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Abstract: Strong laws of large numbers for weighted sums of independent random

variables are proved for Banach spaces of type p. Chen, Zhu and Fang’s (1996)

results on real-valued i.i.d. random variables are extended and generalized, and

their unsolved problem is answered. Also, necessary conditions for these strong

convergences are considered.
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1. Introduction

Throughout this paper, ai �= 0 for i ≥ 1 and 0 < A1 ≤ A2 ≤ · · · → ∞. Write
ui = ai/Ai and let ([n, 1], [n, 2], . . . , [n, n]) be a permutation of (1, . . . , n) such
that

|u[n,1]| ≥ · · · ≥ |u[n,n]|, [n, i] < [n, j] if i < j and |ui| = |uj|.
Let I(·) be the indicator function and define

Vn,j = A−1
n

n∑
i=1

aiI(|ui| ≥ |u[n,j]|) for 1 ≤ j ≤ n and Vn = max
1≤j≤n

|Vn,j|.

Put N(x) =: #{i : Ai/|ai| ≤ x}. In 1996, Chen, Zhu and Fang improved the
result of Jamison, Orey and Pruitt (1965) as follows:

Theorem A. Suppose that e1, e2, . . . are i.i.d. real-valued random variables with
Ee1 = 0. If N(n) = O(n) and Vn = O(1), then

A−1
n

n∑
i=1

aiei → 0 a.s. (1.1)

Conversely, if at least one of N(n) = O(n) and Vn = O(1) is not true, then there
exists an i.i.d. real-valued sequence {ei} with Ee1 = 0 such that (1.1) does not
hold.
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Theorem B. Suppose that e1, e2, . . . are i.i.d. real-valued random variables with
Ee1 = 0 and E|e1|t < ∞ for some 1 < t < 2. Then (1.1) holds when N(n) =
O(nt). Conversely, if N(n) is not O(nt), then there exists an i.i.d. real-valued
sequence {ei} with Ee1 = 0 and E|e1|t < ∞ such that (1.1) is false.

Remark 1.1. If a1, a2, . . . are positive constants and An =
∑n

i=1 ai → ∞ as
n → ∞, then Theorem A reduces to the result of Jamison, Orey and Pruitt
(1965).

Remark 1.2. Chen, Zhu and Fang (1996) gave an example to show that Theo-
rem B can’t be extended to t ≥ 2, but they had not given result for this case.

In this paper, our aim is to extend and generalize Theorems A and B to B-
valued independent random elements, and to give the result suggested by Remark
1.2. Also, necessary conditions for strong convergences for i.i.d. random variables
are investigated.

Let (Ω, F , P ) be a complete probability space and B a real separable Banach
space with norm ‖ · ‖. The Banach space B is called type p (1 ≤ p ≤ 2) if there
exists a C = Cp > 0 such that

E‖
n∑

i=1

Xi‖p ≤ C
n∑

i=1

E‖Xi‖p, n ≥ 1,

whenever independent B-valued random variables X1, . . . ,Xn have mean zero
and E‖Xi‖p < ∞, i = 1, . . . , n.

Let {Xn, n ≥ 1} be a sequence of independent, mean zero, B-valued ran-
dom elements, 0 < Ai → ∞. Under a type p Banach space, the Weak Law
of Large Numbers (WLLN)

∑n
i=1 aiXi/An

P→ 0 was studied by Adler, Rosal-
sky and Taylor (1991), but the corresponding Strong Law of Large Numbers
(SLLN)

∑n
i=1 aiXi/An

a.s.→ 0 does not necessarily hold. For ai > 0, i ≥ 1, Howell,
Taylor and Woyczynski (1981) investigated the SLLN. In 1992, Fazekas studied
rates of convergence in the LLN for B-valued weakly mean-dominated arrays
with very general weights, and Fazekas (1985) discussed convergence rates in the
Marcinkiewicz and Chung type SLLN for B-valued independent random vari-
ables with multidimensional indices. Bozorgnia, Patterson and Taylor (1997)
obtained the Chung type SLLN for arrays of rowwise independent random ele-
ments. Mikosch and Norvaisa (1987) proved the equivalence between the WLLN
and the SLLN.

In the sequel, let h(x) > 0 be a slowly varying function as x → ∞; C denotes
a finite positive constant which may be different in various places; {Xn} ≺ X

means supn P (‖Xn‖ > x) ≤ CP (|X| > x), where x > 0 and X is some real
valued random variable.



WEIGHTED SUMS OF RANDOM ELEMENTS 1013

Results are stated in Section 2 and proofs are given in Section 3.

2. Main Results

In this section, ↑ and ↓ denote non-decreasing and non-increasing, respec-
tively.

Theorem 2.1. Let B be of type p for some 1 < p ≤ 2, and h(x) ↑ as x → ∞.
Suppose that

N(n) = O(nh(n)), (2.1)

Vn = O(1), n ≥ 1. (2.2)

For each sequence {Xn, n ≥ 1} of i.i.d. B-valued random elements, if

EX1 = 0 when lim sup
n→∞

A−1
n |

n∑
i=1

ai| > 0 (2.3)

and E‖X1‖h(‖X1‖) < ∞, then

A−1
n

n∑
i=1

aiXi → 0 a.s. (2.4)

Conversely, if at least one of (2.1) and (2.2) is not true, then there exists an i.i.d.
real-valued sequence {Xi} which satisfies E|X1|h(|X1|) < ∞ and (2.3) such that
(2.4) does not hold.

Theorem 2.2. Let 1 < t < 2, and let B be of type p for some t < p ≤ 2. Suppose
that

N(n) = O(nth(n)), n ≥ 1. (2.5)

For each sequence {Xn} of B-valued independent random elements with {Xn} ≺
X, if (2.3) is satisfied and E|X|th(|X|) < ∞, then (2.4) holds. Conversely,
if (2.5) is not true, then there exists an i.i.d. real-valued sequence {Xi} which
satisfies E|X1|th(|X1|) < ∞ and (2.3), but (2.4) does not hold.

Theorem 2.3. Suppose that 0 ≤ t < 1 and that h(x) ↑ ∞ as x → ∞ when t = 0.
Let {Xn} be any sequence of B-valued random elements with {Xn} ≺ X. If (2.5)
is satisfied and E|X|th(|X|) < ∞, then (2.4) holds.

Remark 2.1. Because the real space is a Banach space of type 2, taking h(x) =
1, Theorems 2.1 and 2.2 extend Theorems A and B to the B-valued setting,
respectively. Naturally, the result of Jamison, Orey and Pruitt (1965) is also
extended.
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Remark 2.2. Let B be of type p for some 1 ≤ p ≤ 2, and let {Xn} be a sequence
of B-valued independent random elements with {Xn} ≺ X. Under the condition
EN(|X|) < ∞ and

∫ ∞

0
tp−1P (|X| > t)

∫ ∞

t

N(y)
yp+1

dydt < ∞,

Howell, Taylor and Woyczynski (1981) proved that for ai > 0, i ≥ 1, there exist
cn ∈ B,n = 1, . . ., such that

A−1
n

n∑
i=1

aiXi − cn → 0 a.s.

The conditon EN(|X|) < ∞ seems superfluous in the above result (as men-
tioned by Jamison, Orey and Pruitt (1965), without proof.). In fact, for any
t > 0,

∫ ∞

t

N(y)
yp+1

dy

=
1
p

lim
A→∞

[−
∫ A

t
N(y)dy−p] =

1
p

lim
A→∞

[−N(A)A−p + N(t)t−p +
∫ A

t
y−pdN(y)]

≥ 1
p

lim
A→∞

sup[−N(A)A−p + N(t)t−p + A−pN(A) − A−pN(t)] =
1
p
N(t)t−p.

Hence

EN(|X|) =
∫ ∞

0
tpt−pN(t)dP (|X| ≤ t) ≤ p

∫ ∞

0
tp

∫ ∞

t

N(y)
yp+1

dydP (|X| ≤ t)

= p

∫ ∞

0

N(y)
yp+1

dy[−tpP (|X| > t)|y0 + p

∫ y

0
tp−1P (|X| > t)dt]

≤ p2
∫ ∞

0
tp−1P (|X| > t)

∫ ∞

t

N(y)
yp+1

dydt < ∞.

Theorem 2.4. Suppose that 0 ≤ t < 2 and that h(x) ↑ when t = 1, h(x) ↑ ∞ as
x → ∞ when t = 0. Assume that

nth(n) = O(N(n)) (2.6)

and that for i.i.d. B-valued sequence {Xi}, (2.4) is satisfied. Then
E‖X1‖th(‖X1‖) < ∞. Furthermore, if B is of type p for some 1 ≤ t < p ≤
2, N(n) = O(nth(n)) and Vn = O(1) when t = 1, then for 1 ≤ t < 2, (2.3) holds.

For t ≥ 2, we have

Theorem 2.5. Let {Xi} be a sequence of real valued independent random vari-
ables with {Xn} ≺ X. Suppose that for t ≥ 2, (2.5) is satisfied. If (2.3) holds
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and E|X|th(|X|) < ∞, then, without changing the distribution of {Xn}, we can
redefine {Xn} on a richer probability space, together with a sequence of indepen-
dent normal random variables {Yn, n ≥ 1} with Yn

D= N(0, V arX2
1I(|X1| ≤

An/|an|)), such that

n∑
i=1

aiXi −
n∑

i=1

aiYi = o(An) a.s. (2.7)

3. Proof of Main Result

By the Three Series Theorem of B-valued independent random elements (cf.
Wu and Wang (1990, p.154)), it is easy to obtain

Lemma 1. Let {Xi, i ≥ 1} be a sequence of independent random variables in a
Banach space of type p for some 1 < p ≤ 2 and EXn = 0. Suppose that Ψ(t) is a
positive, even and continuous function such that Ψ(|t|)

|t| ↑ and Ψ(|t|)
|t|p ↓ as |t| → ∞.

If
∑∞

n=1
EΨ(‖Xn‖)

Ψ(An) < ∞, then A−1
n

∑n
i=1 Xi → 0, a.s.

The proofs of the converse parts in Theorems 2.1 and 2.2 are similar to those
in Jamison, Orey and Pruitt (1965) and Chen, Zhu and Fang (1996).

Proof of Theorem 2.1. Let Yi = XiI(‖Xi‖ ≤ Ai/|ai|), Zi = Xi − Yi, Un =∑n
i=1 aiYi, Vn =

∑n
i=1 aiZi. Then

A−1
n

n∑
i=1

aiXi = A−1
n Un + A−1

n Vn. (3.1)

From (2.1) we get Ai/|ai| → ∞ as i → ∞, and (2.1) and E‖X1‖h(‖X1‖) < ∞
imply

∞∑
i=1

P (‖Xi‖ > Ai/|ai|) < ∞. (3.2)

By the Borel-Cantelli Lemma,
∑∞

i=1 A−1
i ‖aiZi‖ < ∞, a.s., which implies

A−1
n Vn → 0 a.s. (3.3)

Next, we prove
A−1

n ‖EUn‖ → 0 as n → ∞. (3.4)

Note that

A−1
n ‖EUn‖ ≤ A−1

n ‖
n∑

i=1

aiEXi‖+ A−1
n ‖

n∑
i=1

aiEXiI(‖Xi‖ > Ai/|ai|)‖ =: In + IIn.

(3.5)
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When limn→∞ A−1
n |∑n

i=1 ai| = 0, we get In → 0 from E‖X1‖ < ∞.
Note that when lim supn→∞ A−1

n |∑n
i=1 ai| > 0, EXn = 0. Therefore, to prove

(3.4), we need only prove that IIn → 0. Let En,j = ( 1
|u[n,j]| ,

1
|u[n,j+1]| ], En,n =

( 1
|u[n,n]| , ∞).

IIn = A−1
n ‖

n∑
i=1

a[n,i]EX1I(‖X1‖ > |u[n,i]|−1)‖

= A−1
n ‖

n∑
i=1

a[n,i]

n∑
j=i

EX1I(‖X1‖ ∈ En,j)‖

= A−1
n ‖

n∑
j=1

EX1I(‖X1‖ ∈ En,j)
j∑

i=1

a[n,i]‖

= A−1
n ‖

n∑
j=1

EX1I(‖X1‖∈En,j)Vn,j‖≤(
h−1∑
j=1

+
n∑

j=h

)|Vn,j |E‖X1‖I(‖X1‖∈En,j)

=: IIIn + IIIIn,

where h is a fixed integer with 2 ≤ h ≤ n. Set u∗ = maxi≥1{|ui|}, note that
|Vn,j| = A−1

n |∑j
i=1 a[n,i]| ≤ ju∗Amax1≤i≤n[n,i]/An. Since ai/Ai → 0 as i → ∞,

there exists a positive integer H (depending on h but not depending on n) such
that max1≤i<h[n, i] ≤ H and IIIn ≤ C

∑h−1
j=1 |Vn,j| ≤ Cu∗AH(

∑h−1
j=1 j)/An ≤

Cu∗AHh2/An → 0 as n → ∞. It is easy to see from (2.2) that IIIIn ≤
CE‖X1‖I(‖X1‖ > 1

|u[n,h]|). Since ui → 0, ∀ε > 0, |u[n,h]| < ε by taking h large
enough and n ≥ h. Furthermore we get IIIIn < ε from E‖X1‖ < ∞. This proves
(3.4). Thus, to prove A−1

n Un → 0, a.s., it suffices to show from Lemma 1 that
J1 =

∑∞
k=1 A−p

k |ak|pE‖Xk‖pI(‖Xk‖ ≤ Ak/|ak|) < ∞. In fact, by (2.1),

J1 ≤ C
∞∑

j=1

∑
j−1<Ak/|ak |≤j

j−pE‖X1‖pI(‖X1‖ ≤ j)

= C
∞∑

j=1

[N(j) − N(j − 1)]j−p
j∑

n=1

E‖X1‖pI(n − 1 < ‖X1‖ ≤ n)

≤ CE‖X1‖th(‖X1‖) < ∞.

Proof of Theorem 2.2. Let Yi, Zi, Un, Vn be as in Theorem 2.1. By Theorem
2.1, it suffices to show that

A−1
n ‖EUn‖ → 0, as n → ∞. (3.6)

From (2.5) and E|X|th(|X|) < ∞ we get
∞∑
i=1

A−1
i |ai|E‖Xi‖I(‖Xi‖ > Ai/|ai|) < ∞. (3.7)
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By the property of h(x), when limn→∞ A−1
n |∑n

i=1 ai| = 0, E|X|th(|X|) < ∞
implies

A−1
n |

n∑
i=1

ai|E‖X1‖ → 0, as n → ∞. (3.8)

Note that when lim supn→∞ A−1
n |∑n

i=1 ai| > 0, EXn = 0. Therefore, from (3.5),
this verifies (3.6) by (3.7) and (3.8).

Proof of Theorem 2.3. From the assumption we get

∞∑
i=1

P (‖Xi‖ > Ai/|ai|) < ∞ and
∞∑
i=1

|ai|E‖Xi‖I(‖Xi‖ ≤ Ai/|ai|)
Ai

< ∞.

Hence
∑∞

i=1
‖aiXi‖

Ai
< ∞, a.s. Therefore by the Kronecker Lemma, A−1

n

∑n
i=1 aiXi

→ 0 a.s.

Proof of Theorem 2.4. Note that A−1
n

∑n
i=1 aiXi → 0 a.s. implies

∞∑
n=1

P (‖X1‖ ≥ εAn/|an|) < ∞ for all ε > 0. (3.9)

This and (2.6) imply that

E‖X1‖th(‖X1‖) < ∞. (3.10)

Furthermore, if B is of type p (1 ≤ t < p ≤ 2), N(n) = O(nth(n)) and Vn = O(1)
when t = 1. Then by Theorems 2.1 and 2.2, we obtain from (3.10) that

A−1
n

n∑
i=1

ai(Xi − EXi) → 0 a.s. as n → ∞. (3.11)

From Assumption (2.4) and (3.11) we get

A−1
n

n∑
i=1

aiEXi → 0 as n → ∞. (3.12)

If lim supn→∞ A−1
n |∑n

i=1 ai| = a > 0, there exists a sequence of positive integes
{nk} such that nk ↑ ∞ as k → ∞ and

lim
k→∞

A−1
nk

|
nk∑
i=1

ai| = a > 0. (3.13)

Obviously, (3.12) and (3.13) imply EX1 = 0.
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Proof of Theorem 2.5. Note that
n∑

i=1

aiXi =
n∑

i=1

ai[XiI(|Xi| ≤ Ai/|ai|) − EXiI(|Xi| ≤ Ai/|ai|)]

+
n∑

i=1

aiEXiI(|Xi| ≤ Ai/|ai|) +
n∑

i=1

aiXiI(|Xi| > Ai/|ai|)

=: I(1)
n + I(2)

n + I(3)
n . (3.14)

From the proof of Theorem 2.2 we know

A−1
n I(2)

n → 0 and A−1
n I(3)

n
a.s.→ 0 as n → ∞. (3.15)

As in the proof of J1 < ∞, for p > t we have

∞∑
i=1

E|ai[XiI(‖Xi‖ ≤ Ai/|ai|) − EXiI(‖Xi‖ ≤ Ai/|ai|)]|p
Ap

i

< ∞.

Hence, the sequences {Ai} and {ai[XiI(‖Xi‖ ≤ Ai/|ai|)−EXiI(‖Xi‖ ≤ Ai/|ai|)],
i ≥ 1} satisfy the assumptions of Theorem 1.3 of Shao (1995). Therefore, without
changing the distribution of {Xn}, we can redefine {Xn} on a richer probabil-
ity space, together with a sequence of independent normal random variables
{Yn, n ≥ 1} with Yn

D= N(0, V arX2
1I(|X1| ≤ An/|an|)), such that

|I(1)
n −

n∑
i=1

aiYi| = o(An) a.s. (3.16)

This completes the proof of (2.7) by (3.14)-(3.16).
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