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Abstract: We consider a parametric model for time series of counts by constructing

a likelihood-based generalization of a model considered by Zeger (1988). We con-

sider a Bayesian approach and propose a class of informative prior distributions for

the model parameters that are useful for variable subset selection. The prior speci-

fication is motivated from the notion of the existence of data from similar previous

studies, called historical data, which is then quantified in a prior distribution for the

current study. We derive theoretical and computational properties of the proposed

priors and develop novel methods for computing posterior model probabilities. To

compute the posterior model probabilities, we show that only posterior samples

from the full model are needed to estimate the posterior probabilities for all of the

possible subset models. We demonstrate our methodology with a simulated and a

real data set.
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1. Introduction

Data from similar previous studies, called historical data, is often available
in applied research settings where the investigator has access to previous stud-
ies measuring the same response and covariates as the current study. From
a Bayesian perspective, historical data can be very helpful in interpreting the
results of the current study. However, very few methods exist for the formal
incorporation of historical data into a prior distribution. There is some liter-
ature addressing this issue for the linear model and generalized linear models.
See for example, Ibrahim, Ryan and Chen (1998), Chen, Ibrahim and Yiannout-
sos (1999), and Bedrick, Christensen and Johnson (1996). In these papers, the
authors assume a univariate independent response variable. The literature for
informative prior elicitation for models with correlated responses is essentially
nonexistent.

In this paper, we propose classes of informative prior distributions for time
series count data. The prior specification is based on the notion of specifying an
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n0 × 1 vector y0 of prior predictions for the response vector, y, of the current
study, along with a covariate matrix X0 corresponding to y0. Then (n0, y0,X0)
are used to specify an automated parametric informative prior for the regression
coefficients. The quantity y0 can be taken as the raw response vector from the
historical data, a vector of fitted values based on the historical data, a vector
obtained from a theoretical prediction model, or a vector specified from expert
opinion or case-specific information. Thus y0 can be viewed as a prior “predic-
tion” for y, the actual data in the current study. Similarly, X0 can be taken as
the raw covariate matrix based on the historical data or it can be specified in
other ways. In any case, taking (n0, y0,X0) to be the raw historical data results
in a more natural, interpretable, and automated specification. The Monte Carlo
methods we propose will facilitate a very fast and efficient way of computing
posterior model probabilities using only a single posterior sample from a single
model, that being the full model. Such a procedure has proved to be quite feasi-
ble and powerful in the model selection context (see for example, Chen, Ibrahim
and Yiannoutsos, (1999)). In addition, our proposed informative prior elicitation
schemes allow us to incorporate historical data in a natural way.

2. The Method

2.1. The likelihood function

Let M denote the model space. We enumerate the models in M by m =
1, . . . ,K, where K is the dimension of M and model K denotes the full model. The
full model is defined here as the model containing all of the available covariates
in the study. Further, let I denote a model indicator, so that I = m means
that model m is selected. If k is the number of covariates for the full model, our
model space contains 2k models. Let β(K) = (β0, . . . , βk)′ denote the regression
coefficients for the full model including an intercept, and let β(m) denote a km×1
vector of regression coefficients for model m with an intercept, and a specific
choice of km−1 covariates. We write β(K) = (β(m)′, β(−m)′)′, where β(−m) is β(K)

with β(m) deleted.
Consider a time series of counts yt, t = 1, . . . , n, where each yt has a corre-

sponding km × 1 covariate vector x(m)
t under model m. Under model m, condi-

tional on β(m) and a stationary unobserved process εt, the yt’s are assumed to
be independent discrete random variables from a distribution in the exponential
family. This leads to the conditional density

p(y | β(m), ε, I = m) =
n∏
t=1

p(yt | β(m), εt)

=
n∏
t=1

exp
{
τ−1
t

[
ytθ(x

(m)
t , β(m), εt) − q(θ(x(m)

t , β(m), εt))
]
− c(yt)

}
, (2.1)
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indexed by the canonical parameter θt ≡ θ(x(m)
t , β(m), εt) and the scale parameter

τt, where y = (y1, . . . , yn)′, and ε = (ε1, . . . , εn)′. Further suppose θ(x(m)
t , β(m), εt)

satisfies the equation

θ(x(m)
t , β(m), εt) = h((x(m)

t )′β(m) + εt), t = 1, . . . , n, (2.2)

where h is a monotonic differentiable function, often referred to as the link
function. In (2.1), the functions q and c determine a particular family in the
class, such as the binomial or Poisson distributions. For example, if we take
yt to have a Poisson distribution with conditional mean λt = exp((x(m)′

t β(m) +
εt), then τt = 1, h((x(m)

t )′β(m) + εt) = (x(m)
t )′β(m) + εt, q(θ(x

(m)
t , β(m), εt)) =

exp
{
(x(m)
t )′β(m) + εt

}
, and c(yt) = ln(yt!). We emphasize here that the likeli-

hood in (2.1) is a general exponential family model for discrete outcomes, with
the Poisson model being a special case. For ease of exposition, we assume τt = 1
throughout, since this is in fact the case for many models in the exponential
family, including the binomial and the Poisson. In addition, it will be convenient
to write (2.1) in vector notation as

p(y | β(m), ε, I = m) = exp
{
y′θ(X(m), β(m), ε) − J ′

nQ(X(m), β(m), ε) − J ′
nC(y)

}
,

(2.3)
where X(m) is the n× km matrix of covariates with tth row equal to (x(m)

t )′, Jn
is an n× 1 vector of ones, θ(X(m), β(m), ε), Q(X(m), β(m), ε), and C(y) are n× 1
vectors with the tth components equal to θt = h((x(m)

t )′β(m) + εt), qt = q(θt),
and ct = c(yt), respectively.

The latent process εt is assumed to have a normal distribution with mean
0. We assume an AR(1) structure for the covariance matrix of ε. This structure
is well motivated in the statistical literature and is one of the most widely used
in the time series setting (see Zeger (1988)). It proves to be quite appropriate
for our purposes, as demonstrated in Section 4. Thus we assume that ε has a
multivariate normal distribution with mean 0 and covariance matrix σ2Σ, where
the (i, j)th element of Σ has the form σij = ρ|i−j|, −1 ≤ ρ ≤ 1. The unobserved
process εt is analogous to a “random effect” in a random effects model except for
the correlation. We note that the mean and variance of εt do not depend on t.
Zeger (1988) constructs a similar model for Poisson count data through the mean
and covariance of the latent process, which then define the estimating equations.
He does not specify a parametric distribution for the latent process as is done
here, and only considers Poisson count models.

Let φn(ε|µ, σ2Σ) denote the n-dimensional normal density of the latent pro-
cess ε with mean µ and covariance matrix σ2Σ, i.e.,

φn(ε|µ, σ2Σ) = (2πσ2)−n/2|Σ|−1/2 exp
{
− 1

2σ2
(ε− µ)′Σ−1(ε− µ)

}
. (2.4)
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We note that |Σ| = (1 − ρ2)n−1. Then the joint density of (y, ε) can be written
as

p(y, ε | β(m), σ2, ρ, I = m)

= exp
{
y′θ(X(m), β(m), ε) − J ′

nQ(X(m), β(m), ε) − J ′
nC(y)

}
× φn(ε|0, σ2Σ). (2.5)

To induce the correlation structure on y we integrate out ε from (2.5), leading to
the “marginal” likelihood of β(m) given by

p(y | β(m), σ2, ρ, I = m) =
∫
p(y, ε | β(m), σ2, ρ, I = m) dε, (2.6)

where p(y, ε | β(m), σ2, ρ, I = m) is given by (2.5). The marginal likelihood of
β(m) in (2.6) does not have a closed form.

The implications of the process εt on the correlation structure in the yt’s and
the regression model is as follows. Note first that ε∗t = exp(εt) has a log-normal
distribution with mean α = exp(1

2σ
2) and variance ν2 = exp(2σ2) − exp(σ2).

The unobserved process εt allows for overdispersion and autocorrelation in yt. In
addition, the degree of overdispersion depends on the marginal mean of yt. For
the Poisson model, the autocorrelation in yt must be less than or equal to that in
εt, and the degree of autocorrelation in yt relative to εt decreases as the marginal
mean of yt and ν2 decrease.

2.2. The prior distributions

Informative prior elicitation is an important part of a Bayesian analysis.
This is especially true for the problem of variable subset selection, since proper
prior distributions are required for the computation of posterior model probabil-
ities. We propose a class of informative priors for the regression coefficients β(m),
since these parameters are of primary inferential interest in the variable selection
problem. Our prior construction for β(m) is based on the availability of historical
data, as suggested in Section 1. Suppose there are N historical data sets and the
sample size of the ith historical study is n0i. Let y0i denote the n0i× 1 vector of
time series counts for the ith historical study, and let X(m)

0i denote the n0i × km
matrix of covariates corresponding to the ith historical study. In addition let
ε0i denote the latent process for the ith historical study, where ε0i is an n0i × 1
vector, i = 1, . . . , N , and ε0i has an n0i dimensional multivariate normal distribu-
tion with mean 0 and covariance matrix σ2Σ0i, where Σ0i is an n0i × n0i matrix
with (j, j∗)th element equal to ρ|j−j∗|. Finally let y0 = (y01, . . . , y0N ) denote the
response vector for all the historical studies. Throughout, we assume that given
the model parameters, y0 and y are independent.
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We propose a prior distribution for β(m) taking the form

π(β(m) | σ2, ρ, y0i, a0i, I = m)

∝
N∏
i=1

∫
p(y0i | β(m), ε0i, I = m)a0iφn0i(ε0i|0, σ2Σ0i) dε0i, (2.7)

where a0i is a scalar prior parameter that controls the weight of the ith historical
study relative to the likelihood of the current study. Small values of a0i give
less weight whereas large values give more weight. It is most sensible to restrict
a0i to 0 ≤ a0i ≤ 1, since we do not want to weight the historical data more
than the current data. The parameter a0i can also be interpreted as a precision
parameter which takes into account the between and within study variability in
the historical data sets.

Let a0 = (a01, . . . , a0N ). The prior specification is completed by specifying
priors for (σ2, ρ, a0). We take these parameters to be independent a priori. We
specify an inverse gamma prior for σ2, denoted IG(δ0, γ0), a scaled beta prior
for ρ, denoted scbeta(ν0, ψ0), and independent identically distributed beta priors
for each a0i, denoted beta(α0, λ0). Here, (δ0, γ0, ν0, ψ0, α0, λ0) are specified prior
hyperparameters. Thus, we propose a joint prior distribution of the form

π(β(m), σ2, ρ, a0|y0, I = m) ∝ p∗0(β
(m), σ2, ρ, a0|y0, I = m) , (2.8)

where p∗0(β(m), σ2, ρ, a0|y0, I = m) is the unnormalized prior density defined by

p∗0(β
(m), σ2, ρ, a0|y0, I = m)

=
N∏
i=1

(∫
p(y0i | β(m), ε0i, I = m)a0iφn0i(ε0i|0, σ2Σ0i)dε0i

)

×
(
N∏
i=1

aα0−1
0i (1−a0i)λ0−1

)
×(σ2)−(δ0+1) exp(−σ−2γ0)(1+ρ)ν0−1(1−ρ)ψ0−1.(2.9)

Our joint prior for (β(m), σ2, ρ, a0) clearly does not have a closed form in gen-
eral. However, it has a natural motivation and several appealing interpretations.
One motivation for the prior in (2.9) is that, by taking a0 random, the tails of the
marginal prior distribution for β(m) are heavier than those obtained by taking
a0i to be a fixed hyperparameter. In addition, a prior on a0 provides flexibility
and allows us to express our uncertainty about it. By allowing different a0i’s
for different historical studies, we are able to develop a more flexible prior that
can weight each historical study differently. This would certainly be desirable if
one historical study has a much larger sample size than others. Another motiva-
tion for (2.9) is that it mimics the marginal likelihood function of β(m) based on
the historical data. If for example a0i = 1, then (2.9) is precisely the marginal
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likelihood function of β(m) based on the historical data. Thus, our prior can be
viewed as a weighted marginal likelihood of β(m). This seems like a natural prior
when historical data is available.

To show the propriety of the prior distribution given by (2.9), we first intro-
duce a useful lemma.

Lemma 2.1. Let α0 > 0, λ0 > 0. There exists K = K(α0, λ0) > 0 such that
∀ 0 ≤ ξ ≤ 1, ∫ 1

0
ξa0iaα0−1

0i (1 − a0i)λ0−1da0i ≤ K(1 + ln(1/ξ))−α0 . (2.10)

The proof of the lemma is given in the Appendix.

Let y0it denote the tth component of y0i and let (x(m)
0it )′ denote the tth row

of X(m)
0i . Using Lemma 2.1, we obtain the following result, which ensures the

propriety of the joint prior distribution π(β(m), σ2, ρ, a0|y0, I = m).

Theorem 2.1. Assume that

exp {(y0itθ0it − q(θ0it)) − c(y0it)} ≤M, (2.11)

for t = 1, . . . , n0i, i = 1, . . . , N , where M is some finite constant. Suppose there
exist y0iti1 , y0iti2 , . . ., y0itikm

(1 ≤ ti1 ≤ ti2 ≤ · · · ≤ tikm) such that∫ ∞

−∞
ed0|η| exp

{
(y0itjh(η) − q(h(η))

}
dη <∞ (2.12)

for some d0 > 0 and j = 1, . . . , km, and that the corresponding design matrix(
x

(m)
0it1

, x(m)
0it2

, . . ., x(m)
0itkm

)′
has full rank km. Then if α0 > km/N , λ0 > 0, and

(2.12) holds, the joint prior distribution π(β(m), σ2, ρ, a0|y0, I = m) is proper.

The proof of Theorem 2.1 is given in the Appendix.
For elicitation purposes, it is easier to work with the prior mean and variance

of a0i, given by µa0 = α0/(α0 +λ0) and σ2
a0 = µa0(1−µa0)(α0 +λ0 +1)−1. From

Theorem 2.1, a sufficient condition for the propriety of the prior distribution is
that α0 > (k+1)/N for the full model. Therefore, a reasonable starting point for
the analysis is to choose α0 = λ0 = (k + 2)/N , which gives µa0 = 1/2. Then we
conduct several sensitivity analyses within a suitable range of the uniform prior,
using various values of (µa0 , σa0). We do not recommend doing an analysis based
on one set of proposed values of (µa0 , σa0).

2.3. Prior distribution on the model space

Let

p∗0(β
(m)|y0, I = m) =

∫
p∗0(β

(m), σ2, ρ, a0|y0, I = m) dσ2 dρ da0, (2.13)
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where p∗0(β(m), σ2, ρ, a0|y0, I = m) is given by (2.9). We see that p∗0(β(m)|y0, I =
m) is proportional to the marginal prior of β(m). We propose to take the prior
probability of model m, denoted p(I = m), as

p(I = m) =
∫
p∗0(β(m)|y0, I = m) dβ(m)

K∑
j=1

∫
p∗0(β(j)|y0j , I = j) dβ(j)

. (2.14)

The choice of p(I = m) in (2.14) is a natural one since the numerator is just
the normalizing constant of the joint prior of (β(m), a0, σ

2, ρ) under model m.
The prior model probabilities in (2.14) are based on coherent Bayesian updating
and this fact has several attractive interpretations. First p(I = m) in (2.14)
corresponds to the posterior probability of model m based on the data y0 under
model m, using a uniform prior for the previous study, i.e., p0(I = m) = 2−k for
m ∈ M as α0 → ∞. We also note that as α0 → ∞, a0i → 1 with probability
1. Second as λ0 → ∞, p(I = m) reduces to a uniform prior on the model
space. Therefore, as λ0 → ∞, the historical data y0 have a minimal impact
in determining p(m). In addition, as λ0 → ∞, a0i → 0 with probability 1.
Finally, we mention that the choice of p(I = m) in (2.14) greatly eases the
computational burden for calculating posterior model probabilities. There is
more detailed discussion in Section 3.

3. Posterior Model Probabilities

In this section we explore the theoretical properties of posterior model proba-
bilities based on the choice of the prior model probabilities of (2.14), and then pro-
pose novel Monte Carlo implementation procedures to compute posterior model
probabilities. A key result is a formula for the posterior model probability that
does not depend directly on p(I = m).

The posterior probability of model m is given by

p(I = m|y) =
p(y|I = m) p(I = m)
K∑
j=1

p(y|I = j) p(I = j)
, (3.1)

where p(y|I = m) denotes the marginal distribution of the data under model m
for the current study, and p(I = m) denotes the prior probability of model m in
(2.14).

Theorem 3.1. p(I = m|y) in (3.1) is given by

p(I = m|y) =
p(β(−m) = 0|y, y0, I = K)
K∑
j=1

p(β(−j) = 0|y, y0, I = K)
, (3.2)
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m = 1, . . . ,K, where p(β(−m) = 0|y, y0, I = K) is the marginal posterior density
of β(−m) evaluated at β(−m) = 0.

In (3.2), for notational convenience, we assume p(β(−K) = 0|y, y0, I = K) =
1. The proof of Theorem 3.1 is given in the Appendix. We mention here that
the derivation of (3.2) assumes that y0 and y are independent given the model
parameters. The result in (3.2) is very attractive since it shows that the posterior
model probability p(I = m|y) is simply a function of the marginal posterior
density functions of β(−m) for the full model evaluated at β(−m) = 0. This is an
important feature since it allows us to compute the posterior model probabilities
directly without numerically computing the prior model probabilities. We note
that this computational device works best if all of the covariates are standardized
to have mean 0 and variance 1. This is not restrictive since this transformation
is used quite often in practice to numerically stabilize the Gibbs sampler and
adaptive rejection algorithms.

Due to the complexity of our model, the analytical evaluation of p(β(−m) =
0|y, y0, I = K) does not appear possible. Therefore, we propose a novel Monte
Carlo method to compute posterior model probabilities using a single MCMC
sample from the full model. The hierarchical centering reparameterization tech-
nique of Gelfand, Sahu and Carlin (1996) is particularly suitable for the imple-
mentation of MCMC sampling for our problem. This is due to the fact that
(2.9) leads to (3.2). From (3.2), it is easy to see that the posterior model prob-
ability is proportional to the marginal posterior density evaluated at 0. Thus,
computing the posterior model probability is essentially equivalent to estimating
the marginal posterior density. It is well known that the hierarchical centering
technique is very useful in developing an efficient Monte Carlo method for esti-
mating the marginal posterior density p(β(−m) = 0|y, y0, I = K) and this leads
to the efficient computation of (3.2). To the best of our knowledge, this is the
first time that the hierarchical centering reparameterization technique has been
used to ease the computational burden in Bayesian variable selection.

To this end, consider the following reparameterization:

η = ε+X(K)β(K) (3.3)

and
η0i = ε0i +X

(K)
0i β

(K) , (3.4)

for i = 1, . . . , N . Let η0 = (η01, . . . , η0N ). Then we write the reparameterized
posterior for the full model, p(β(K), σ2, ρ, a0, η, η0|y, y0, I = K). Using the hierar-
chical centering technique, we obtain an MCMC sample {(β(K)

(l) , σ
2
(l), ρ(l), a0(l), η(l),

η0(l)), l = 1, . . . , L} from this reparameterized posterior. Then, following the
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lines of Chen (1994), p(β(−m) = 0|y, y0, I = K) can be estimated by the condi-
tional marginal density estimation (CMDE) method. Gelfand, Smith, and Lee
(1992), Chen (1994), and Chen and Shao (1997) have shown that the CMDE is
the most efficient Monte Carlo method for estimating marginal posterior densities
when a joint posterior density is known up to a normalizing constant. It directly
follows from Chen and Shao (1997) that a simulation consistent estimator of
p(β(−m) = 0|y, y0, I = K) is given by

p̂(β(−m) = 0|y, y0, I = K) =
1
L

L∑
l=1

Nk+1−km(β(−m) = 0|β(−m)
(l) , β̂(l), (B(l))

−1),

(3.5)
where Nk+1−km(β(−m) = 0|β(−m)

(l) , β̂
(K)
(l) , (B(l))−1) is the (k+ 1− km)-dimensional

conditional normal density function of Nk+1(β̂
(K)
(l) , (B(l))−1) given β(m)

(l) evaluated

at β(−m) = 0,

B(l) =
1
σ2

(l)

(
(X(K))′Σ−1

(l)X
(K) +

N∑
i=1

(X(K)
0i )′Σ−1

0i(l)X
(K)
0i

)
,

β̂(K) =
1
σ2

(l)

{
B−1

(l)

(
(X(K))′Σ−1

(l) η(l) +
N∑
i=1

(X(K)
0i )′Σ−1

0i(l)η0i(l)

)}
,

Σ(l) is an n × n matrix with (j, j∗)th element equal to ρ
|j−j∗|
(l) , and Σ0i(l) is an

n0i × n0i matrix with (j, j∗)th element equal to ρ|j−j
∗|

(l) .
There are several advantages of the above Monte Carlo procedure. First, as

previously mentioned, it is not required to compute p(I = m) for each model.
Second, we need only one random draw from p(β(K), σ2, ρ, a0, η, η0|y, y0, I = K).
Third, after we obtain an MCMC sample from the posterior distribution of the
full model, calculating p̂(β(−m) = 0|y, y0, I = K) given by (3.5) is straightforward
and almost free of computational time. Fourth, for the purposes of computing
posterior model probabilities, one need only store a (k + 1)-dimensional vector
β̂(l) and a (k+ 1)× (k+ 1) matrix B(l) for each MCMC sampling iteration. This
becomes even more advantageous for cases where multiple previous studies are
available and each n0i is large. The above features of our Monte Carlo procedure
make Bayesian variable selection feasible in the presence of a large number of
covariates (say, k > 20).

We note here that Bayesian inference for non-Gaussian time series models has
been considered by Shephard and Pitt (1997), but their model and computational
development is quite different from what we do here. Similarly, there are several
differences between our methodology and that of Chen, Ibrahim and Yiannoutsos
(1999).
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4. Examples

Example 1. Simulation study

In this example, we demonstrate variable subset selection with our proposed
methodology using a simulated data set. We also demonstrate the computational
feasibility of our methods.

The data for the current study is generated as follows. We generate n = 50
independent observations from a Poisson distribution each with mean λt =
exp(β0 + β1xt1 + β2xt2 + εt), t = 1, . . . , 50, and β = (β0, β1, β2) = (1, 1,−1).
Also, (xt1, xt2)′ are generated as i.i.d. bivariate normal random vectors with

mean (0.5, 0.5)′ and covariance matrix

(
0.5 0.25
0.25 0.5

)
. We take ε = (ε1, . . . , ε50)′

to have a 50-dimensional multivariate normal distribution with mean 0 and co-
variance matrix σ2Σ, where σ2 = 1 and the (i, j)th element of Σ is (0.5)|i−j|. In
addition, we generate two other covariates (xt3, xt4) which are i.i.d. normal ran-
dom variables each with mean 0 and variance .5, and independent of (xt1, xt2).
Thus, the true model contains the two covariates (x1, x2), and the “full” model
contains the four covariates (x1, . . . , x4). Therefore, our model space M contains
16 models, with an intercept included in each. The historical data were generated
in a similar fashion. We take n0 = 50, and σ2 = 1.2, with all other parameters
the same as for the current data. In addition, (x0t1, . . . , x0t4) are generated in
exactly the same way as the current data.

Table 1 shows posterior probabilities for the top model under various choices
of µa0 , σa0 and N . The posterior model probability is denoted by p(I = m | y)
in Table 1. From Table 1, under each choice of (µa0 , σa0) and N , the true model
(x1, x2) obtains the largest posterior probability. Although not shown in Table
1, the (x1, x2, x3) model is consistently chosen as the second best model under
the choices of (µa0 , σa0) and N given in Table 1. In addition, the order of the
models with respect to their posterior probabilities is preserved as (µa0 , σa0) are
varied according to Table 1. We do not see a dramatic change in the posterior
model probabilities as (µa0 , σa0) are varied for a given N . It is apparent that
the posterior model probabilities are quite robust with respect to changes in
(µa0 , σa0). In addition, we observe a monotonic increase in the posterior model
probabilities as we assign more weight to the historical data, i.e., as µa0 increases
and/or σa0 decreases. Specifically, for µa0 = 0.5 a monotonic increase in the
posterior model probability is observed as σa0 is decreased. This is a desirable
feature since it shows that a heavier weight given to the historical data results
in an increase in the posterior probability of the true model. Also, a low weight
for the historical data with (µa0 , σa0) = (0.09, 0.04) still yields (x1, x2) as the
top model with posterior probability of 0.349. In addition, more extreme values
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of (µa0 , σa0) were used. For example, using an extremely low weight for the
historical data with (µa0 , σa0) = (0.05, 0.02), the true model, (x1, x2), obtains the
largest posterior probability of 0.347 and the (x1, x2, x3) model obtains the second
largest posterior probability. We note that (µa0 , σa0) = (0.05, 0.02) represents the
smallest weight we can place on the historical data and still obtain proper priors
(see Theorem 2.1). Similar results are obtained for other small values of µa0
and moderate to large values of σa0 . We note here that we cannot do Bayesian
variable selection using a0i = 0 with probability 1, since this would result in an
improper prior for β and, in this case, the posterior model probabilities would
not be well defined. When historical data is not available, one can specify a
normal prior for β, and the specification of the hyperparameters would be based
on elicitation from expert opinion or case-specific information.

Table 1 also indicates that a monotonic increase in the posterior probability
of the true model occurs as N is increased. This is a solid feature of our method-
ology since it shows that increasing the number of historical studies provides
more precise estimates of the posterior model probabilities. Similar results were
obtained for other combinations for (µa0 , σa0). Finally, an analysis using ρ = 0
and (µa0 , σa0) = (0.5, 0.06) was conducted, and results very similar to those of
Table 1 were obtained. Specifically, the model obtaining the largest posterior
probability is the (x1, x2) model with value 0.414, which is similar to the one us-
ing ρ = 0.5. In addition, the model with the second largest posterior probability
is (x1, x2, x4) with value 0.243, and the model with the third largest posterior
probability is (x1, x2, x3) with value 0.215.

Example 2. Pollen data

Ragweed pollen data were collected daily in Kalamazoo, Michigan from 1991
to 1994. Frequentist analyses of these data using standard Poisson regression
methods have been conducted by Stark, Ryan, McDonald and Burge (1997).
Our aim here is to demonstrate our Bayesian methodology for variable selection.
The response variable y is the pollen count for a particular day in the season for
a given year. Initially, we take the 1991, 1992, and 1993 data (N = 3) as the
historical data and the 1994 data as the current data. The data for each year
was collected roughly over a 3 month interval between the months of July and
October. However, for each year, the first and last observations were collected on
different days. For example, in 1991, the first observation was collected on July
28 and the last was collected on October 27th. In 1992, the first observation was
collected on August 6th and the last observation on October 26th.

The full model contains an intercept and seven covariates, extensively dis-
cussed and motivated by Stark et al. (1997). These are x1 = rain, (which is a
binary variable taking the value 0 if there were at least three hours of steady rain,
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and 1 otherwise), x2 = day in the pollen season , x3 = log(day). Two covariates
are functions of temperature. These are x4 which is the lowess smoothed function
of temperature constructed from a non-parametric estimate of the regression of
pollen count on average temperature, and x5, which denotes the deviation from
the daily averages temperature to the lowess line. The final two covariates are
x6 = windspeed and x7 = cold (a binary variable taking the value 0 if the
overnight temperature dropped below 50 degrees Fahrenheit, and 1 otherwise).

The model space M contains 27 models. We specify noninformative priors for
ρ and σ2. Specifically, we take a uniform prior for ρ on [−1, 1] (i.e. ν0 = ψ0 = 1)
and take σ2 ∼ IG(.005, .005). Table 2 give results for the model with the largest
posterior probability based on several values of (µa0 , σa0). The top model in
each case is (x1, x2, x3, x4, x5), for all combinations of (µa0 , σa0) (and N). In
addition, we see that the posterior model probabilities increase monotonically as
more weight is given to the historical data. For example, using N = 3, when we
put very small weight on the historical data, such as (µa0 , σa0) = (0.009, 0.003),
the (x1, x2, x3, x4, x5) model still obtains the largest posterior probability, with
value 0.117. When we put extremely small weight on the historical data such
as (µa0 , σa0) = (0.0009, 0.0003), the (x2, x3, x4, x5, x7) model obtains the largest
posterior probability, with value 0.122 and the (x1, x2, x3, x4, x5) model obtains
the fourth largest posterior probability with value 0.101. When we put a small
weight on the historical data using a moderate variance, (µa0 , σa0) = (0.09, 0.027),
the (x1, x2, x3, x4, x5) model obtains the largest posterior probability with value
0.130, and the (x2, x3, x4, x5, x7) model obtains the second largest posterior prob-
ability, with value 0.127. Thus we see that the model choice is reasonably robust
to the choice of (µa0 , σa0), consistently yielding the (x1, x2, x3, x4, x5) model as
the top model for a suitable range of (µa0 , σa0). Based on these analyses, it does
not appear that the variables x6 (windspeed) and x7 (coldness of temperature)
are important predictors of pollen counts.

An analysis was also conducted using ρ=0 and (µa0 , σa0)=(0.5, 0.05). In this
case, the model that obtains the largest posterior probability is (x1, x2, x3, x5, x6)
with value 0.272, and the model that obtains the second largest posterior prob-
ability is (x1, x2, x3, x4, x5, x6) with value 0.267. These results are a bit different
from those of Table 2. This can be partially explained by the fact that, for
(µa0 , σa0) = (0.5, 0.05), the posterior mean of ρ equals 0.87, implying a strong
degree of correlation between the time measurements. Thus, posterior model
probabilities can be sensitive to the choice of ρ if there is a high correlation in
the data.

We also did a sensitivity analysis on the choice of N . We computed the
posterior model probabilities for N = 1, 2 and these are shown in Table 2. The
top model for N = 1 and N = 2 is (x1, x2, x3, x4, x5) for all combinations of
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(µa0 , σa0). Here, N = 1 corresponds to using the 1993 data as historical data,
andN = 2 corresponds to using the 1992 and 1993 data as historical data. We see
the same behavior as in Example 1. For a given (µa0 , σa0), there is a monotonic
increase in the posterior model probability as N is increased.

In this example, as well as in Example 1, 50,000 Gibbs iterations were used
in all of the computations after a burn-in of 1,000 iterations. Convergence was
checked using the methods discussed in Cowles and Carlin (1996). Specifically,
trace plots, autocorrelations, and psr’s were computed, and convergence was
observed to occur before 500 iterations.

5. Discussion

The examples presented in Section 4 had posterior model probabilities quite
robust to various choices of (µa0 , σa0), including choices that give high or low
weight to the historical data. In Example 1, posterior model probabilities were
not sensitive to the choice of ρ, ρ = 0 and ρ = 0.5 gave nearly identical results.
This suggests that when there is low to moderate correlation in the data, the
posterior model probabilities are not sensitive to the choice of ρ. However, in
Example 2, the results for ρ = 0 were different from those based on a posterior
mean of ρ equal to 0.87. This suggests that when there is high correlation in the
data, the posterior model probabilities can be sensitive to the choice of ρ.

Table 1. Posterior model probabilities for simulated data.

(µa0 , σa0) N = 1 N = 2 N = 3
(0.5, 0.15) 0.356 0.357 0.359
(0.5, 0.11) 0.381 0.383 0.403
(0.5, 0.08) 0.411 0.427 0.467
(0.5, 0.06) 0.422 0.436 0.502
(0.98, 0.02) 0.443 0.474 0.571

Table 2. Posterior model probabilities for pollen data.

(µa0 , σa0) N = 1 N = 2 N = 3
(0.5, 0.11) 0.116 0.121 0.142
(0.5, 0.08) 0.154 0.206 0.290
(0.5, 0.06) 0.211 0.261 0.385
(0.5, 0.05) 0.262 0.279 0.420
(0.98, 0.02) 0.274 0.279 0.421
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Appendix

Proof of Lemma 2.1. When 1/2 ≤ ξ ≤ 1, (2.10) is obviously true. It is easy
to see that, for any 0 < ξ < 1/2,∫ 1

0
ξa0iaα0−1

0i (1 − a0i)λ0−1da0i

=
∫ 1/2

0
ξa0iaα0−1

0i (1 − a0i)λ0−1da0i +
∫ 1

1/2
ξa0iaα0−1

0i (1 − a0i)λ0−1da0i

≤K∗[ ∫ 1/2

0
exp(−a0i ln(1/ξ))aα0−1

0i da0i + ξ1/2
]

=K∗[(ln(1/ξ))−α0

∫ ln(1/ξ)/2

0
exp(−a0i)aα0−1

0i da0i + ξ1/2
]

≤K∗K∗∗(ln(1/ξ))−α0 ≤ K(1 + ln(1/ξ))−α0 ,

where K∗ > 0, K∗∗ > 0, and K > 0 are constants. This proves the lemma.

Proof of Theorem 2.1. We first show that if (2.12) holds, for i = 1, . . . , N ,∫
exp

(
d∗0||β(m)||

)
p(y0i | β(m), ε0i, I = m)dβ(m) < K1, (A.1)

where d∗0 > 0, K1 > 0 is a finite constant independent of ε0i, and ||β(m)|| =√
(β(m))′β(m).

We have

p(y0i | β(m), ε0i, I = m) ≤M∗
km∏
j=1

exp
{
(y0itjh(x

′
0itjβ

(m) + ε0itj )

−q(h(x′0itjβ(m) + ε0itj ))
}
, (A.2)

where M∗ > 0 is a finite constant, and ε0itj is the tthj component of ε0i. Now we

make the transformation u = (u1, u2, . . . , ukm)′ =
(
x

(m)
0it1

, x
(m)
0it2

, . . . , x
(m)
0itkm

)′
β(m) +

(ε0it1 , ε0it2 , . . . , ε0itkm
)′. This is a one-to-one linear transformation in km dimen-

sions, since
(
x

(m)
0it1

, x(m)
0it2

, . . ., x(m)
0itkm

)′
has full rank km. Thus,

||β(m)|| ≤ c1

km∑
j=1

|uj |, (A.3)
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where c1 > 0 is a constant. It is easy to see that (A.2) and (A.3) lead to∫
exp

(
d∗0||β(m)||

)
p(y0i | β(m), ε0i, I = m) dβ(m)

≤M∗∗
km∏
j=1

{∫ ∞

−∞
exp (d∗0c1|uj |) exp

(
(y0itjh(uj) − q(h(uj))

)
duj

}
=K1<∞(A.4)

by (2.12), where M∗∗ > 0 is a constant. This proves (A.1).
Since (2.11) is true, without loss of generality, we assume that p(y0i | β(m),

ε0i, I = m) ≤ 1 for j = 1, . . . , N . Using Lemma 2.1, (A.1), and α0 > km/N , we
have ∫ { N∏

i=1

∫ 1

0

[
p(y0i | β(m), ε0i, I = m)

]a0i
aα0−1

0i (1 − a0i)λ0−1da0i

}
dβ(m)

≤
∫
KN

N∏
i=1

(
1 − ln

[
p(y0i | β(m), ε0i, I = m)

])−α0
dβ(m)

=KN
∫ N∏

i=1

(
1 − ln

[
p(y0i | β(m), ε0i, I = m)

])−α0

×1{
max

1≤i≤N
p(y0i | β(m), ε0i, I = m) > e−d

∗
0(||β(m)||+1)

}dβ(m)

+KN
∫ N∏

i=1

(
1 − ln

[
p(y0i | β(m), ε0i, I = m)

])−α0

×1{
max

1≤i≤N
p(y0i | β(m), ε0i, I = m) ≤ e−d

∗
0(||β(m)||+1)

} dβ(m)

≤KN
∫

1{
max

1≤i≤N
p(y0i | β(m), ε0i, I = m) > e−d

∗
0(||β(m)||+1)

}dβ(m)

+KN
∫ N∏

i=1

[d∗0(||β(m)|| + 1)]−α0dβ(m)

≤KN
∑

1≤i≤N

∫
p(y0i | β(m), ε0i, I = m)ed

∗
0(||β(m)||+1)dβ(m)

+KN(d∗0)
−α0N

∫
(||β(m)|| + 1)−Nα0dβ(m) ≤ K2 <∞, (A.5)

where K2 > 0 is a constant, independent of ε0i for i = 1, . . . , N . Finally, it
follows directly from (A.5) that the normalizing constant of the prior is less than
or equal to

K2

∫ 1

−1

∫ ∞

0

N∏
i=1

(∫
φn0i(ε0i|0, σ2Σ0i) dε0i

)
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×(σ2)−(δ0+1) exp(−σ−2γ0) × (1 + ρ)ν0−1(1 − ρ)ψ0−1 dσ2dρ

=K2

∫ 1

−1

∫ ∞

0
(σ2)−(δ0+1) exp(−σ−2γ0) × (1 + ρ)ν0−1(1 − ρ)ψ0−1 dσ2dρ <∞,

since (σ2)−(δ0+1) exp(−σ−2γ0) and (1+ρ)ν0−1(1−ρ)ψ0−1 are proper priors. This
proves the theorem.

Proof of Theorem 3.1. Let π(β(−m)|y0, I = K) and p(β(−m)|y, y0, I = K)
denote the respective marginal prior and posterior distributions of β(−m) obtained
from the full model. The Savage-Dicky density ratio (see, for example, Verdinelli
and Wasserman (1995)) directly yields

p(y|I = m)
p(y|I = K)

=
p(β(−m) = 0|y, y0, I = K)
π(β(−m) = 0|y0, I = K)

, m = 1, . . . ,K. (A.6)

Using (A.6) and (3.1), it suffices to show that p(I = m) ∝ π(β(−m) = 0|y0, I =
K).

It can be easily observed that
∫
p∗0(β(K), σ2, ρ|y0, I = K) dβ(K) dσ2 dρ =

p∗0(β(m),β(−m)=0,σ2,ρ|y0,I=K)

π(β(m),β(−m)=0,σ2,ρ|y0,I=K)
, and

∫
p∗0(β(m)|y0, I = m) dβ(m) = p∗0(β(m),σ2,ρ|y0,I=m)

π(β(m),σ2,ρ|y0,I=m)
.

Then we are led to p∗0(β(m), β(−m) =0, σ2, ρ|y0, I=K)=p∗0(β(m), σ2, ρ|y0, I = m)
and π(β(m), β(−m) = 0, σ2, ρ|y0, I=K) = π(β(−m) = 0|y0, I = K)π(β(m), σ2, ρ|y0,

I = m). The above two identities yield
∫
p∗0(β

(K), σ2, ρ|y0, I = K) dβ(K) dσ2 dρ =
∫
p∗0(β(m)|y0, I = m) dβ(m)

π(β(−m) = 0|y0, I = K)
.

Now note that
∫
p∗0(β(K),σ2,ρ|y0,I=K)dβ(K)dσ2dρ∑K

j=1

∫
p∗0(β(j)|y0,I=j) dβ(j)

is independent of the model index

m. This completes the proof.
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