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DISTRIBUTIONS FOR MULTIPARAMETER
EXPONENTIAL FAMILIES WITH APPLICATIONS
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Abstract: Integrable expansions for posterior distributions are obtained for sequen-
tial samples from a multiparameter exponential family. A data dependent trans-
formation is used to convert the likelihood function to the form of a standard
multivariate normal density. Then a version of Stein’s Identity is applied. This
leaves an expression from which an asymptotic expansion is easily obtained. The
results are applied to find confidence intervals for the ratio of two Poisson means
after a sequential test and compare well with simulations.
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1. Introduction

Asymptotic expansions for posterior distributions have been studied since
the time of Laplace, and interest in them continues to this day. See, for example,
Kass, Tierney and Kadane (1987). A conventional approach to such problems
starts from a Taylor series expansion of the log-likelihood function around the
maximum likelihood estimator and proceeds from there to develop expansions
that hold almost surely, given the data. Johnson (1967, 1970) provides a careful
account of this approach. Two recent developments are central to this paper. One
of these is interest in integrable expansions, expansions that can be integrated
with respect to the marginal distribution of the data. Integrable expansions pro-
vide higher order approximations to the overall Bayes’ risk and, so, are useful
for design considerations. In addition, they may be used to form very weak
expansions for (frequentist) confidence levels, as described in Sections 6 and 7
below. Ghosh, Sinha and Joshi (1982) were the first to consider integrable ex-
pansions (to the best of the author’s knowledge). They provided conditions on
the prior and model under which the almost sure expansions could be integrated
termwise. This work was followed by Woodroofe (1986) and Bickel and Ghosh
(1990) among others. In related work, Woodroofe (1989, 1992) showed how a
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version of Stein’s (1987) identity could be used to write posterior expectations in
a form from which asymptotic expansions could be readily guessed. Moreover,
there is martingale structure inherent in this approach, and the latter is useful in
obtaining integrable expansions. Woodroofe (1989, 1992) considered two cases,
linear models with normal errors and one-parameter exponential families. Here
the approach is extended to multi-parameter exponential families. Multiparam-
eter exponential families have also been considered by Sun (1994) and by Coad
and Woodroofe (1996) in special cases, both involving just two parameters. By
way of contrast, our formulation is quite general, requiring only that the family
be minimal and that the natural parameter space be open.

The expansions derived here differ from those derived by Takahashi (1987),
Woodroofe and Keener (1987), Woodroofe (1988) and Lai and Wang (1994),
who obtain asymptotic expansions for fixed values of the parameter 0. First,
the scaling is different. The latter authors derive expansions for normalized
estimation error, and the first three only consider normalized sums; here we use
the signed root transformation. Even in the normal case, where the scalings
agree, the expansions are different. The fixed 8 expansions contain ladder height
distributions and oscillatory terms, like the fractional part of N, where N is
approaching infinity rapidly. The coefficients in our expansions are continuous
functions of the parameter that do not involve ladder height distributions and
may be estimated quite easily. The price that we pay for the more tractable
coeflicients is to use a weaker form of convergence, one that effectively smooths
out the oscillations in the fixed 6 expansions.

The model and the application of Stein’s Identity to posterior distributions
are reviewed in Sections 2 and 3. A key observation here is that a suitable pa-
rameter transformation, called Z,, converts the likelihood function into a normal
form. In Section 4, asymptotic expansions are derived for the posterior expec-
tation of h(Z;) for bounded functions h and suitable families of stopping times
t. In Section 6, the results are specialized to the two-parameter case, and the
asymptotic expansions of Section 4 are used to develop very weak expansions for
(frequentist) sequential confidence levels. The process is illustrated in Section 7
by applying it to find confidence intervals for the ratio of two Poisson means after
a sequential test. Simulation experiments indicate that the approximations are
very accurate. Section 5 contains some bounds that are useful for dealing with
unbounded functions h. In addition to its increased generality, the paper is novel
in two other ways. Even when specialized to the one-parameter case, the con-
ditions required of the prior here are weaker than those imposed by Woodroofe
(1992), at least for bounded h. Moreover, the approach is applied to a problem
involving group sequential testing.
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2. The Model

A k-parameter exponential family is a family of distributions defined by
probability densities of the form

k
pu(y) = Clw)exp{d  Q;(w)T;(y)}h(y)
j=1

with respect to a o-finite measure v on an Euclidean space X'. Employing suitable
reductions by reparametrization and sufficiency, together with proper choice of
the dominating measure, leads to the so-called standard exponential family

po(x) = "0 (1)

with respect to a o-finite measure p, where z = T'(y), § = Q(w), and Q = {6 :
[e”?u(dr) < oo} is the natural parameter space. Further, the family is called
minimal if dim(Q) = dim(X) = k, where X is the convex support of u. This is
equivalent to requiring pp not being reducible to a (k — 1)-parameter exponential
family. For references, see Brown (1986) and Lehmann (1983, 1986).

Throughout this paper {pg : 0 € Q} is assumed to be a k-parameter minimal
standard exponential family of the form in (1), and € is assumed to be open.
Suppose that 6; is the parameter of interest and the others are nuisance param-
eters. Let Xi,...,X, beiid. from py. The log likelihood function based on
X1y ..o Xy 18 Ly(0) = 'S, —nip(0), 0 € Q, where S,, = Y | x;. Let Z,, = S, /n
and suppose for the present that z, € V(). Then the maximum likelihood
estimator solves the equation V4)(0,,) = Z,, and

Ly(8) = n¥(6,,9), (2)

where ¥ (w,0) = 6'Vi)(w) — 9 (0). Consider the signed-root transformation Z,,
as in Barndorff-Nielsen (1986): for i = 1,...,k, define

ji—1 5i ) /2 ji—1
Zni = Z0a0) = (2ALn(0)1) = Ln(B})]) " sem(0: — 037), 3)
where ég = én, the maximum likelihood estimator, for i =1,...,k — 1, éﬁL is the
restricted maximum likelihood estimator for fixed (61,...,6;), and 0F is exactly

0. Then L, (0) = L, (0,) — L[| Zn] |-

Consider a Bayesian model in which 6 has a continuously differentiable prior
density & with compact support K C . Then the posterior density of 8 given
T1,. .., @y is ,(0) o< el (DE(H). So, the posterior density of Z, is

Cu(2) o T (B, 0)E,(8) o< J (B,,0)€(G)e 31, (4)
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where z and 6 are related by (3) and J is a Jacobian term. Using (2) and (3),
it is easily seen that the Jacobian of the transformation is J(6,,0)/n*/?, where

J(0,,0) =15, J'(0,,0), with
10 i o4l-1 a2
m—\a—el(z[wn,en )= Wb, 04)]) | (5)

k)2

The term n~"/% may be absorbed into the proportionality constant in (4), but

reappears later. From (4),

n(2) = fu(2)g(2), =€ R, (6)

where ¢, denotes the standard k-variate normal density and f,,(z) o J(0,,,0)£(0).

3. Stein’s Identity

Let ®; denote the standard k-variate normal distribution and write

Oph = /hd@k

for functions h for which the integral is finite. Next let I" denote a finite signed
measure of the form dI' = fd®;, where f is a real-valued function defined on
RF satisfying ®|f| = [ |f|d®s < oo. For p > 0, denote H,, as the collection of
all measurable functions h : R* — R for which |h(2)| < 1+ ||z||P. Then, define
H, = {h: |h(2)|/b € Hp, for some b > 0} and H = U,>oH,. Given h € H,, let
ho = ®rh, hy, = h,

h](ylaay]) :/%k—j h(yla"'ayjaw)q)k—j(dw)7 (7)
and
L2 [ — 12
9i(y1s-- - yk) = €2 7/ [hi(y1, - yj—1,w) — hi—a(y1, .-, yi—1)]e” 2% dw,
Yj
(8)

for —oo < y1,...,yxr < oo and j =1,..., k. Then let Uh = (¢1,...,9x). Note
that U may be iterated. Let Vh = (U?h+U?h')/2, where U2h is the k x k matrix
whose jth column is Ug; and g; is as in (8). Then Vh is a symmetric matrix.
Simple calculations show that

P (Uh) = /

2h(2) P (d2) (9)
Rk

and
By(Vh) = % /% (22— Th(2)®y(d2) (10)
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for all h € H. When k = 1, these formulas simplify. Then
Uh(z) = e2?’ / (h(y) — ®h)e 2" dw

and U? is the composition of U with itself. It is easily seen that if h € ﬁp, then
[|Uh|| € Hp.

Lemma 1. (Stein’s Identity) Let r be a nonnegative integer. Suppose that dI" =
fd®;, as above, where f is a differentiable function on R*, for which

| 1fldoe+ [ (DY) 1) < oo
Rid Rid

Then
Th=T1-Oph+ /W (Uh(2))'V f(2)®p(dz) (11)

for all h € H,. If 0f/0z;, j=1,...,k, are differentiable, and
| QDI ) @0(d) < .
then
Th = T1- ®ph + dp(Uh) / Y (2)Pi(d) + / tr[(VR) VR ]
NI R

for all h € H,.

Proof. The first assertion follows from Woodroofe (1989, Proposition 1). For
the second assertion, write

0f(2)
621' ’

k
(Uh(2))'Vf(2) = gi)
i=1

and then apply (11) with A and f replaced by g; and 0f/0z;.

From (6), the posterior distributions are of a form appropriate for Stein’s
Identity. Let

T5(6,,,6) = ”1/2% (12)
and
) 2
5(0,,60) = n%z(f)”). (13)

To understand the structure of these terms, let Vg f,(Z,) denote the vector of
partial derivatives of f,,(Z,) by 6 and Dyz denote the matrix of partial derivatives
of Zy; by 0. So, Vofu(Zy) = (Dgz)'V . fn(Z,). From this, we obtain

vzfn(Zn) = [(DGZ)/]_lvéfn(Zn) (14)
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and
£(0)V9J (B, 0) + J(0,,0) Vo (6)
J(0,,0)(0)

2 (15)

|15 (B, 0)|| = ||n*/2(Dgz)

IVo€(0)]|
£(9)

where C(,,6) is jointly continuous and J(6,,6) = TIF_,J'(6,,6) is as in (5).
Similarly,

)|

< C1(0,,0){1 +

) z)! An; Ana
5000 — | AP0 OV 0,.0) + TG, D)
J (6, 0)&(0)

£(9) £(0)
In the Proposition below, let B, denote the event {6, € Vi (Q)}.

Proposition 2. Suppose that VE is continuous. Then

n 1 n N
B¢ {h(Zn)}y = Ouh+ 2= EE{[UR(Z0) T (62 0)}, (17)
a.e. on By, for all h € H. If also V%€ is continuous, then
n 1 n ) 1 n N
B¢ {h(Za)} = @uh+ —=(@1URY BE{TS 00, 0)} + S4r{ B {V R(Za)T5(6,,0)})
(18)

a.e. on By, for all h € H.

Proof. We verify (17). The proof of (18) is similar. Fix an h € H, so that
h € H, for some r. Then, by Lemma 1,

BHRZ)} = [ b)) 0u(d2)

— Bh + /% k Uh(z)’%g) ()B4 (d2) = Db + Eg{Uh(Zn)’%}(lg)
provided
/W (I + 2NV f(2)||®r(dz) < o0. (20)

So, it suffices to show that (20) holds. Note that from (12), we have
VinZn)] fn(Zn) = F§ (6, 60)/n'/2. To verify (20), it suffices to show that Eg{(1+
N Za|I")ITS (B, 0)]]} < 00, a.e. on By,

Let K denote the support of £, so that K is a compact subset of 2. For fixed
T1,...,Tn, Ly is a continuous function of # and hence bounded on K. Similarly,
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C’l(én, 0) is bounded on K. So, there is a constant C, depending on x1,...,z,
but not on 6, for which

IVEO)]

r 1475
(L +[1Znl")IT7 (6n, 0)]] < C(1 + o) )
for all § € K and, therefore,
n r N ! ‘|v£(‘9)” n
E+1ZlDIT 6o )1 < O [ (14 el Oe(o)ds < .

Relation (17) follows by writing V f,(Zy)/ fn(Zn) = F§ (0,,0)/n'/? in (19).
Corollary 3. Suppose that h(Z,) = ho(Zn1), where hg : R — R. Then (17) and
(18) reduce to

b

B¢ {ho(Zu)} = ®ho + —75

EZ{Uho(Zyu)TS,1 (01, 0)}
and

n 1 n N 1 n N
B¢ {ho(Zn)} = ®ho + —5 U ho {031(0,,0)} + ~ B {Vho(Zn1)T5 11 (00, 0)}.

4. Asymptotic Expansions for Bounded h

In this section we establish the first and second order expansions for the
posterior expectation of h(Z;) when h is a bounded function and ¢ is a stopping
time. Let ¢t = t, be a family of stopping times depending on a parameter a > 1.
Suppose that "

i - ,02(‘9)
in Py-probability for almost every 6 € €2, where p is a continuous function on {2.
Suppose also that for every compact K C  there is an n > 0 such that

Py{t, <na} =o(a™9), (21)

uniformly with respect to 0 € K as a — oo, for some g > 1/2 (¢ may depend on
K). In the theorem below, let h : $* — R be a bounded measurable function,
Ry . (h) = Eg[h(Zt) — ®&ph], and Ry o = essupye g, | Roa(R)].

Lemma 4. lim Ee{Ro.} = 0.
Proof. By Proposition 2, Ry, < CEE(HF§ (6;,0)]])/t/? for some constant C. So

RO@ — 0 in Pe-probability and the result follows from the Bounded Convergence
Theorem, since Ry, is bounded.
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Lemma 5. Let K and K1 be compact sets for which K C K C K1 C Q, where
K denotes the interior of Ki. Then there are constants C and § > 0 for which

sup Py{t > na, 0, ¢ K} < 06—577@’
e K

for all a.

Proof. By Bernstein’s Inequali‘gy applied to the coordinates of X,,, there exist
€9 > 0 and &y > 0 such that Py(0, ¢ K1) < Pp(||X,, — Vb (0)|| > eg) < e %, for
every 0 € K. Let § = infgc dgp. Then § > 0 by compactness of K and hence

Pyt >na,0, ¢ K1) < > Py, g K1) < > e < Ce

n>na n>na

Now let

Ria(h) = ' {BL(A(Z0)) — B — — BL[p(0) (@4UR)TS0,0)])

By (17), Rua(h) = R} (k) + B2 ,(h) + R} ,(h), where

Ry o(h)
Ri o(h)

(D2 EH(UR(Z0)) [0 (01, 6) - ELTS(6,0))]},

(DYV2EH(UNZ) ~ ©UR) YEHTS (6,0)},

a
R o(h) = (2xUR) EL{[(5)"* = p(0)IT5 (0, 0)}.
Then let Ry, = essup,ep,|Ri,qa(h)], and R’La = essupheHO\Ria(h)L
Theorem 6. If (21) holds for some q > 1/2 and V& is continuous, then
ah—{?go E{{Rl,a} = 0.

Proof. Let K denote the compact support of &; let K7 be anotAher compact set
for which K C K9 C K7 C Q; and let B, be the event {t > na,0; € K1}. Then

Eg{Rl’a} :/ Rl’adpg + A Rlyadpg —I—/ Rlyadpg.
{ta<na} {ta>na,0: ¢ K1} Ba,

Here
| RuadPe<Cat® [ RoudPerC [ p@)|TS0,0)[1Polts < na)s(0)ds
{ta<na} {ta<na} K
< C'a'PPe(ty < na) + C"sup Py(ta < na),
PeK
for some constants C' and C’, since p(@)f‘ﬁ(@,@)f(@) is continuous on 2 and,

therefore, bounded on K, and the right side approaches zero by (21). Similarly,

/ X RLadPg < 'ql/? sup Py(t, > na, ét ¢ K1) — 0,
{ta>na,0:¢K1} 0cK
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by Lemma 5.

For the integral over B,, we consider R’La separately. Start with Ria. Ob-
serve that lim F%(ét, ) = F%(Q, 0) = Jim. Eg(f‘ﬁ(@, 0)), by the consistency of the
maximum likelihood estimator and the Martingale Convergence Theorem. More-
over, from (15) and the continuity of F§ (0,0), there is a constant C, depending
on K7, for which

IT5 (0, 0)] + |IT5 (6, 0)]| < C(1+ H%wm)

a.e. on B,, and the right side is integrable with respect to P, since V¢ is
continuous on K. So

/, Riadpe < i s [ K560 - BT 0.0)]1dP:

< 55 [ A1I0§(@,0) - 150,011 +1IT5(6.0) ~ BTS0,0) |}
n'/% g,

where the second term approaches zero as a — oo because of uniformly integra-
bility, and the first term by the Dominated Convergence Theorem. Next,

_ 1
1B ol < —isessupnem, | B (UR(Z1) — @UR) EHTS (0,6)}
on B,. So,
/ R} ,dP; < CEe{Ro E{||T5(6,6)|}

where the right side approaches zero, since Ry, — 0, Ry, < 2, and EtHI‘f(H 0|
is uniformly integrable. For R} @

— a
[ BadPe<C [ IS @.01EAIDY = p0) 115y b(0)a0
a
<0 [ B2 = p0) 1 b0 — 0,

since Fg(ét,9)§(9) is bounded on 0; € K| and 0 € K, (a/ty)"/2 — p(0) — 0 in
Py-probability for almost every 6 € €, and a/t, is bounded over {t > na}.
For the second order approximation, let

Ry o(h) = a{ EL(h(Z4)) — dph — t~Y2(@,UR) EL(L§(6.6))
—Etr{cbkvwg[p (O)T5(6,0)]}},

and
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a =

RS, = essuppe rg | Roa(h)],
where H{ denotes the set of bounded symmetric functions in Hy.

Theorem 7. If (21) holds for some q > 1 and V3¢ is continuous, then lim, s
E({R$)} =0.
Proof. The analysis for {t, < na} U {; ¢ K1} is similar to that in Theorem 6.

For {t, > na} N {f; € K1}, let h be a bounded symmetric measurable function
and write

Raalh) = Sr{ELVR(Z)TS0r, 0)]) — tr{(@4V )L 0)T5(6,0)]},

by (18), since ®,Uh = 0 for symmetric h.

Then, decompose Ry 4(h) as Ry q(h) = Rj ,(h) + R%ya(h) + Rg’,a(h), where
a ~
Rj o(h) = tr{EL(T5(6:,0) — EL(T5(60.0))Vh(Z1)) ),

B3 (h) = Str{ELVh(Z:) — (@ VI ELS(0,6)]},

RS o(h) = tr{(@:VR) EH[S — p*(O)T5(6.0)} ),

and, for ¢ =
RGN, RE)?,

1,2,3, define Rgsc)ll = essupheH5|R§’a(h)|. Then, the analyses of

and Réi)l’:i are similar to those in Theorem 6.

5. Some Bounds

For unbounded h, it is necessary to establish some uniform integrability of
powers of ||Z;]|. Let = be the collection of all twice continuously differentiable
prior densities { with compact support K¢ € €2, and let 7 be any collection of
stopping times.

Lemma 8. If h(z) = ||z|[P, where p > 1, then |[Uh(2)|| < C1{1 + ||z|[P~'} for
all z € R*.

Proof. The details of the proof are slightly different for even and odd p. They
are given here for even p only. Let p = 2v, v > 1. It will be shown that

gy, oyk) < CL+ [yl (22)

for positive y; for each j = 1,..., k. A similar result may be obtained for negative
y; and the Lemma then follows. Note that ||2]|? = (XF_; 22)? is a polynomial
of degree 2v. From (7) and (8),

v v
hi(yr, . y) =D <l>(yf +o Aty oo

=0
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where «;; is the jth moment of x?. Thus

o0

1,2 1.2
gj(yla"'ayk):e2yj/ [hj(yla"'ayj—law)_hj—l(yla"'ayj—l)]e 2¥ dw

Ly2 [° 2
—e2 g/ bo(y1, - yj—1) +wbi(yi,...,yj—1) + -
Yy
1
+w? " 2by 1 (Y1, Yj-1) + w2v]€_§w2dw

where by(y1,...,y;j—1) is a polynomial of degree 2v — 2 and b;(y1,...,yj-1) is a
polynomial of degree 2(v — i), for i = 1,...,v — 1. As in Woodroofe (1992), it is

easily seen that
2

6%92 /Oo e_%w dw < C
y
and -
e3v’ / we™ 3" du < C(1 + w1t
y
for all ¢ > 0, and (22) follows easily.

Proposition 9. For every £ € =, every compact J C ), and every p > 1,

sup/A [| Z¢||PdPe < oo. (23)
teT J{0:cJ}

Proof. We first verify (23) when p = 2. Let h(z) = ||2||?, 2 € RF. Then Vh(z)
is the identity matrix for all z. In view of (16), (18) and the symmetry of A,

1 A
BE(1Zl2) = b+ — B¢ {tr [V h(Z3)T5 (0, 0)]}
A3 V¢

< O+ Eelll- Ol + Eelll =

for some constant C' depending on .J, provided 0,, € J for each n > 1. So, if t is
any stopping time, then

@10}

L@l

=cti+ [ INE@i+ [ 1970140y

O)IN] + Eel (]

\%/3
Z:|[PdP: < C{1 + E:[EL(||—
/{éteJ}H t|[7dP: < C{ e[ Ee (] ¢

for all t € 7. Since the right side is finite and does not depend on t, this
establishes (23) for p = 2. Now suppose that (23) holds for all £ € =, for a given
p > 1. Let h(z) = ||z|[P*!, for z € RE. Then ||[Uh(2)|| < C(1 + ||2||P) for z € R*
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by Lemma 8. So,
B (|1 Za]|PT) = @ph + 0~V 2EP{UR(Z,) T (05, 0)}

! mn v
< Byh+ C'EP{||Za| 1 + Hf(e)m}

for some constant C’ depending on J, provided 0, € J. Let é be a twice contin-
uously differentiab}e compactly supported density th~at is positive on K¢. Then
[£(0) + [[VE(9)]]]/£(0) is bounded on the support of &, and

ELZIP) < €0+ [ Ba1Z1171 ) (E6) + V@) l1d6}

<c"u+ [ |izirapg,
{0:eJ}

which is bounded with respect to t € 7 by the induction hypothesis.

We wish to investigate some global properties of Z,, and will start it out at
a particular point 6y. From (1), letting A = \(0) =0 — 6y, y = x — Vip(6)p), and

¥ (A) = (A +00) — 1(0) — X'Vip(6o), (24)

we have p3(y) = e)‘/y_d’*o‘), with respect to some o-finite dominating measure
p*. Observe that \g = A(fg) = 0, ¥*(Ao) = 0, and V¢p*(A\g) = 0. Let L} be the
corresponding log-likelihood function. So, under 6y, L} (A\g) = 0 and

1Zall? = 2(Ly,(A) = Ly (Vo)) = 20(N, Y, = 0 (W) < 20l Anll[[¥all,  (25)

where \,, = 0, — 0y and Y,, = X, — V().
Assumption (1): For ||6]| sufficiently large, ¥(6) > ¢||8]|**®, for some ¢ > 0,
a> 0.

Lemma 10. Suppose that Assumption (1) holds. Then ¥*(\) > c*[|\||*Te, for
all A\, for some ¢* > 0.

Proof. It follows directly from (24).
Proposition 11. Suppose that Assumption (1) holds. If K € Q is compact,
then

sup sup/A || Zn|[Pd Py, < oco.
focK1 1 J{OngK1}

Proof. By reparametrization and transformation, as described in a previous
paragraph, we have (25). Further, observe that || A||||Ya|| =¥ (An) > ¢*|[Anl|F T,
where the first inequality follows from the fact that L} (\,) > 0, and the second
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from Lemma 10. So, |[An|| < (1/¢9)||V0][Y* and ||Z,||P < CnP/2||Y,||A+H1/@)p/2)
for some C' > 0. By Holder’s inequality and Lemma 5 we have

/A | ZalPd Py, < CrP/*{ By (|[Yal " P) Pyy (6, ¢ K1)}
{Ong K1
< Cnp/2e—n6/2{E60 (‘ |}7n”(1+1/a)p)}1/2.
The Proposition follows since Fy,(]|Yy]|?) is bounded with respect to n and 6, €
K, for any ¢ > 0.
Theorem 12. Suppose that Assumption (1) holds. Then sup E¢{||Z;||P} < oo.
teT

Proof. Let K be the compact support of £ and let K; be another compact set
for which K C K ? C K; C Q. By Proposition 9, it suffices to show that

sup/A || Z¢|[PdPe < 0.
te7 J{0:+¢K1}

Observe that

Zi PPy < / Z,|IPdP.
/{étmu Pare <y [ N2l

<SRG ) [ 7R
n=1

n 1

by Hoélder’s inequality. So, the result follows by Lemma 5 and Proposition 11.

6. Two-Parameter Case

The results for two-parameter case will be stated in greater detail. In
this section we suppose that 61 is the parameter of primary interest and that
0 is a nuisance parameter. Throughout it is assumed that p is almost dif-
ferentiable with respect to ¢ and 6. Denote 1;; as the partial derivatives,
)i (0) = d"tip(0) /060106, and similarly for &j. Next denote 1"?1 as the first
component of F§ and denote B(0,0) = n~Y/2[0Z,]/[061]. Then let By (0,0) =
[0+ B(0,0))/(00:063] and JL(0,,,0) = [0777.74(0,,,0)]/[06500)], for | = 1,2. In
view of (12), (14), the relation f,, oc £J'J2%, and J} (én, 0) = 0, we have

§10(0) £01(0)
£(0) £(0)

where B, J!, and Jl-lj are abbreviations for B(én,ﬁ), Jl(én,e), and ij(én,ﬁ).
Now, let g1(0) = (20 — 971 /1002)(0) and ga(#) = tp2(6). Employing L’Hospital’s

Jt+ T +J—1J2 —
10 10

7 JYE 4+ JVUJAB,  (26)

Fil(ém 9) =
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rule one can obtain that
JH0,0) = lim T} (w,0) = {g:(0)} /%,
J2(0,0) = lim J(w,0) = {ga2(0)} "/,

To(6.6) = limm T (0, ) = 002 00) VoL

3¢00g;
J120(9, 0) = lim J120(w7‘9) — (—3%2,1&1;32- VgQ’
o 61020
J2(0,0) = lim J3 (w,0) = _7/;(;:237
— i Y
B(6,0) = lim B(w,0) = -
w—>9 g2

Let T 1(6,0) =lim,,_gI'] 1 (w, 0). Observe that E{p(0)T5 1 (6,0)} —p(0)I'5 1(6,6),
w.p.1 P, by the Martingale Convergence Theorem. Since p is assumed to be
almost differentiable with respect to 61 and 65, an integration by parts yields

Ee(p(0)T5 (6, 0))

_//g = Jl 0,0)p(0)] + £2 [(J'J?B)(6,0)p(6)]
J!

+ (9)[J110(9 0) + (J—Jfo)(& 0) — (J&yJ' B)(0,0)]}db1db

_//g Vi1 (0)d6 b

= Ry (€
where
(6) = — o[ (0.0)0(0)] + ——[(J-TB)(0,0)p(6)]
i 90, 90 7P
+p(6)[J10(6,0) + (:;Jw)(@ 0) — (J5,J' B)(6,0)] (27)
_ 0. 0 . pYu o= @002,%1) Va
(=3v02,¥11) - Vga v (0, —%11) - Vgo
" 613,91 /2 ( 3U8201 i )
_ (—@002,%1/)2 («9)—|—p( )[(@002, @011) Vg ) + (11)02,—11)111)/2V92 o))
@Z}0291 67/)0291 2@%29
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Particularly, for the normal translation family N(6,%) both J'(6,6) and
J?(6,0) are constants. In such cases, x1() has a simpler form
(=02, %11) - Vp
172
Y029,/
which vanishes if no stopping rule is adopted.

Now let i : ® — R be a bounded measurable function. Then from Theorem
6 and Corollary 3,

r1(0) = (6),

Eg{h(Zn)} = ®h+ a2 (@UR)R (€) + o(a™V/?), (28)

for all twice continuously differentiable compactly supported densities £. Recall-
ing the definition of k1, Woodroofe (1986) writes relations in (28) as Ep{h(Zs)} =
Oh 4 a2 DUk (0) + o(a™?) very weakly.

The next two paragraphs include assertions that will not be proved. These
are used to motivate the definition of Z;] in Theorem 14, which will be proved.
Note that if h(z) = z, then ®h = 0 and Uh(z) = 1 = ®Uh. Formally applying
(28) to this h suggests Fg(Z;1) ~ a~?k1(f) v.aw. Let

jee if |f1| < a'/%(log(a))~t,
fio = $ a=Y3(log(a))™t  if &y > a/%(log(a))?, (29)

—a~Y3(log(a))"! if &1 < —al/5(log(a))"L,

where &1 = K1 (ét) and consider (Zy; — /{1)a_1/2. We have

~2
~ a1/ ~a— 1/ K
BH(Zn — 1% ")) = BYZE) — 288 " BL(Zn) + ;1 (30)

If h(z) = 22, we have ®h = 1, ®Uh = 0, and Vh(z) = 1. Specializing (18) to h
leads to EE(ZEI) =1+ t_lEé{Fg’H(Qt, 0)}, where
0*fn(Zn)/0Z3,
fnZn)
Now, we show how to obtain 02 f,,(Z,)/0Z2,. First, from (14), we have

Ofn _ 0010fy 0020y
621 N 821 6«91 821 892

Fg,ll(ém 0) =n

Then we can derive that

O fn _ 9 (Ofn
82% 0z 0z
0 001 0f, n 6«92%

- 82’1 82’1 891 8—2’1 892]
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=2 N+ G2 (G
- 621 891 821 6«91 821 6«92 621 891
00y, 0 ,0050f, 00y, 0 ,0050f,

92196, 55, 96, T 921 96, 52, 96,

& 90,0f,.. 90y, D 00, 0fn

where the third equation follows by replacing f, in (31) by 0f,/0z1. So,

R 1 0f, 1 9%f, 1 9%f,
s 9n9:11__ 1\2 © _ (22—
2,11( ’ ) J J].O fn 89]_ + (J ) fn 89% (J ) J fn 891892
1 Ofn
—J I J?B+ JY I3 B + J1J2310]—8i
fn 892
+JYJ2B[J 4 B+ JVJ?B ]i%
" " T 06,
1 9%f
17232~ n 2

where B, J', Jilj, 0fn/00;, and 0°f,/00,00; are abbreviations for B(én,ﬁ),
J(B,,0), etc. So, (30) can be expressed as Eg{(Ztl—(I_l/gl‘%l)g}:1+a_1E§{Ma},

where
My = 15 11(0,0) = 29)*RiT (6,0 + 72
— p(0)0511(0,0) — 2p(0)r1 (O)T5 1(0,0) + K3(0) = ME(6),  (33)

as a — oo in Pg-probability. Assuming only that p is almost differentiable with
respect to #; and 6o, one can derive from (26), (27), (32), and integration by
parts, that

MO} = | m(©)(0)av, (34)

where m(f) has a rather complicated form (we omit the expression). Again,
ignoring the interchangeability of the limit and integral, (28) suggests Eyg{(Z; —
a k)2 =1+ a'm(0) vaw.

Let m = m(ét) and consider the renormalized pivotal quantity Z; =
(Zy1 — [14)/Gq, where

o 14+m/a if ;| < a'/?/[log(a)] 7!,
%a = {1 otherwise. (35)

Lemma 13. Let h be a bounded symmetric function and let

Ho(o,m) = [ b

z —

B)é(2)dz

o
and
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(o) = [ (o)

g

for o > 0 and —oc0 < p < oco. Then Hy and Hy have continuous derivatives
of all orders. Further at 4 = 0 and 0 = 1 we have Hy = ®h, %Hg = 0,
2
L Hy = —20Vh, % 0 = 20Vh, Hy = 0, %Hl = —20Vh, ZH; =0, and
2
SzH1=0.

Proof. The first assertion follows by the changes of variables:

[ rEE 01 = [ ooty + iy,

o
and

[0z = [ oloy+ wh(stoy + pdy,

by setting ¢ = 0 and o = 1. Then simple calculations along with (9) and (10)
yield the remaining assertions.

Theorem 14. Let h be a bounded symmetric function. Suppose that p(0) is
almost differentiable with respect to 01 and 0y. If (21) holds for some g > 1 and
V2¢ is continuous, then

Fe{h(Z3)} = ®h + of ).
Proof. Write h(Z},) = ha(Zi1). Then
BA(Z)} = Bi{ha(Zn)}

= ®hy + a2 (QURG) EL{p(0)T5 1 (0,6)}

1 1
= (@V ) B O)TS11(6,0)} +Raalha),

where R q(h,) is as in Theorem 7 and, therefore, F¢|Rp(ha)| — 0 as a — oo.
By (29), (35), and Lemma 13, ®h, — {Ph + a_l(QYh)(/%% —m)} = o(a™!) and
dUh, + 20~ 2(®V h)ik1 = o(a~") uniformly w.r.t. 6. So,

2 (@Vh)i ELp(0)TS 1(6.0)]

a

Ee{h(Z)} = Ee{®h + ~(@VR)(&] — 1)
P @VREA )T, (0.0)]) + o)
— ®h+ %((I)Vh)Eg[G(Q)] + o(%),

where G(0) = r3(0)—m(0)—2p(0)T5 1 (0,01 (0)+p*(0)T 1, (60, 0) and Ee[G(0)] =
Ec{M&(0) —m(0)} = 0, by (33) and (34). Hence the proof.
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Consequently we have the approximation to a higher order, Py(|Z};| < z) =
2®(z) — 1+ o(a™!) v.w. This forms the basis for setting confidence intervals for
0.

7. An Example

This section presents applications of Theorem 14 to group sequential test-
ing problems. Let Yi1,Yis,... be ii.d. Poisson(A;) and Yaq, Yas,... be i.id.
Poisson(Ag), where 0 < Aj, A2 < oo are unknown. Suppose that interest lies
in ratio of the rates, A\;/\g, and experiments are run in a group sequential man-
ner with group size m,, possibly depending on a > 0, and stopping times t =
to =1nf{n > 1: my|n, | 311 (Y1; — Y2;)| > a}. Here my|n means that m, divides
n. This is a two-sample sequential testing problem where reparametrization to a
two-parameter standard exponential family is possible. To see why, write down
the joint density function of y1; and y9; and reparametrize by 67 = log(A1/A2) and
02 = log(A1A2). Then, with proper choice of the dominating measure we can de-
rive that pg(z) o exp{01z1+0229—1(0)}, where z1 = (y1—y2)/2, z2 = (y1+y2)/2,

92 , 01 91

and Y(0) =e2 (e2 +e 2).

It is easily seen from the specified stopping rule that a/t, < |Y1; — Y2/, and
a/(ta - ma) > ‘Yl,t—m - Y2,t—m‘-

So a/t, — p*(0) = e(%2|e%1 - e_%l\, provided m, = o(a). Then (28) suggests
the approximation

12 |e€71 —6_971|1/2 (e%1 —6_071) (6071 +e_%1)3/2
E@(Zt].) ~a K;].(e) - 1/2 { 01 01 - 61 01
a 12(e2 +e 2)/2  4(er —e 2)

and Eg{(Z;1 —a=?k1)?} =~ 1+ a"'m(6).

Monte Carlo simulations are conducted for a = 50 and (A1, A2) = (4,7),
i,7 = 1,2,3,4, with m, = 1 (fully sequential), 3 (group sequential with group
size 3), and 5 (group sequential with group size 5). Table 1 gives the estimated
probability for Py(|Z/;| < 1.96). Tables 2-4 show the Monte Carlo estimates of
E(Zyn), E(Z}), E(Z%), and E((Z};)?) for fully sequential, group sequential with
group size 3, and group sequential with group size 5, respectively. From the
simulation, the magnitude of the mean is considerably reduced for renormalized
pivotal quantity Z}.

Table 1. P(|Z}] < 1.96) (replicates=10,000 a = 50).

A1 1.0 2.0 3.0 4.0

A2 fully | size3 | sizeb fully | size3 | sizeb fully | size3 | sizeb fully | size3 | sizeb
1.0 0.949 | 0.951 | 0.949 (| 0.948 | 0.949 | 0.950 || 0.951 | 0.950 | 0.949
2.0 || 0.951 | 0.952 | 0.951 0.951 | 0.950 | 0.952 || 0.949 | 0.946 | 0.946
3.0 || 0.952 | 0.951 | 0.950 || 0.954 | 0.955 | 0.953 0.949 | 0.950 | 0.952
4.0 || 0.953 | 0.951 | 0.952 || 0.952 | 0.953 | 0.950 || 0.951 | 0.952 | 0.952
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Table 2. Fully sequential (replicates=10,000 a = 50).
A1 1.0 2.0 3.0 4.0
X || EZun EZj EZu EZ} EZu EZ} EZu EZj
(BZ4) | (B || (B28) | (B || (B23) | (B || (B23) | (EBzi)?)
1.0 -0.125 -0.001 -0.101 0.003 -0.118 -0.018
(1.007) | (0.997) || (1.009) | (1.002) || (1.011)| (1.001)
2.0l 0.114 -0.010 -0.141 0.012 -0.111 0.010
(0.989) | (0.974) (0.981) | (0.981) || (0.979) | (0.980)
3.0 || 0.090 -0.017 0.150 -0.003 -0.197 -0.019
(1.007) | (0.984) || (0.980) | (0.974) (1.025) | (1.014)
4.0 || 0.068 -0.036 0.119 -0.004 0.158 -0.020
(1.013) | (0.984) || (0.986) | (0.979) || (1.002) | (1.003)
Table 3. Group sequential with size 3 (replicates=10,000 a = 50).
A1 1.0 2.0 3.0 4.0
X || EZa | EZ4 EZn | EZj EZn | EZj EZn | EZ;
(BZ4) | (B(Zh)?) || (BZ4) | (B(Z4)?) || (BZ4) | (E(Z4)?) || (BZ4) | (E(Z4)?)
1.0 -0.123 0.000 -0.093 0.011 -0.108 -0.009
(1.011) | (1.001) || (1.007) | (1.001) || (1.017) | (1.010)
2.0 0.111 -0.013 -0.139 0.014 -0.113 0.008
(1.003) | (0.988) (0.983) | (0.982) || (0.995) | (0.996)
3.0 || 0.091 -0.016 0.142 -0.011 -0.177 0.001
(1.015) | (0.992) || (0.962) | (0.957) (1.006) | (1.001)
4.0 || 0.067 -0.037 0.114 -0.009 0.166 -0.012
(1.019) | (0.991) || (0.994) | (0.988) || (0.994) | (0.991)
Table 4. Group sequential with size 5 (replicates=10,000 a = 50).
A1 1.0 2.0 3.0 4.0
X || EZun EZj EZu EZ} EZu EZ} EZu EZj
(BZ4) | (B || (B28) | (B || (B23) | (B || (B23) | (EBz0)?)
1.0 -0.121 0.002 -0.101 0.003 -0.088 0.010
(1.018) | (1.009) || (1.023) | (1.016) || (1.010) | (1.006)
2.0 0.109 -0.015 -0.136 0.017 -0.107 0.014
(0.999) | (0.984) (0.971) | (0.971) || (1.019) | (1.021)
3.0|| 0.075 -0.032 0.138 -0.015 -0.175 0.003
(0.991) | (0.972) || (0.971) | (0.967) (0.989) | (0.983)
4.0 || 0.068 -0.035 0.114 -0.009 0.155 -0.024
(1.002) | (0.976) || (1.003) | (0.997) || (0.991) | (0.992)

Figures 1 and 2 show the cumulative distribution functions for (A1, A2) =
(2,1) and (A1, A2) = (1,2). The cumulative distribution functions of Z;; are
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over-estimated for the former and under-estimated for the latter, for both fully
sequential and group sequential. The renormalized quantity performs much bet-
ter.

fully sequential roup sequential with size 3
&

=

roup sequential with size 5
p

Figure 1. Cumulative distribution for \; =2, Ay = 1.
0——— Zy, *——— Z};, ©— —— standard normal

fully sequential roup sequential with size 3

, group sequential with size 5

S

-2 0 2

Figure 2. Cumulative distribution for \; = 1, Ay = 2.
0——— Zu, * — —— Z}, o — —— standard normal
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