Ft) and
R̂2

t = E(R2
t |Ft). Let W denote the innovation process Wt := Wt −

∫ t
0 R̂sds. This

process is a standard Brownian motion under the probability measure P relative
to the filtration F (see Liptser and Shiryayev (1977, pp.297-299)). Theorem 7.13
in Liptser and Shiryayev (1977) yields that

Proposition 1.

d logψt =
1
2
(R̂t)

2dt + R̂tdWt . (3)

We need one more probability measure. Let P0 denote the probability mea-
sure on σ(Bs, 0 ≤ s <∞, Y, τ) given by

dP0

dP

∣∣∣∣
σ(Bs ;0≤s<∞,τ,Y )

= exp
{
Y

∫ ∞

0
[h(t) − h(t− τ)1{τ≤t}]dBt

− Y 2

2

∫ ∞

0
[h(t) − h(t− τ)1{τ≤t}]2dt

}
.

Note that
∫∞
0 [h(t) − h(t − τ)1{τ≤t}]2dt < ∞ holds with P -probability one. The

process (Wt − Y
∫ t
0 h(s)ds; 0 ≤ t < ∞) is a standard Brownian motion under P0

with respect to the filtration FB,Y,τ . Moreover (Wt − Y
∫ t
0 h(s)ds; 0 ≤ t < ∞)

is independent of (Y, τ) under P0. Therefore the distribution of W under P0 is
given by

∫∞
0 P(θ,0)g(θ)dθ. The probability measures P and P0 are equivalent on

the σ-algebra σ(Ws; 0 ≤ s < ∞, Y, τ). The following remark summarizes the
essential features of our setup.
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Remark 2. Let P (W,Y,τ), P (W,Y,τ)
∞ and P

(W,Y,τ)
0 denote the distribution of

(W,Y, τ) under P , P∞ and P0, respectively, C[0,∞) the space of all real-valued
continuous functions on [0,∞) vanishing at zero, µW the Wiener measure on
C[0,∞), and T1 and T2 denote the transformations from C[0,∞)×(0,∞)×[0,∞)
to itself given by T1(f(.), θ, ν) = (f(.) − θ

∫ .
0 h(s)ds, θ, ν) and T2(f(.), θ, ν) =

(f(.)−θ
∫ .
0 h(s−ν)1{ν≤s}ds, θ, ν). Then P (W,Y,τ)

∞ = P
(W,Y,τ)
0 T −1

1 = P (W,Y,τ)T −1
2 =

µW ⊗G⊗ ρ.
Let Nt = dP/dP0|σ(Ws; 0 ≤ s ≤ t) and N∞ = dP/dP0|σ(Ws; 0 ≤ s <∞).

We have
lim
t→∞

[ ∫ t

0
h(s)dWs

/∫ t

0
h2(s)ds

]
= Y (4)

with P0-probability one.

Proposition 2. P ( limt→∞ [ logψt/
∫ t
0 R

2
sds] = 1/2) = 1.

Proof. We have logψt = logNt + logψ(0)
t , where ψ(0)

t = dP0/dP∞|Ft . Theorem
7.13 in Liptser and Shiryayev (1977) provides

logψ(0)
t =

∫ t

0
E0(Y |Fs)h(s)dWs −

1
2

∫ t

0
[E0(Y |Fs)]2h2(s)ds. (5)

Clearly (4) implies P0( limt→∞E0(Y |Ft) = Y ) = 1 and so P0( limt→∞[logψ(0)
t /∫ t

0 h
2(s)ds] = Y 2/2) = 1. The P0-martingale Nt converges under P0 with prob-

ability one to N∞. Therefore P0( limt→∞[logNt/
∫ t
0 h

2(s)ds] = 0) = 1. We have∫ t
t−τ h

2(u)du ≤ 2
∫ t
0 h(u)[h(u) − h(u − τ)1{τ≤u}]du for t ≥ τ . Condition (B)

therefore yields limt→∞[
∫ t
τ h

2(s−τ)ds/
∫ t
0 h

2(s)ds] = 1 with probability one. The
assertion now follows since P and P0 are equivalent on σ(Ws, 0 ≤ s <∞).

We need some further notation. Let FW,τ
t denote the σ-algebra σ(Ws; 0 ≤

s ≤ t, τ). Let R̂(τ)
t = E(Rt|FW,τ

t ) and R̂2
t

(τ)
= E(R2

t |F
W,τ
t ). Theorem 7.13 in

Liptser and Shiryayev (1977) yields (by conditioning on τ)

dP

dP∞

∣∣∣∣FW,τ
t

= exp
{∫ t

0
R̂(τ)

s dWs − (1/2)
∫ t

0
[R̂(τ)

s ]2ds
}
. (6)

Let N (τ)
t = dP/dP0|FW,τ

t and N
(τ)
∞ = dP/dP0|σ(Ws; 0 ≤ s <∞, τ). Then (4)

implies

N (τ)
∞ =

dP

dP0

∣∣∣∣
σ(Ws;0≤s<∞,τ,Y )

(7)

with P0-probability one, and so

E(logN (τ)
∞ ) = (1/2)E(Y 2)E

(∫ ∞

0
[h(t) − h(t− τ)1{τ≤t}]2dt

)
<∞.
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Moreover N∞ = dP/dP0|σ(Ws; 0 ≤ s <∞, Y ). Since σ(Ws; 0 ≤ s < ∞) ⊂
σ(Ws; 0 ≤ s < ∞, τ) we obtain 0 ≤ E(logN∞) ≤ E(logN (τ)

∞ ) < ∞. Let V
(τ)
t :=

R̂2
t

(τ)
− [R̂(τ)

t ]2 and Ṽ
(τ)
t := h2(t − τ)1{τ≤t}/[

∫ t
t∧τ h

2(u − τ)du + 1]. We have

E(
∫ T
0 Ṽ

(τ)
s ds) = E[ log (

∫ T
τ∧T h

2(t− τ)dt + 1)].

Proposition 3. For all stopping times T with E(
∫ T
0 R2

sds) < ∞, L(c, T ) =
E[ψ−1

T + c
2

∫ T
0 R̂2

sds] and

1
2
E

(∫ T

0
R̂2

sds

)
= E(logψT ) +

1
2
E

(∫ T

0
(R̂2

s − [R̂s]2)ds

)

= E(logψT ) +
1
2
E

[
log

( ∫ T

τ∧T
h2(s − τ)ds + 1

)]

+
1
2
E

(∫ T

0
[V(τ)

s − Ṽ
(τ)
s ]ds

)
+

1
2
E

(∫ T

0

[
R̂(τ)

s − R̂s

]2
ds

)
.

(8)

Moreover
∣∣∣E (∫ T

0

[
V

(τ)
s − Ṽ

(τ)
s

]
ds
)∣∣∣ ≤ E

(∫∞
τ

∣∣∣V(τ)
s − Ṽ

(τ)
s

∣∣∣ds) <∞ and

E

(∫ T

0
(R̂(τ)

s − R̂s)2ds

)
≤ E

(∫ ∞

0
(R̂(τ)

s − R̂s)2ds
)

= 2
[
E
(
logN (τ)

∞
)
−E (logN∞)

]
<∞.

Proof. Fubini’s theorem, P∞(T < ∞) = E(1/ψT 1{T<∞}) and Proposition 1
yield, for all FW -stopping times T with L(c, T ) <∞,

L(c, T )=E

{
ψ−1

T +
c

2

∫ T

0
R̂2

sds

}
=E

{
ψ−1

T +c logψT

}
+
c

2
E

(∫ T

0
(R̂2

s−[R̂s]2)ds

)
.

(9)
Another Fubini type of argument provides

E

(∫ T

0
(R̂2

s−[R̂s]2)ds

)
=E

(∫ T

0
[R̂2

s

(τ)
−(R̂(τ)

s )2]ds

)
+E

(∫ T

0

(
R̂(τ)

s − R̂s

)2
ds

)
.

(10)
This yields (8). Proposition 5 in the Appendix provides E(

∫+∞
τ |V(τ)

s −Ṽ
(τ)
s |ds) <

+∞. A third Fubini type of argument, together with (5) and (6) for 0 ≤ t <∞,
yields

E

(∫ t

0

(
R̂(τ)

s − R̂s

)2
ds

)
= E

(∫ t

0

(
R̂(τ)

s − E0(Y |Fs)h(s)
)2
ds

)
(11)

− E

(∫ t

0

(
R̂s − E0(Y |Fs)h(s)

)2
ds

)
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= 2
[
E
(

logN (τ)
t

)
− E( logNt)

]
. (12)

Note that E(R̂(τ)
s |Fs) = R̂s. The submartingales logN (τ)

t and logNt are uni-
formly integrable. The last assertion follows if we let t→ ∞.

3. Proof of Theorem 2

We recall that Sb = inf{t > 0|ψt ≥ b}. We have P (Sb <∞) = 1 for all b > 1
since the probability measures P∞ and P are orthogonal on σ(Ws, 0 ≤ s < ∞).
Obviously P (limb→∞ Sb = +∞) = 1. Proposition 2 therefore yields

P

(
lim
b→∞

[
1
2

∫ Sb

0
R2

sds
/

log b

]
= 1

)
= 1. (13)

Proposition 3 yields

E

(∫ Sb

0
R2

sds

)
≤ 2 log b+ E

[
log

(∫ Sb

τ∧Sb

h2(u− τ)du+ 1
)]

+A,

for some constant A. The same arguments as in the proof of Lemma 3 of Beibel
(1997) therefore imply

E

(∫ Sb

0
R2

sds

)
≤ 4 log b+O(1), (14)

as b → ∞. Let ξ(b, y, s) = inf{t > 0|y2
∫ t
s∧t h

2(u − s)du ≥ ηb}, where ηb =
(1/3) log b. Obviously {

∫ Sb
0 R2

sds ≤ ηb} = {Sb ≤ ξ(b, Y, τ)}. It holds that

P
( ∫ Sb

0
R2

sds ≤ ηb

)
≤ b−

2
3E∞

(
dP

dP∞

∣∣∣∣FB,Y,τ
ξ(b,Y,τ)

)2

+ b
2
3P∞

( ∫ Sb

0
R2

sds ≤ ηb

)
. (15)

The independence of Sb, Y and τ under P∞ yields

P∞
( ∫ Sb

0
R2

sds ≤ ηb

)
=
∫ ∞

0

∫ ∞

0
P∞

(
Sb ≤ ξ(b, y, s)

)
g(y)dyρ(ds) ≤ 1/b. (16)

Now
∫ ξ(b,Y,τ)
0 R2

sds = ηb. So,

E∞
(
dP

dP∞

∣∣∣∣FB,Y,τ
ξ(b,Y,τ)

)2

≤ b
1
3E∞

(
e
∫ ξ(b,Y,τ)

0
[2Rs]dWs− 1

2

∫ ξ(b,Y,τ)

0
[2Rs]2ds

)
≤ b

1
3 . (17)

It follows from (15), (16), and (17) that

P

(∫ Sb

0
R2

sds ≤ 1
3 log b

)
≤ 2b−1/3 . (18)
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Inequalities (14) and (18) yield the uniform integrability of log(
∫ Sb
0 R2

sds
/

log b);
see the proof of Proposition 4 in Beibel (1997). Combining (13), (14) and (18)
we arrive at the following Proposition.

Proposition 4. E( log[
∫ Sb
τ∧Sb

h2(u−τ)du+1]) = log log b−
∫∞
0 log (I(y)) g(y)dy+

o(1), as b→ ∞.

Proof of Theorem 2. Proposition 3 has L(c, Sβ(c)) = E{ψ−1
Sβ(c)

+ c log(ψSβ(c)
)+

c
2

∫ Sβ(c)

0 [R̂2
s − (R̂s)2]ds}. For sufficiently small c it holds that E(1/ψSβ(c)

+
c logψSβ(c)

) = c + c log(1/c). Proposition 3 and Proposition 4 yield the asser-
tion.

Remark 3. We have K(ρ,G, h) = 1 − (1/2)
∫∞
0 log(I(y))g(y)dy + E(

∫∞
τ [V(τ)

s −
Ṽ

(τ)
s ]ds)+E(logN (τ)

∞ )−E(logN∞) with E(logN (τ)
∞ )=

∫∞
0 I(y)g(dy)

∫∞
0 (
∫∞
0 [h(t)−

h(t− s)1{s≤t}]2dt)ρ(ds). If limt→∞ h(t) exists and limt→∞ h(t) = 1, then

E
(

logN∞
)
=

1
2

∫ ∞

0

∫ ∞

0
E(θ,ν)

[
log

(∫ ∞

0
exp

{
−θ

∫ ∞

0
[h(t)−h(t − s)1{s≤t}]dWt

+ I(θ)s
}
ρ(ds)

)]
g(θ)dθρ(dν).

4. Proof of Theorem 1

We compare the performance of the stopping times Sβ(c) with the perfor-
mance of c2-optimal solutions. Let Tc for 0 < c ≤ 1 be an c2-optimal stopping
rule, that is a stopping time with L(c, Tc) ≤ L∗

c + c2. We may assume with-
out loss of generality that Tc ≤ Sβ(c). Theorem 2 yields c−1(L∗

c − c log(1/c)) ≤
(1/2) log log(1/c) +O(1) as c→ 0. Similar arguments as in the proof of Lemma
5 and Lemma 6 of Beibel (1997) therefore provide, as c→ 0,

E

log

∫ Sβ(c)

τ∧Sβ(c)
h2(s − τ)ds+ 1∫ Tc

τ∧Tc
h2(s− τ)ds+ 1

→ 0. (19)

Moreover Tc → ∞ in P -probability. The function gc(x) = 1/x + c log x assumes
its unique minimum over the interval (0, 1) at x = β(c). Proposition 3 therefore
provides

0 ≤ L(c, Sβ(c)) − L∗
c ≤ L(c, Sβ(c)) − L(c, Tc) + c2

≤ cE

(∫ ∞

Tc

[
R̂(τ)

s − R̂s

]2
ds

)
+ cE

(∫ ∞

Tc

[
V

(τ)
s − Ṽ

(τ)
s

]
ds

)

+ cE

log

∫ Sβ(c)

τ∧Sβ(c)
h2(s− τ)ds + 1∫ Tc

τ∧Tc
h2(s − τ)ds + 1

+ c2.
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Proposition 3 and (19) now yield Theorem 1.

5. Proof of Theorem 3

Let P̃ denote the probability measure on σ(Bs; 0 ≤ s <∞, Y, τ) given by

dP̃

dP

∣∣∣∣
σ(Bs ;0≤s≤t,Y,τ)

= exp
{
Y

∫ t

τ∧t
[h̃(u− τ) − h(u− τ)]dBu

− Y 2

2

∫ t

τ∧t
[h̃(u− τ) − h(u− τ)]2du

}
dρ̃(τ)
dρ(τ)

g̃(Y )
g(Y )

for 0 ≤ t <∞. Then

dP̃

dP

∣∣∣∣
σ(Bs ;0≤s<∞,Y,τ)

= exp
{
Y

∫ ∞

τ
[h̃(u− τ) − h(u− τ)]dBu

− Y 2

2

∫ ∞

τ
[h̃(u− τ) − h(u− τ)]2du

}
dρ̃(τ)
dρ(τ)

g̃(Y )
g(Y )

.

Under P̃ the process B̃t = Bt−Y
∫ t
τ∧t[h̃(u−τ)−h(u−τ)]du = Wt−Y

∫ t
τ∧t h̃(u−

τ)du is a standard Brownian motion. Let P̃∞ denote the probability measure
on σ(B̃s, 0 ≤ s < ∞, Y, τ) = σ(Bs, 0 ≤ s < ∞, Y, τ) given by dP∞/dP |FB,Y,τ

t =
exp{−Y

∫ t
τ∧t h̃(s − τ)dB̃s − (Y 2/2)

∫ t
τ∧t h̃

2(s − τ)ds} for all 0 ≤ t < ∞. Then
(Wt,Ft; 0 ≤ t < ∞) is a standard Brownian motion with respect to P̃∞. There-
fore P̃∞ and P∞ coincide on σ(Ws; 0 ≤ s < ∞). Moreover dP̃∞/dP∞|σ(Ws; 0 ≤
s <∞, Y, τ) = (dρ̃(τ)/dρ(τ))(g̃(Y )/g(Y )). So, W is independent of (Y, τ) under
P̃∞. Let

ψ̃t =
dP̃

dP̃∞

∣∣∣∣Ft

=
dP̃

dP∞

∣∣∣∣Ft

=
∫ ∞

0

∫ ∞

0
ey
∫ t

s∧t
h̃(u−s)dWu− y2

2

∫ t

s∧t
h̃2(u−s)duρ̃(ds)g̃(y)dy.

Now

log ψ̃t = logψt − logLt, (20)

where Lt = dP/dP̃ |Ft. The submartingale logLt is uniformly integrable with
respect to P . Moreover Lt converges, as t → ∞, to L∞ = dP/dP̃ |σ(Ws; 0 ≤ s <

∞). Obviously P∞(S̃b <∞) = 1/b for b ≥ 1. Proposition 3 yields, for b ≥ 1,

E

(∫ S̃b

0
R2

sds

)
= 2 log b+ E(log LS̃b

) + E

[
log

( ∫ S̃b

τ∧S̃b

h2(s − τ)ds + 1
)]

+ E

(∫ S̃b

0
[V(τ)

s − Ṽ
(τ)
s ]ds

)
+ E

(∫ S̃b

0

[
R̂(τ)

s − R̂s

]2
ds

)
.



726 M. BEIBEL

We have P (limb→∞ S̃b = ∞) = 1 and limb→∞E(log LS̃b
) = E(logL∞) =

∆((h, ρ,G), (h̃, ρ̃, G̃)). Theorem 3 therefore follows if we show that

E

[
log

( ∫ S̃b

τ∧S̃b

h2(u− τ)du+ 1
)]

= log log b−
∫ ∞

0
log (I(y)) g(y)dy + o(1) (21)

when b→ ∞. Similar arguments as in the proof of Proposition 4 give (21) if we
show that
i) P (limb→∞[

∫ S̃b
0 R2

sds/2 log b] = 1) = 1.

ii) E(
∫ S̃b
0 R2

sds) ≤ 2 log b+O(1).

iii) P (
∫ S̃b
0 R2

sds ≤ (1/3) log b) ≤ 2b−1/3.
Proposition 2 and (20) yield P ( limt→∞[log ψ̃t/

∫ t
0 R

2
sds] = 1/2) = 1, and

thus i). From (20) with b ≥ 1, E(logψS̃b
) ≤ b − E(log LS̃b

). Similar arguments
as in Section 3 therefore provide ii). The same arguments as in the proof of (18)
in Section 3, with Sb replaced by S̃b, provide iii).
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Appendix. The Integrated Posterior Variance

Following the lines of Paulsen (1999) we will now approximate V
(τ)
t = R̂2

t

(τ)
−

[R̂(τ)
t ]2 by Ṽ

(τ)
t = h2(t− τ)/[

∫ t
t∧τ h

2(u− τ)du+ 1]. Proposition 5 below transfers
the results of Proposition 3.3 and Lemma 4.1 in Paulsen (1999) to our setup.
Note that we allow for g(0) > 0. Then g is not left-continuous at 0. This
leads to the additional term g(0)(ψ(τ)

t )−1 in (25) below, which is not a closable
martingale. This complicates our arguments further. For τ ≤ t < ∞, let Ŷ (τ)

t =

E(Y |FW,τ
t ) and Ŷ 2

t

(τ)
= E(Y 2|FW,τ

t ). If τ ≤ t < ∞, R̂(τ)
t = h(t − τ)Ŷ (τ)

t and

R̂2
t

(τ)
= h2(t − τ)Ŷ 2

t

(τ)
. Let v(τ)

t = Ŷ 2
(τ)

t − [Ŷ (τ)
t ]2. Then V

(τ)
t = h2(t − τ)v(τ)

t .
Let I(τ)

t =
∫ t
τ∧t h

2(u− τ)du =
∫ (t−τ)+

0 h2(u)du.

Proposition 5. E(
∫∞
τ |V(τ)

s − Ṽ
(τ)
s |ds) < +∞.

Proof. Let ξ(τ)(v) = inf{t ≥ τ |I(τ)
t = v} = τ + inf{t ≥ 0|

∫ t
0 h

2(u)du = v}. Then

∫ ∞

τ

∣∣∣V(τ)
s − Ṽ

(τ)
s

∣∣∣ds =
∫ ∞

τ

∣∣∣v̄s −
1

1 + s

∣∣∣ds,
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where v̄s = v(τ)

ξ(τ)(s)
. Let α ∈ (0, 2). Then

∫ ∞

0

∣∣∣∣v̄s −
1

s+ 1

∣∣∣∣ ds ≤
(

sup
0≤s<∞

∣∣∣∣v̄s −
1

s+ 1

∣∣∣∣1−α
)∫ ∞

0

∣∣∣v̄s −
1

s+ 1

∣∣∣αds. (22)

The Hölder inequality with p = 2/(2 − α) and q = 2/α now yields∫ ∞

0

∣∣∣v̄s −
1

1 + s

∣∣∣αds ≤ C(α)(2−α)/2
(∫ ∞

0

[
(s+ 1)v̄s − 1

]2
ds

)α
2

, (23)

where C(α) =
∫∞
0 (s+1)−2α/(2−α)ds. Note that 2α/(2−α) > 1 and so C(α) <∞

for α > 2/3. Inequalities (22) and (23) yield

E

(∫ ∞

0

∣∣∣v̄s −
1

s+ 1

∣∣∣ds) ≤ C(α)E

{
M1−α

(∫ ∞

0

∣∣∣(s+ 1)v̄s − 1
∣∣∣2ds)α/2

}
,

where M = sup0≤s<∞
∣∣∣v̄s − 1

s+1

∣∣∣. The Hölder inequality implies

E

(∫ ∞

0

∣∣∣v̄s −
1

s+ 1

∣∣∣ds)

≤ C(α)
{
E
(
Mp(1−α)

)}1/p
{
E

(∫ ∞

0

∣∣∣(s+ 1)v̄s − 1
∣∣∣2ds)qα/2

}1/q

.

Let α = 2(1+ η)/3, q = 3(1− η)/[2(1+ η)] and p = q/(q− 1) = 3(1− η)/(1− 5η)
for some η ∈ (0, 1/5). Then qα/2 < 1/2, and so Lemma 1 below provides

E

[∫ ∞

0

[
(s+1)v̄s−1

]2
ds

]qα/2

=E
[∫ ∞

τ

(
(I(τ)

s +1)v(τ)
s −1

)2
h2(s−τ)ds

]qα/2

<∞.

Since 0 ≤ v(τ)
t ≤ E(Y 2|FW,τ

t ) and E(Y 2+δ) <∞ we have E[ sup0≤t<∞ |v̄(τ)
t |β] <

∞ for 0 ≤ β < 1 + δ/2. Now p(1 − α) = (1 − η)(1 − 2η)/(1 − 5η). Hence
p(1 − α) < 1 + δ/2 for η sufficiently small. Then E(Mp(1−α)) < ∞ and the
assertion follows.

Lemma 1. E[
∫∞
τ ((I(τ)

s + 1)v(τ)
s − 1)2h2(s− τ)ds]α <∞ for all 0 ≤ α < 1/2.

Proof. We first derive stochastic differential equations for Ŷt
(τ)

and [I(τ)
t +1]Ŷt

(τ)
.

It holds that Ŷ (τ)
t = µ(X(τ)

t , I
(τ)
t ) and Ŷ 2

t

(τ)
= ρ(X(τ)

t , I
(τ)
t ), where

µ(x, t) =
∫ ∞

0
yeyx− y2

2
tg(y)dy

/∫ ∞

0
eyx− y2

2
tg(y)dy,

ρ(x, t) =
∫ ∞

0
y2eyx− y2

2
tg(y)dy

/∫ ∞

0
eyx− y2

2
tg(y)dy,
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and X
(τ)
t =

∫ t
τ∧t h(u − τ)dWu. Note that after the random time change ξ(τ) the

process X(τ) becomes a Brownian motion with linear drift. See Novikov (1971)
and Chapter 5 in Küchler and Sørensen (1997) for this type of transformation. We
have (see Paulsen (1999)) ∂xµ(x, t) = v(x, t) and (1/2)∂x∂xµ(x, t) + ∂tµ(x, t) =
−µ(x, t)v(x, t), where v(x, t) = ρ(x, t) − µ(x, t)2. Therefore Itô’s formula implies

dŶt
(τ)

= v(X(τ)
t , I

(τ)
t )dX(τ)

t = v(τ)
t dX

(τ)
t and further

d

(
[I(τ)

t + 1]Ŷt
(τ) −X

(τ)
t

)
=
[(
I
(τ)
t + 1

)
v(τ)

t − 1
]
dX

(τ)
t , (24)

with X(τ)
t = X

(τ)
t −

∫ t
τ∧t Ŷ

(τ)
u h(u−τ)du. Lemma 1 on p. 21 in Stein (1986) yields

for all B > 0 and A ∈ (−∞,+∞),∫ ∞

0
(By −A)eAy−B y2

2 g(y)dy = g(0) +
∫ ∞

0

[
g′(y)
g(y)

]
eAy−B y2

2 g(y)dy.

Then, with A = X
(τ)
t and B = I

(τ)
t , for τ ≤ t <∞,

I
(τ)
t Ŷt

(τ) −X
(τ)
t = g(0)

1

ψ
(τ)
t

+ E
(
H(Y )|FW,τ

t

)
, (25)

where ψ(τ)
t =

∫∞
0 ey

∫ t

τ∧t
h(u−τ)dWu− y2

2

∫ t

τ∧t
h2(u−τ)dug(y)dy = dP/dP∞|FW,τ

t . See
Proposition 4 in Woodroofe (1992) for a related identity. We note two useful facts.
We have E(|H(Y ) log |H(Y )||) <∞. Therefore Doob’s inequality and EY 2 <∞
provide E

[
sup0≤t<∞E(H(Y )|FW,τ

t )
]
< ∞ and E

[
sup0≤t<∞E(Y |FW,τ

t )
]
< ∞.

Moreover for x ≥ 1,

P

(
sup

0≤t<∞
[1/ψ(τ)

t ] > x

)
= P (σ(τ)

x <∞) = E∞
(

[ψ(τ)

σ
(τ)
x

]1{σ(τ)
x <∞}

)
= 1/x,(26)

where σ(τ)
x = inf{t > 0|[ψ(τ)

t ]−1 > x}. Note that P∞(σ(τ)
x < ∞) = 1 for x ≥

1. We immediately obtain E( sup0≤t<∞[1/ψ(τ)
t ])β < ∞ for 0 ≤ β < 1. So

E( sup0≤t<∞ |(I(τ)
t + 1)Y (τ)

t − X
(τ)
t |β) < ∞ for all 0 ≤ β < 1. Representation

(24) and the Burkholder-Davis-Gundy inequalities now yield the assertion. Note
that dX(τ)

t = h(t− τ)dWt for τ ≤ t <∞.
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