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Abstract: We have derived some matrix equations for speedy computation of the

conditional covariance kernel of a discrete-time process obtained from irregularly

sampling an underlying continuous-time ARMA process. These results are ap-

plicable to both stationary and non-stationary ARMA processes. We have also

demonstrated that these matrix results can be useful in shedding new insights on

the covariance structure of a continuous-time ARMA process.
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1. Introduction

Owing to the sampling procedure or the presence of missing data, many time
series data, say {Yti}i=0,...,N , are sampled with unequal time intervals. In many
cases, the data are obtained from irregularly sampling an underlying continuous-
time process. That is, there exists a continuous-time process {Xt, t ∈ R} such
that Yti = Xti . More generally, Yti can be some functional of the underlying
continuous-time process, measured perhaps with observation error. The under-
lying continuous-time process is often modeled by some linear stochastic differen-
tial equations, for example, by a continuous-time autoregressive moving average
(CARMA) model. This linear specification results in a tractable likelihood for
the observed discrete-time data. Hence this method has been routinely used in
analyzing discrete-time sampled time series. See, e.g., Harvey (1989), Bergstrom
(1990), Tong (1990) and Jones (1981, 1993). In some cases, there need not be
any underlying continuous-time process, and its existence is merely a means to
provide a convenient but useful analysis. In other cases, the continuous-time
process may be the object of the study; see Bergstrom (1990).

This note is mainly concerned with the derivation of matrix equations for
computing the conditional covariance kernel arising from irregularly sampling an
underlying continuous-time ARMA process. It should be pointed out that these
results apply to both stationary and non-stationary processes. Under suitable
regularity conditions, Shoji and Ozaki (1998) derived matrix equations which the
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conditional covariance kernel has to satisfy. However, for the case of irregularly
sampling, their method requires solving as many distinct matrix equations as
there are distinct sampling intervals. Here, we obtain the main result by showing
that all the conditional covariance matrices are simple transformations of the
solution of a matrix equation, thereby speeding up the computations needed in
the statistical inference of a continuous-time ARMA process based on irregularly
sampled discrete-time data. Also, we simplify the matrix equations so that they
are more readily solvable. Furthermore, the results derived here may be helpful
in studying the covariance structure of a stationary or non-stationary CARMA
process.

The organization of this note is as follows. The CARMA processes are briefly
reviewed and the main results are stated in Section 2. In Section 3, we specialize
the main results to the case of asymptotically stationary CARMA processes. In
particular, we obtain a new method of moment estimator of the instantaneous
variance parameter of a CARMA model. We also discuss some new insights on
the covariance structure of the derivatives of the underlying CARMA process.
Section 4 contains some conclusions.

2. Main Results

We recall the definition of linear CARMA(p, q) processes (with 0 ≤ q <

p). See, e.g., Brockwell (1993) and Brockwell and Stramer (1995) for further
discussions. A CARMA(p, q) process is defined as the solution of the pth order
differential equation:

Y
(p)
t − αpY

(p−1)
t − · · · − α1Yt − α0 = σ[W (1)

t + β1W
(2)
t + · · · + βqW

(q+1)
t ], (1)

where the superscript (j) denotes j-fold differentiation with respect to t; {Wt, t ≥
0} is the standard Brownian motion, and α0, . . . , αp, β1, . . . , βq and σ are con-
stants. We assume that σ > 0, α1 �= 0 and βq �= 0 and define βj := 0 for j > q.
The derivatives W

(j)
t , j > 0 do not exist in the usual sense; hence we interpret

(1) as being equivalent to the observation and state equations:

Yt = β
′
Xt, t ≥ 0,

dXt = (AXtdt + α0l)dt + σldWt, (2)
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and the superscript
′

denotes the transpose of a vector. Equation (2) is an Ito
differential equation for the state vector Xt. We assume that X0 is independent
of {Wt, t ≥ 0} and X0 is determined by initial conditions that could be random
or deterministic. In case βj = 0, j ≥ 1, the state vector X t becomes the vector
of derivatives of the continuous-time AR(p) process {Yt}.

The process {Yt, t ≥ 0} is said to be a CARMA(p, q) process with parameter
θ = (α0, . . . , αp, β1, . . . , βq, σ) if Yt = β

′
Xt, where {X t} is a solution of (2). The

solution of (2) can be written as

Xt = eAtX0 + α0

∫ t

0
eA(t−u)ldu + σ

∫ t

0
eA(t−u)ldWu,

where eAt = I +
∑∞

n=1[(At)n(n!)−1], and I is the identity matrix.
Let the mean vector of {X t} be denoted by mt. It satisfies the equation:

mt =
α0

α1
(eAt − I)H + eAtm0,

where H = [1, 0, . . . , 0]
′
. The covariance kernel of {X t}, denoted by γs,t, is

γs,t = E[(Xs − ms)(X t − mt)
′
]

= eAsV0e
A

′
t + σ2

∫ t∧s

0
eA(s−u)ll

′
eA

′
(t−u)du

=

{
eA(s−t)Vt, 0 ≤ t ≤ s < ∞,

Vse
A

′
(t−s), 0 ≤ s ≤ t < ∞,

where t ∧ s = min(t, s) and

Vt = γt,t

= eAtV0e
A

′
t + σ2

∫ t

0
eA(t−u)ll

′
eA

′
(t−u)du.

It follows from the above equations on mt and Vt that the states and the
observations, X ti and Yti , at the sampling times t0, t1, . . . , satisfy the discrete-
time state and observation equations:

Xti+1 = mti+1 + eA(ti+1−ti)(Xti − mti) + Zti , i = 0, 1, . . . , (3)

Yti = β
′
Xti , i = 0, 1, . . . ,

where Zti is independent of Xti , and {Zti , i = 0, 1, . . .} is an independent se-
quence of Gaussian random vectors with zero mean and covariance matrices

Σi = E(Z tiZ
′
ti) = σ2

∫ ti+1

ti

eA(ti+1−u)ll
′
eA

′
(ti+1−u)du. (4)
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These equations are needed for applications of the Kalman recursions (see,
e.g., Chapter 12 of Brockwell and Davis (1991)). From these recursions we can
easily compute Ŷti|ti−1

= E(Yti |ytj , j ≤ i−1), and pti|ti−1
= var(Yti |ytj , j ≤ i−1),

i ≥ 1, which are handy for computing minus twice the log-likelihood function,

−2l =
N∑

i=0

[
(Yti − Ŷti|ti−1

)2

pti|ti−1

+ log pti|ti−1

]
+ (N + 1) log(2π).

If {X t, t ≥ 0} is stationary, the initial conditions can be set as Ŷt0|t−1
= −α0/α1

and pt0|t−1
= β

′
V β, where V = σ2

∫ ∞
0 eAull

′
eA

′
udu is the stationary variance.

Otherwise, we can start the recursions with some diffuse initial conditions.
A non-linear optimization algorithm can be used in conjunction with the

expression for −2l to find the maximum likelihood estimator of the parameter θ.
The computation of eAt is most readily performed by first block-diagonalizing A

and then applying a Padé approximation on each block. See, e.g., Ward (1977).
The observation equation (3) can be simplified as follows:

Xti+1 = m + eA(ti+1−ti)(Xti − m) + Zti ,

where m = −α0
α1

H. Note that if {X t, t ≥ 0} is asymptotically stationary, then
m is the stationary mean of {X t, t ≥ 0}. The covariance matrices Σi can be
computed via at least two approaches. If A is diagonalizable, the integrand
in (4) is a matrix whose elements are linear combinations of exponentials, and
hence the integral admits a closed-form solution. More generally, the integral
can be computed via a Jordan canonical decomposition of A; see Doob (1944)
and Jones (1981) for related discussions. Alternatively, Shoji and Ozaki (1998)
applied integration by parts to the right hand side of (4) to get

AΣi + ΣiA
′
= σ2(eA(ti+1−ti)ll

′
eA

′
(ti+1−ti) − ll

′
). (5)

Shoji and Ozaki (1998) showed that if A has no pair of reverse-sign eigenvalues,
that is, for each eigenvalue λ of A, −λ is not an eigenvalue of A, then there is a
unique solution to the matrix equation (5), in which case Σi can be obtained by
solving (5).

In practice, (5) may have to be solved by some sparse matrix equation tech-
niques for the higher order case. For irregularly sampled data, (5) may need to
be solved as many times as there are distinct sampling intervals. The following
theorem shows that all the solutions for different sampling intervals are related
to a solution of an auxiliary matrix equation, which simplifies solving (5). More-
over, part (b) of the theorem below further reduces the dimension of the matrix



A CONTINUOUS-TIME ARMA PROCESS 993

equation. A new necessary and sufficient condition for the existence of a unique
solution to (5) is also given.

Theorem 2.1.

(a) If there exists a unique solution Σi to (5), then there exists a unique solution
V to the linear equation

AV + V A
′
= −σ2ll

′
, (6)

and Σi is given by

Σi = V − eA(ti+1−ti)V eA
′
(ti+1−ti). (7)

(b) If V is the unique solution of (6), then V ∗ = [V1,1, . . . , Vp,p]
′
, the vector of

diagonal elements of V , is the unique solution to the linear equation

BV ∗ = −σ2

2
l, (8)

where B = [Bi,j]p×p is a p × p matrix with

Bi,j =




(−1)j−i α2j−i, 1 ≤ 2j − i ≤ p,

(−1)j−i−1, 2j − i = p + 1,
0, otherwise.

(9)

The off-diagonal elements of V are given as follows, for i �= j:

Vi,j =


(−1)

i−j
2 V i+j

2
, i+j

2
, if i + j is even,

0, if i + j is odd.
(10)

(c) The matrix B defined in (9) is nonsingular if and only if there exists a unique
solution Σi to (5), i.e., AΣi + ΣiA

′
= σ2(eA(ti+1−ti)ll

′
eA

′
(ti+1−ti) − ll

′
).

Proof. (a) Let A, B, C and D be any p×p matrices and write A = [a1, . . . ,ap].
Define vec(A) = [a

′
1, . . . ,a

′
p]

′
and the Kronecker product A⊗B, which is of order

p2×p2, as A⊗B = [aijB]. The following identities (see, e.g., Chapter 7 of Schott
(1997) and Chapter 3 of Hale (1969)) will be needed below:

(i) vec(ABC) = (C
′ ⊗ A)vec(B),

(ii) (A ⊗ B)(C ⊗ D) = AC ⊗ BD,
(iii) A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C),
(iv) (A + B) ⊗ C = (A ⊗ C) + (B ⊗ C),
(v) AeAt = eAtA for all t.
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Take the vec operator on both sides of (5) and (6) to get

[(I ⊗ A) + (A ⊗ I)]vec(Σi) = σ2vec(eA(ti+1−ti)ll
′
eA

′
(ti+1−ti) − ll

′
), (11)

[(I ⊗ A) + (A ⊗ I)]vec(V ) = −σ2vec(ll
′
). (12)

From (11) and (12), we see that the existence of a unique solution to (11) implies
the nonsingularity of the matrix [(I ⊗ A) + (A ⊗ I)], and hence the existence of
a unique solution to equation (12). Now, subtract (12) from (11) to find

[(I ⊗ A) + (A ⊗ I)]vec(Σi − V )

= σ2vec(eA(ti+1−ti)ll
′
eA

′
(ti+1−ti))

= σ2(eA(ti+1−ti) ⊗ eA(ti+1−ti))vec(ll
′
)

= −(eA(ti+1−ti) ⊗ eA(ti+1−ti))[(I ⊗ A) + (A ⊗ I)]vec(V )

= −
[
(eA(ti+1−ti) ⊗ eA(ti+1−ti)A) + (eA(ti+1−ti)A ⊗ eA(ti+1−ti))

]
vec(V )

= −
[
(eA(ti+1−ti) ⊗ AeA(ti+1−ti)) + (AeA(ti+1−ti) ⊗ eA(ti+1−ti))

]
vec(V )

= −[(I ⊗ A) + (A ⊗ I)](eA(ti+1−ti) ⊗ eA(ti+1−ti))vec(V )

= −[(I ⊗ A) + (A ⊗ I)]vec(eA(ti+1−ti)V eA
′
(ti+1−ti)).

By the nonsingularity of [(I⊗A)+(A⊗I)], we have Σi =V−eA(ti+1−ti)V eA
′
(ti+1−ti).

(b) From (6), let ∆ = AV + V A
′
+ σ2ll

′
= 0. The (i, j)th element of ∆

equals

∆i,j = (AV + V A
′
)i,j + σ2(ll

′
)i,j

=
p∑

k=1

(Ai,kVk,j + Vi,kA
′
k,j) + σ2(ll

′
)i,j

=




Vi+1,j + Vi,j+1, i ≤ j < p,

Vi+1,p +
p∑

k=1

Vi,kαk, i < j = p,

p∑
k=1

(αkVk,p + Vp,kαk) + σ2, i = j = p.

Thus ∆ = 0 is equivalent to the following system of equations:

Vi+1,j + Vi,j+1 = 0, i ≤ j < p, (13)

Vi+1,p +
p∑

k=1

Vi,kαk = 0, i < j = p, (14)

p∑
k=1

(αkVk,p + Vp,kαk) + σ2 = 0, i = j = p. (15)
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From (13) we see that Vi,i+1 = −Vi+1,i, for 1 ≤ i ≤ p − 1. Hence Vi,i+1 =
Vi+1,i = 0 owing to the symmetry of V . Below, [x] denotes the largest integer
smaller than or equal to x. For j > 0,

Vi,i+j = (−1)Vi+1,i+j−1

...

= (−1)[
j
2
]Vi+[ j

2
],i+j−[ j

2
]

=


 (−1)

j
2 Vi+ j

2
,i+ j

2
, if j is even,

0, if j is odd.

Equivalently, for i, j ≥ 1,

Vi,j =


(−1)

i−j
2 V i+j

2
, i+j

2
, if i + j is even,

0, if i + j is odd.

For i ≤ p − 1,

Vi+1,p +
p∑

k=1

Vi,kαk

= (−1)
p−i−1

2 V p+i+1
2

, p+i+1
2

1{p + i + 1 is even} +
∑

{r:1≤i+2r≤p}
Vi,i+2r αi+2r

= (−1)
p−i−1

2 Vj,j1{2j−i=p+1} +
∑

{r:1≤i+2r≤p}
(−1)rVi+r,i+r αi+2r

= (−1)j−i−11{2j−i=p+1}Vj,j +
∑

{j:1≤2j−i≤p}
(−1)j−iα2j−iVj,j,

where 1A is the indicator function of A. So, (14) is equivalent to

(−1)j−i−11{2j−i=p+1}Vj,j +
∑

{j:1≤2j−i≤p}
(−1)j−iα2j−iVj,j = 0. (16)

On the other hand,

p∑
k=1

Vp,kαk =
∑

{r:1≤p−2r≤p}
Vp,p−2r αp−2r

=
∑

{r:1≤p−2r≤p}
(−1)rVp−r,p−r αp−2r

=
∑

{j:1≤2j−p≤p}
(−1)p−jα2j−pVj,j.
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Thus, (15) is equivalent to

∑
{j:1≤2j−p≤p}

(−1)p−jα2j−pVj,j = −σ2

2
. (17)

This completes the proof of (b) because the combination of (16) and (17) is
equivalent to (8).

(c) The existence of a unique solution to (5) is equivalent to the existence
of a unique solution to (6). However, (6) is equivalent to (8) and (10). This
completes the proof.

The expressions for the matrix B, for p = 1, . . . , 5, are illustrated as follows:

p = 1 :
[
α1

]
, p = 2 :

[
α1 1
0 α2

]
, p = 3 :


α1 −α3 0

0 α2 1
0 −α1 α3


 ,

p = 4 :




α1 −α3 −1 0
0 α2 −α4 0
0 −α1 α3 1
0 0 −α2 α4


 , p = 5 :




α1 −α3 α5 0 0
0 α2 −α4 −1 0
0 −α1 α3 −α5 0
0 0 −α2 α4 1
0 0 α1 −α3 α5


 .

Also note that the matrix B is nonsingular if and only if its determinant equals
zero, which happens only if the parameter vector lies in a set of zero Lebesgue
measure.

3. Asymptotically Stationary CARMA Processes

Under the condition that all the eigenvalues of A have negative real parts,
{Xt} can be shown to be asymptotically stationary. See, e.g., Chapter 5 of
Karatzas and Shreve (1991). In the stationary case, the mean vector and the
covariance kernel are given by the following formulas:

m = −α0

α1
H,

γs,t =

{
eA(s−t)V, 0 ≤ t ≤ s < ∞,

V eA
′
(t−s), 0 ≤ s ≤ t < ∞,

where V = σ2
∫ ∞
0 eAull

′
eA

′
udu is the stationary variance matrix of {Xt} and is

the solution to the linear matrix equation AV +V A
′
= −σ2ll

′
(see (6.20) on page

357 of Karatzas and Shreve (1991)). This can be readily solved via part (b) of
Theorem 2.1. Notice that if {Xt, t ≥ 0} is asymptotically stationary, Theorem
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2.1 (b) can be used to get a method of moments estimator of σ2 from the α
′
js and

the variance of Xt. This is because V ∗ = −σ2B−1l/2, and so V1,1, the variance
of Xt, is equal to −σ2b1p/2, where B−1 = [bij ]. It is also interesting to note
from (10) that, for a stationary CARMA model and given t, the ith and jth
derivatives of Xt are uncorrelated when i and j differ by an odd number. When
i and j differ by an even number the correlation between X

(i)
t and X

(j)
t is the

same as the variance of X
(i/2+j/2)
t multiplied by the factor (−1)i/2−j/2.

4. Conclusion

We have derived matrix equations for computing the conditional covariance
kernel of a continuous-time ARMA process. While (7) appears intuitive for the
stationary case, it is interesting that it continues to hold for the non-stationary
case with a suitable V . The use of these results for the inference on non-stationary
CARMA processes constitutes an interesting future research project.
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