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Abstract: The index for SEquential CONtinuity of care (SECON , Steinwachs

(1979)) can be defined as the average of a sequence of random variables {Yt} which

measure the sequential continuity of stationary Markov-dependent m-state trials

{Xt}, where Yt is defined as 1 if Xt−1 = Xt and as 0 otherwise. In the health

care sector, SECON is usually applied as the fraction of sequential patient-visit

pairs at which the same provider was seen, and represents the standard estimate

of the sequential nature of continuity of care, an important health policy aim that

drives many of the changes underway in the current US health care market. After

almost two decades of application, however, the exact distribution of SECON is

still unknown except for the case where the Xt are i.i.d. with equal probabilities

for each state. In this article, the distribution problem is cast into a finite Markov

chain setting via the imbedding technique developed by Fu and Koutras (1994),

and the exact probabilities under one-step Markov dependence can be obtained

either directly or via recursive equations. It is also shown that SECON is the

minimum variance unbiased estimator, and the maximum likelihood estimator, for

the sequential continuity measure. Numerical and real-data examples are given to

illustrate the theoretical results.

Key words and phrases: Ergodic distribution, Markov dependence, sequential con-

tinuity.

1. Introduction

Continuity of care, and in particular provider continuity, is increasingly a
central aim of health care policy in a majority of clinical settings. The benefits of
broader information exchange between doctor and patient attributed to provider
continuity include earlier recognition of health problems and psycho-social effects
such as greater patient satisfaction, leading to an overall improvement in the
quality of care as well as a reduction in cost.

Continuity of care describes the extent to which information about the di-
agnosis and management of health problems is conveyed from one visit to the
next. This definition, in its broadest sense, includes not only provider (e.g.
physician, health team, HMO) continuity, but also other dimensions such as con-
tinuity of medical records and of geographical location of treatment site (Wall
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(1981)). Although existing measures for the quantification of continuity can be
applied to each of these dimensions in a similar manner, corresponding litera-
ture has focused mainly on provider continuity, which is expected to have the
greatest impact upon treatment outcome. Over the past two decades, more than
a dozen measurement indices of continuity have been proposed and, in general,
they can be categorized into visit-based (e.g. Eriksson and Mattsson (1983))
and individual-based measures (e.g. Breslau and Reeb (1975) and Steinwachs
(1979)). Previous literature has focused mainly upon the latter, and this article
will examine one of the most commonly-used individual-based statistics: the se-
quential continuity measure SECON (Steinwachs (1979)), which is the fraction
of sequential visit pairs at which the same provider is seen. The SECON statis-
tic is a basic yet non-trivial measure of sequential continuity in a sequence of
observations, and although its application has thus far been confined to the field
of health care and policy research, an improved understanding of its theoretical
properties might lead to applications in other areas as well.

The exact distribution of SECON under the assumption of random assign-
ment (i.i.d. with equal probabilities) at each visit was given by Steinwachs (1979).
However, under the more realistic model of dependence between visits, the exact
distribution of SECON has never been investigated, and traditional combinato-
rial approaches, such as the urn model used by Eriksson (1990) to study random
assignment, cannot easily be extended to non-random cases. In this article,
the exact distribution of SECON will be derived based on the method of finite
Markov chain imbedding (see Fu (1996), Fu and Koutras (1994) and Lou (1996)),
under the assumption of random assignment as well as under one-step Markov de-
pendence. This dependence will be allowed to vary between providers, and hence
these distributions will effectively capture variations in provider accessibility.

Let {Xt, t = 0, 1, . . .} be a stationary sequence of random variables forming
a homogeneous Markov chain on a finite state space S = {1, . . . ,m}. Assume
the chain is irreducible and aperiodic with transition probability matrix A =
(pij)m×m. Let π = (π1, . . . , πm) be the ergodic distribution associated with
the Markov chain, i.e., for i = 1, . . . ,m, πi = limn→∞ P (Xn = i). Define a
parameter θ =

∑m
i=1 πipii, the sequential continuity measure associated with the

Markov chain, and define a sequence of index random variables Yt such that
Yt = 1 if Xt = Xt−1, t = 1, 2, . . . Thus Yt = 1 if the same health provider is
seen at consecutive visits, and zero otherwise, where the random variable X0

corresponds to the outcome of the visit of the patient at time t = 0 with initial
probability π0 = (P (X0 = 1), . . . , P (X0 = m)). Throughout, we assume that the
initial probability π0 is the ergodic distribution π of the Markov chain, unless
otherwise specified.

Let v(T ), a positive integer random variable defined on J+ = {1, 2, . . .}
with probability mass function µ(·), be the number of visits, excluding the initial
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visit, that have occurred up to time T . Steinwachs (1979) introduced the statistic
SECON as the average of the sequence {Yt}v(T )

t=1 for a given v(T ) = n, or in a
practical sense, as the fraction of sequential visit pairs at which the same health
provider is seen. In our context, SECON estimaies θ, with

SECON = Sv(T )/v(T ) (1)

and Sv(T ) = Y1 + Y2 + · · · + Yv(T ). If the integer random variable v(T ) is inde-
pendent of the Markov chain {Xt}, and the initial distribution π0 is the ergodic
distribution π of the Markov chain, then SECON is an unbiased estimator for
θ. This follows from the fact that for every given v(T ) = n with n ∈ J+,
E(SECON |v(T ) = n) = E(Sn/n) = θ.

It is easy to see that the sequence of random variables {Yt} induced by the
Markov chain {Xt} is stationary but not always a Markov chain. Hence the
usual Markov chain techniques cannot be applied directly to study the exact
distributions of Sv(T ) and SECON . This is probably the foremost reason why
their exact distributions are still unknown for non-random cases. The goal of
this article is to find the exact distributions of Sv(T ) and SECON under one-step
Markov dependence between two consecutive events/visits, and the main results,
based on the finite Markov chain imbedding technique, are presented in Section 2.
In Section 3, we show that SECON is the minimum variance unbiased estimator,
and also the maximum likelihood estimator, for the sequential continuity measure
θ. Two numerical examples and one data set from the Mount Sinai AIDS Center
are analyzed in Section 4, followed by some remarks in the concluding section.

2. The Exact Distribution

For a given positive integer n, let Γn = {0, . . . , n}. Consider the homoge-
neous Markov chain {Xt : t ∈ Γn} defined in Section 1 with transition probability
matrix A, and decompose A into two matrices B and D: Am×m = (pij)m×m =
Bm×m + Dm×m, where

Bm×m =




0 pij

. . .
pij 0


 and Dm×m =




p11 0
. . .

0 pmm


 .

Let Ωn = {(u, v) : u = 0, . . . , n, and v = 1, . . . ,m} be the state space containing
a total of (n + 1)m states. Define a homogeneous Markov chain {Zt : t ∈ Γn} on
Ωn as

Zt(X) =

{
(
∑t

i=1 Yi, Xt), 1 ≤ t ≤ n,

(0,X0), t = 0,
(2)



1002 JAMES C. FU AND W. Y. WENDY LOU

with transition probability matrices for, t = 1, . . . , n,

M t = M (n+1)m×(n+1)m =




B D O · · · O O

O B D · · · O O

· · · . . . . . .

O · · · B D

O · · · O B�




, (3)

where O and B� are the m × m zero and identity matrices, respectively.

Theorem 2.1. (a) The distribution of Sn is given as

P (Sn = s) = ξ(
n∏

t=1

M t)U ′(Cs) = ξMnU ′(Cs), 0 ≤ s ≤ n, (4)

where ξ = (π,0, . . . ,0, . . . ,0)1×(n+1)m is the initial probability vector of Z0, 0 =
(0, . . . , 0)1×m, U(Cs) = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) is a 1 × (n + 1)m row vector
with 1 at the coordinates associated with states in Cs and 0 elsewhere, and the
Cs = [(s, 1), . . . , (s,m)], s = 0, . . . , n, form a partition of Ωn.

(b) The probability that Sn = s satisfies the following recursive equation:

P (Sn = s) = P (Sn−1 = s) +
m∑

j=1

pjjξMn−1(U ′(s − 1, j) − U ′(s, j)), (5)

where U (s, j) = (0, . . . , 0, 1, 0, . . . , 0)1×(n+1)m is a unit vector associated with the
state (s, j).

Proof. Since {Xt} is a Markov chain with initial probability π and transition
probability matrix A, it follows from (2) that Zt(X) is also a Markov chain with
initial probability ξ and transition probabilities determined by the following: for
0 ≤ s ≤ n − 1 and i = 1, . . . ,m,

P (Zt(X) = (u, v)|Zt−1(X) = (s, i)) =




pii, if u = s + 1 and v = i,

pij, if u = s and v = j, i �= j,

0, otherwise.
(6)

For states with s = n, by convention, P (Zt(X) = (u, v)|Zt−1(X) = (n, i)) = 1 if
u = n and v = i, and 0 otherwise. The transition probability matrices M t = M

given at (3) are hence defined. From the definition of {Zt}, P (Sn = s) = P (Zn ∈
Cs), so (4) is a direct consequence of the Chapman-Kolmogorov equation. The
recursive Equation (5) follows immediately from (4) and

MU ′(Cs) = U ′(Cs) +
m∑

j=1

pjj(U ′(s − 1, j) − U ′(s, j)).
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Note that BD = DB if and only if p11 = p22 = · · · = pmm = θ > 0. Given
v(T ) = n, if BD = DB, it follows from (4) and

ξMn =

[(
n

0

)
πBn,

(
n

1

)
πBn−1D, . . . ,

(
n

n

)
πDn

]
(7)

that Sn has a binomial distribution

P (Sn = s) =

(
n

s

)
πBn−sDs1

′
=

(
n

s

)
θs(1 − θ)n−s. (8)

Thus in this special case, the result is independent of the number of available
providers m and the initial probability π.

The Markov chain Zt(X) defined at (2) can be regarded as a Markov random
walk (Pyke (1961)). Our construction of {Zt}, Theorem 2.1, and Corollary 2.1
show that Sn is finite Markov chain imbeddable in the sense of Fu and Koutras
(1994). In addition, if BD = DB, Sn is binomial finite Markov chain imbed-
dable in the sense of Koutras and Alexandrou (1995). If v(T ) has a probability
measure µ(·) on J+ and is independent of {Xt}, then the distributions of Sv(T )

and SECON can be specified as follows.

Corollary 2.1. If v(T ) and {Xt} are independent, then

P (Sv(T ) = s) =
∞∑

n=s

ξMnU
′
(Cs)µ(n); (9)

if p11 = · · · = pmm = θ and α ∈ [0, 1], then

P (Sv(T )/v(T ) ≤ α) =
∞∑

n=1

[αn]∑
s=0

(
n

s

)
θs(1 − θ)n−sµ(n), (10)

where [αn] denotes the integer part of αn.

Proof. Since v(T ) and {Xt} are independent, (9) follows immediately from
Theorem 2.1 and P (Sv(T ) = s) =

∑∞
n=s P (Sn = s|v(T ) = n)µ(n). If p11 = · · · =

pmm = θ, (10) follows directly from (8) and (9).

If v(T ) is independent of {Xt} and has, for example, a truncated Poisson
distribution with parameter λ such that µ(n) = λne−λ/(n!(1 − e−λ)), n ∈ J+,

then for cases where p11 = · · · = pmm = θ, the SECON statistic has the following
distribution: for α ∈ [0, 1],

P (Sv(T )/v(T ) ≤ α) =
e−λ

1 − e−λ

∞∑
n=1

λn

n!

[αn]∑
s=0

(
n

s

)
θs(1 − θ)n−s. (11)
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Further, under the above assumptions, the SECON statistic has mean θ and
variance

Var (Sv(T )/v(T )) =
θ(1 − θ)e−λ

1 − e−λ

∞∑
n=1

λn

n(n!)
. (12)

The assumption of independence between the number of visits v(T ) and the visit
sequence {Xt} is indispensable for the above results. It seems to us that if v(T )
is a stopping random variable, then under certain conditions our formulation can
be extended to the case of dependence between v(T ) and {Xt}, and the limiting
distribution of SECON can then be obtained with some modifications by using
the method of Fuh (1997).

3. Estimation of Sequential Continuity Measure

If v(T ) and {Xt} are independent, SECON is an unbiased estimator for
the sequential continuity measure parameter θ =

∑m
i=1 πipii. It is easy to see

that θ = 0 if and only if pii = 0 for all i = 1, . . . ,m. If {Xt} is a sequence of
i.i.d. m-state trials with probabilities pij = pj > 0, then the following theorem
provides a lower bound for θ.

Theorem 3.1. Consider a sequence of i.i.d. multi-state trials {Xt = i : t ∈
Γn, i = 1, . . . ,m}. The parameter θ satisfies θ(p1, . . . , pm) ≥ 1/m for all (p1, . . . ,

pm), with equality if and only if p1 = · · · = pm = 1/m.

In other words, random assignment with equal probabilities will yield the
smallest value of θ amongst all i.i.d. sequences of multi-state trials.

Proof. Since the Xt are i.i.d., the ergodic distribution is π = (π1, . . . , πm) with
pi = πi and θ =

∑m
i=1 p2

i , and hence the theorem is an immediate consequence of
Lagrange’s method.

The transition probabilities pij are often unknown in real situations, and
the estimation problem has been studied by many researchers. The likelihood
approach is adopted here. Given v(T ) = n, let Nij(n), i, j,= 1, . . . ,m, be the
total number of Xt such that Xt−1 = i and Xt = j, t = 1, . . . , n. Assuming that
the distribution of v(T ) does not depend on the parameters pij and that v(T )
is independent of the sequence {Xt}, the conditional likelihood function of pij,
given v(T ) = n and {x0, . . . , xn}, can be written as

L(pij |x0, . . . , xn) ∝ π(x0)
m∏

i,j=1

p
Nij(n)
ij . (13)

Theorem 3.2. If the initial probability is the ergodic distribution of the Markov
chain {Xt}, and v(T ) and {Xt} are independent, then SECON is the minimum
variance unbiased estimator, and also the maximum likelihood estimator, for θ.
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Proof. Since {Xt} and v(T ) are independent and, for every given v(T ) = n, the
Nij(n) are sufficient and complete statistics for pij, SECON is the MVUE for θ
since for every v(T ) = n, n = 1, 2, . . .,

SECON =
m∑

i=1

Nii(n)/n, (14)

and one can appeal to the the Rao-Blackwell Theorem. It follows directly from
the likelihood function (13) that SECON is also the maximum likelihood esti-
mator.

In fact SECON becomes intuitively obvious as an estimator for θ=
∑m

i=1 πipii

once it is rewritten as

θ̂v(T )=SECON =
m∑

i=1

Nii(v(T ))/v(T )=
m∑

i=1

[Ni(v(T ))/v(T )] [Nii(v(T ))/Ni(v(T ))]

=
m∑

i=1

π̂ip̂ii, (15)

where Ni(v(T )) =
∑m

j=1 Nij(v(T )).

4. Examples

To illustrate our method for finding the distributions of Sn and SECON , two
numerical examples are given. A real-data example is also given to demonstrate
practical application.

Example 4.1. Let {Xt} be a two-state homogeneous Markov chain with tran-
sition matrix

A2×2 =

[
0.3 0.7
0.3 0.7

]
=

[
0 0.7

0.3 0

]
+

[
0.3 0
0 0.7

]
= B + D. (16)

The distribution of Sn can be obtained via Theorem 2.1. The numerical results
for n = 10 and n = 100 with initial probabilities of π0 = (0.5, 0.5), (0.3,0.7), and
(0.8,0.2), are presented in Figure 1, along with the exact means and variances.
It is easy to see that, given v(T ) = n, the mean of SECON is θ when the initial
probability π0 is the same as the ergodic probability of the Markov chain {Xt},
otherwise the bias depends on the initial probability, especially when n is small.

Example 4.2. Let {Xt} be a homogeneous m-state Markov chain having sym-
metric transition matrix:

A∗
m×m =

1
2
...
m




β

β (1 − β)/(m − 1)

(1 − β)/(m − 1)
. . .

β


 . (17)
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Since A∗ contains only one parameter β (0 ≤ β ≤ 1), and p11 = · · · = pmm = β,
the distribution of Sn can be easily obtained via Corollary 2.1. The interpretation
of this model is that the probability of a patient seeing the same provider at
consecutive visits is β, with probability (1−β)/(m−1) of seeing any of the other
(m− 1) providers. It is easy to see that the above Markov chain has the ergodic
distribution π = (1/m, . . . , 1/m) for all 0 < β < 1, and that the parameter β

is equal to the sequential continuity measure θ. Further, if β = 1/m, the model
reduces to random assignment of patient to provider at each visit.
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Figure 1. The exact probability of Sn =
∑n

i=1 Yi for Example 4.1: π0 =
(0.5, 0.5) for (a) and (b), π0 = (0.3, 0.7) for (c) and (d), and π0 = (0.8, 0.2)
for (e) and (f).
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Some numerical results are plotted in Figure 2 for θ = β = 0.5 and 0.8, where
v(T ) has a truncated Poisson distribution (excluding n = 0) with λ = 4, 15 or 30.
For fixed θ, the distribution functions become more alike as the Poisson parameter
λ increases, and they have larger probability increments with α when α is near θ.
Note that, for this special case, the distribution of Sv(T )/v(T ) is independent of
the number of available providers m and the initial probability π0. In practice,
this is a very useful feature when comparing the sequential continuity of care
across different health care units where the number of available providers varies.
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Figure 2. The distribution of Sv(T )/v(T ) when θ = 0.5 and θ = 0.8, where
v(T ) follows the truncated Poisson distribution with λ = 4, 15 or 30.

To demonstrate the application of the sequential continuity measure, one
subset of data from the Mount Sinai AIDS Center is analyzed below.

As part of a study of HIV/AIDS patients we investigated the relationship
between continuity of care and overall outcomes, such as total charges and fre-
quency of hospitalization, for patients from the Mount Sinai AIDS Center. This
patient population is composed mainly of East and Central Harlem residents.
These low-income residential communities with high illicit drug use have among
the highest AIDS and tuberculosis prevalences of any community in the country,
and it is important to quantify the patterns of care received by patients in such
areas.
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As an illustration here, we selected one set of 45 patients whose primary
provider is Medicaid, whose ages are between 25 and 55, and who had regular
visits since the initial date of receiving case management care during the period
of July 1995 to June 1996. Among the 45 observed sequences, 24 had SECON

values equal to one, and the minimum value was 0.3. Hence these patients re-
ceived much better sequential continuity of care than if they had been randomly
assigned to any one of the m = 13 providers at each visit, in which case θ would
be 1/13. To gain further insight into the measure θ for these 45 patients, the em-
pirical distribution of SECON is plotted in Figure 3, along with the theoretical
distribution of SECON , where θ = 0.8 and the number of visits v(T ) is assumed
to follow a Poisson distribution with λ = 8. Here, as a reasonable starting point,
we naively assumed the symmetric transition probability relationship given by
(17) for the 13-provider Markov chain, resulting in the small discrepancies appar-
ent in Figure 3. Note that both distributions are heavily skewed toward the left.
A chi-square test with four intervals, each containing at least five observations,
was carried out for goodness-of-fit of the theoretical distribution of SECON with
parameters θ = 0.8 and λ = 8, yielding a p-value of 0.09. It’s worth mention-
ing that when the restriction of having at least five observations in each interval
is removed, as in using the interval alpha=[0, 0.34] which contains two obser-
vations, the p-value decreases to less than 0.05. The requirement of at least
five observations in each interval was chosen to eliminate potential problems in
the chi-square approximation due to extremely small expected values. Based on
Figure 3 and the chi-square goodness-of-fit test, it appears that the theoretical
distribution approximates the empirical distribution well in the center, and less
well in the two tails. With proper estimation of the transition probabilities, we
can then model the relationship between the distribution of Sv(T )/v(T ) and the
characteristics of the patient population (health care provider, race, etc.), and
further with overall outcomes such as total costs and quality of care.

5. Remarks

Under the one-parameter model proposed in (17), the distribution of
SECON is independent of the number of available providers m. This model is
a very useful starting point for comparing sequential continuity of care across
health care units with different numbers of providers. In fact, as long as the di-
agonal transition probabilities are equal, regardless of the off-diagonal transition
probabilities, this advantage is still realized.

Much of the previous discussion has required that the number of visits v(T )
be independent of the visit sequence {Xt}. This is often a mild condition from a
practical point of view. If all doctors in a study provide roughly the same quality
of care and the patients’ care-seeking is based solely on their own well-being and
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not on their relationship to a specific provider, then it is quite reasonable to
assume that the frequency of visits is not related to which provider is seen. In
reality, of course, while there are factors which could possibly inter-relate the
number of visits and the visit sequence, we expect this dependence to be weak in
most cases, and feel that this assumption of independence is a reasonable starting
point in the health care sector. An extension of our present formulation to more
general cases of dependence between the number of visits and the visit sequence
is very challenging from both a theoretical as well as a practical point of view,
and is a topic of future research.
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Figure 3. The empirical distribution of Sv(T )/v(T ) for the 45 patients, along
with the exact distribution of Sv(T )/v(T ) where θ = 0.8 and v(T ) follows a
truncated Poisson distribution with λ = 8.

In practice, the ergodic distribution π is often unknown. Strictly speaking,
assigning new patients to doctors based on the ergodic distribution cannot be
implemented. The numerical examples depicted in Figure 1 show that the initial
distribution has minimal effect on the mean and variance of SECON . From a
practical point of view, we feel that the initial distribution should not be an issue
and, with the current state of medical record information systems, the rule of
assigning new patients to doctors based on past medical records provides a good
and robust procedure.
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In summary, the exact distribution of the SECON statistic can be obtained
under the assumption of independence between v(T ) and {Xt}, for any arbitrary
sequence of stationary one-step Markov-dependent m-state trials, and the one-
parameter model at (17) is a reasonable starting point in the analysis of sequential
continuity data.
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