
Statistica Sinica 10(2000), 953-969

SIMULTANEOUS INSPECTION FOR VARIABLE

SAMPLING ACCEPTANCE

TaChen Liang

Wayne State University

Abstract: We investigate the problem of simultaneously inspecting k shipments

for variable sampling acceptance. Our goal is to simultaneously select all good

shipments and exclude all bad shipments. By incorporating information from the

samples taken from each of the k shipments, an empirical Bayes simultaneous in-

spection procedure δ
˜
∗ is proposed. The relative regret Bayes risk of δ

˜
∗ is used as

a measure of its performance. We have proved that the simultaneous inspection

procedure δ
˜
∗ is asymptotically optimal, and its relative regret Bayes risk converges

to zero at rate O
(
k−1�n2k

)
.

Key words and phrases: Asymptotically optimal, empirical Bayes, rate of conver-

gence, regret Bayes risk, simultaneous inspection, variable sampling acceptance.

1. Introduction

The exponential distribution has played an important role in modeling the
lifetime of random phenomena. It arises in many areas of applications, including
reliability, life testing and survival analysis. Johnson, Kotz and Balakrishnan
(1994) present an introduction to the exponential distribution. More applications
of the exponential distribution are given in Balakrishnan and Basu (1995).

Suppose that a batch of components is presented for acceptance sampling.
The quality of a component is measured by its lifetime X. In order to estimate
the quality of the batch, a sample of m items is put on life test and not replaced
on failure. Then one decides whether to accept the batch based on the observed
lifetimes of the sampled components. An introduction to sampling inspection and
quality control can be seen, for example, in Wetherill (1977). Interested readers
are referred to Lam (1994) and Lam and Choy (1995) for the recent development
of variable sampling plans for exponential distributions.

Consider k shipments (populations) π1, . . . , πk, each consisting of M compo-
nents. For each i = 1, . . . , k, let Xij denote the lifetime of component j of πi.
Suppose that Xi1, . . . ,XiM are identically and independently distributed, having
an exponential distribution with mean lifetime θi, and that Xi

˜
= (Xi1, . . . ,XiM ),

i = 1, . . . , k, are mutually independent. Thus, Yi =
∑M
j=1Xij is the total lifetime
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of the M items of πi. Let θ0 be a specified positive value. Shipment πi is said
to be acceptable if Yi ≥ θ0; πi is said to be rejected if Yi < θ0. We consider the
problem of simultaneously inspecting k shipments. Our goal is to accept all good
shipments and to reject all bad shipments.

In the literature, the problem of comparing populations with a control has
been extensively studied by many authors. We mention a few here. Huang
(1975) derived Bayes selection procedures to partition k normal populations;
Gupta and Hsiao (1981) derived Bayes Γ-minimax and minimax procedures for
selecting populations close to a control; Mee, Shah and Lefante (1987) devel-
oped multiple testing procedures to compare the means of k normal populations
with respect to a control; Miescke (1981) and Gupta and Miescke (1985) derived
optimal selection procedures via Γ-minimax and minimax approaches for select-
ing good populations. Interested readers are referred to Bechhofer, Santner and
Goldsman (1995) for an overview of the area of ranking and selection. See Gupta
and Panchapakesan (1988) for a comprehensive survey of selection procedures in
exponential distributions and other reliability models.

In this paper, it is assumed that the mean lifetime parameter θi is a re-
alization of a positive random variable Θi, i = 1, . . . , k, and that Θ1, . . . ,Θk

are independently and identically distributed, following an unknown but non-
degenerate prior distribution H(·) over the interval (0,∞). Under our assump-
tions, Xi

˜
, i = 1, . . . , k, are mutually independent and marginally identically

distributed. Thus, the empirical Bayes approach is adopted to incorporate in-
formation from each of the k sources for constructing simultaneous inspection
procedures.

The paper is organized as follows. In Section 2, the inspection problem for
variable sampling acceptance is formulated and a Bayes inspection procedure δ

˜
H

is derived. In Section 3, an empirical Bayes simultaneous inspection procedure
δ
˜
∗ is constructed by mimicking the behavior of the Bayes inspection procedure
δ
˜
H . Relative regret Bayes risk is used as a measure of performance and the

asymptotic optimality of δ
˜
∗ is established in Section 4 and Section 5. An upper

bound of order O(k−1 ln2 k) is established for the convergence rate of the relative
regret Bayes risk of δ

˜
∗. Then, a lower bound of the same order is established

These results together show that the empirical Bayes simultaneous inspection
procedure δ

˜
∗ is asymptotically optimal, relative to the prior distribution H, at a

convergence rate of order k−1 ln2 k.

Readers are referred to Balakrishnan and Ma (1996, 1997), Huang and Lai
(1998) and Liang (1997a, b), and the references cited there, for recent develop-
ment of empirical Bayes procedures in the area of ranking and selection.
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2. Formulation of the Problem and a Bayes Inspection Procedure

In this section, we provide a decision-theoretic formulation of the sampling
inspection problem and derive a Bayes inspection procedure based on which an
empirical Bayes simultaneous inspection procedure will be developed.

Let a
˜

= (a1, . . . , ak) be an action, where ai = 0, 1, i = 1, . . . , k. Shipment
πi is accepted if ai = 1, and rejected if ai = 0. For action a

˜
and observation

Y
˜

= (Y1, . . . , Yk) , the loss L(Y
˜
, a

˜
) is defined to be

L(Y
˜
, a
˜
) =

k∑
i=1

� (Yi, ai) , (2.1)

where

� (Yi, ai) = ai (θ0 − Yi) I (θ0 − Yi) + (1 − ai) (Yi − θ0) I (Yi − θ0) , (2.2)

and I (x) = 1 (0) if x > 0 (x ≤ 0) . In (2.2), the first term is the loss of wrongly
accepting a bad shipment, and the second term is the loss of wrongly excluding
a good shipment.

Given the values of Xi
˜

, i = 1, . . . , k, we can always reach the best decision.
However, it is time-consuming to have a life test for each of the M items in πi.

Also, at the end of the life test, the items put on life test are destroyed. Therefore,
in order to implement a decision, a sample of m items, 1 ≤ m < M, is taken from
each shipment, and put on life test. At the end of the life test, the corresponding
lifetimes are observed. We denote the lifetimes of the m items sampled from πi
by Xi

˜
(m) = (Xi1, . . . ,Xim). Let X

˜
(m) = (X1

˜
(m), . . . ,Xk

˜
(m)) and χ denote the

sample space of X
˜

(m). An inspection procedure δ
˜

= (δ1, . . . , δk) is defined to be
a measurable mapping from the sample space χ into the product space [0, 1]k,
such that for each x

˜
(m) ∈ χ, δ

˜
(x
˜
(m)) = (δ1(x

˜
(m)), . . . , δk(x˜

(m))), and δi(x
˜
(m))

is the probability of accepting πi when X
˜

(m) = x
˜
(m) is observed.

Let C be the class of all inspection procedures. For each δ
˜

in C and a prior
distribution H, let R(H, δ

˜
) denote the associated Bayes risk. Then R(H) =

infδ
˜
∈C R(H, δ

˜
) is the minimum Bayes risk among the class C and an inspection

procedure δ
˜
H such that R(H, δ

˜
H) = R(H) is called a Bayes inspection procedure.

Let fi(xi
˜
|θi) and fim(xi

˜
(m)|θi) be the conditional probability densities of Xi

˜and X
˜ i

(m), respectively. Then

fi(xi
˜
|θi) =

1
θMi

exp{−
M∑
j=1

xij/θi}, fim(xi
˜

(m)|θi) =
1
θmi

exp{−
m∑
j=1

xij/θi}.

Let fi(xi
˜

) =
∫
fi(xi

˜
|θi)dH(θi), and fim(xi

˜
(m)) =

∫
fim(xi

˜
(m)|θi)dH(θi). Then

fi(xi
˜

) and fim(xi
˜

(m)) are the marginal probability densities of Xi
˜

and Xi(m)
˜

,
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respectively. Note thatXi
˜

, i = 1, . . . , k, are mutually independent and marginally
identically distributed. Thus, f1 = · · · = fk and f1m = · · · = fkm. Let
fi(xi

˜
|xi
˜

(m)) = fi(xi
˜

)/fim(xi
˜

(m)), the marginal conditional probability density
of Xi

˜
given Xi

˜
(m) = xi

˜
(m).

It is assumed that
∫∞
0 θdH(θ) < ∞. With the loss function given in (2.1)-

(2.2), and by Fubini’s theorem, the Bayes risk associated with an inspection
procedure δ

˜
= (δ1, . . . , δk) is

R(H, δ
˜
) =

k∑
i=1

Ri (H, δi) , (2.3)

where

Ri (H, δi) =
∫
x
˜

δi(x
˜

(m)) [θ0 − yi]
k∏
j=1

fj(xj
˜

)dx
˜

+DH (2.4)

=
∫
χ

δi(x
˜

(m)){θ0 −E[Yi|Xi
˜

(m) = xi
˜

(m)]}
k∏
j=1

fj(xj
˜

(m))dx
˜
(m) +DH .

Here yi =
∑M
j=1 xij,DH =

∫
(yi − θ0) I (yi − θ0) fi(xi

˜
)dxi

˜
, which depends on

the prior distribution H but is independent of i (since f1 = · · · = fk), and
E[Yi|Xi

˜
(m) = xi

˜
(m)] is the marginal posterior mean of Yi given Xi

˜
(m) = xi

˜
(m).

From (2.4), a Bayes inspection procedure δ
˜
H = (δH1 , . . . , δ

H
k ) is clearly given

by: for each x
˜
(m) in χ, and each i = 1, . . . , k,

δHi (x
˜

(m)) =

{
1, if θ0 ≤ E[Yi|Xi

˜
(m) = xi

˜
(m)],

0, otherwise.
(2.5)

From (2.5), we see that the component inspection procedure δHi depends on
x
˜

(m) only through xi
˜

(m) and is independent of xj
˜

(m) , for j �= i.

Let Vi =
∑m
j=1Xij . Conditioning on θi, Vi has a probability density gi (vi|θi)

= u(vi)
θm
i

exp(−vi
θi

), where u (vi) = vm−1
i /Γ (m) . Marginally, Vi has a probability

density gi (vi) =
∫
gi (vi|θi) dH (θi) . Note that Yi =

∑M
j=1Xij . A straightforward

computation yields

E[Yi|Xi
˜

(m) = xi
˜

(m)] =
m∑
j=1

xij +
M∑

�=m+1

E[Xi�|Xi
˜

(m) = xi
˜

(m)] (2.6)

= vi + (M −m)ψi (vi) /gi (vi) ,

where vi =
∑m
j=1 xij and ψi (vi)=

∫ ∞

0

u(vi)
θm−1 exp(−vi

θ )dH (θ) .
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Let α (vi) = vi−θ0 +(M −m)ψi (vi) /gi (vi) and W (vi) = (vi − θ0) gi (vi)+
(M −m)ψi (vi) . From (2.5) - (2.6), the Bayes inspsection procedure δ

˜
H =

(δH1 , . . . , δ
H
k ) can be written as: for each i = 1, . . . , k, and each x

˜
(m) in χ,

δHi (x
˜
(m)) =

{
1, if α (vi) ≥ 0,
0, otherwise;

=

{
1, if (vi − θ0 ≥ 0) or (vi − θ0 < 0 and W (vi) ≥ 0) ,
0, otherwise.

(2.7)

We see that δHi depends on x
˜
(m) only through vi =

∑m
j=1 xij .

Let A = {v > 0|α (v) ≥ 0} . Note that α (v) = v− θ0 +(M −m)ψi (v) /gi (v)
is continuous and strictly increasing in v for v>0. Also, α (θ0)=(M −m)ψi (θ0) /
gi (θ0) > 0. So θ0 is in A, and hence A is not an empty set. Define aH = inf A.
Then 0 ≤ aH < θ0. If aH > 0 then α (aH) = 0. If aH = 0, then either α (0) = 0
or α (0) > 0. Note that aH can be viewed as the critical point of the Bayes
inspection procedure δ

˜
H . In terms of aH , the Bayes inspection procedure δ

˜
H can

be expressed as: for each i = 1, . . . , k, and v
˜

= (v1, . . . , vk) ,

δHi (x
˜

(m)) ≡ δHi (v
˜
) = δHi (vi) =

{
1, if vi ≥ aH ,

0, otherwise.
(2.8)

The minimum Bayes risk R(H, δ
˜
H) is

R(H, δ
˜
H) =

k∑
i=1

Ri(H, δHi ), (2.9)

where

Ri(H, δHi ) =
∫ ∞

0
δHi (vi) [−α (vi)] gi (vi) dvi +DH

=
∫ ∞

0
δHi (vi) [−W (vi)] dvi +DH . (2.10)

3. An Empirical Bayes Simultaneous Inspection Procedure

It can be seen that the Bayes inspection procedure δ
˜
H depends on the prior

distribution H. When H is unknown, it is not possible to implement δ
˜
H . How-

ever, according to the model described previously, the X
˜ i

(m), i = 1, . . . , k, are
marginally identically distributed, and mutually independent. Therefore, the
empirical Bayes approach is employed to combine information from the k obser-
vations Xi

˜
(m), i = 1, . . . , k, to construct robust inspection procedures for each

of the k variable sampling acceptance problems.
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The proposed empirical Bayes inspection procedure resembles δ
˜
H . For this,

(2.7) provides important motivation for the construction. To construct an em-
pirical Bayes simultaneous inspection procedure, we need to have estimates for
gi (vi) and ψi (vi) .

Let K(t) =
∑∞
�=0

(−1)�t�

�!(�+1)!I(t) (the kernel K(t) has been used by Pensky and
Singh (1995) for some empirical Bayes estimation problem). For each i = 1, . . . , k,
define 



ψik (Vi) = 1
k−1

k∑
j �=i
j=1

u(Vi)I(Vj−Vi)
u(Vj)

,

gik (Vi) = 1
(k−1)h(k,Vi)

k∑
j �=i
j=1

u(Vi)I(Vj−Vi)
u(Vj)

K
(
Vj−Vi

h(k,Vi)

)
,

(3.1)

where h = h (k, v) = v/ (ln k)2 . In the following, for convenience, we use h instead
of h (k, v) . We show that ψik (v) is an unbiased, consistent estimator of ψi (v).
Also, by choice of h = v/(ln k)2, we can show that gik (v) is an asymptotically
unbiased, consistent estimator of gi (v), having bias converging to zero at a rate
of order O(k−1). A straightforward computation leads to



Ei [ψik (vi)] = ψi (vi) ,

Ei [gik (vi)] = gi (vi) −
∫

u(vi)
θm exp(−vi

θ ) exp(− θ
h)dH (θ) < gi (vi) ,

(3.2)

where the expectation Ei is with respect to the probability measure generated
by V

˜
(i) = (V1, . . . , Vi−1, Vi+1, . . . , Vk), i = 1, . . . , k; the bias 0 < BH (vi, k) =∫ u(vi)

θm exp(−vi
θ ) exp(− θ

h)dH (θ) < u(vi)
k

∫∞
0 θ−mdH(θ) (see (6.5)) and → 0 as k →

∞. By noting that the function u (v) = vm−1/Γ (m) is increasing in v, and that∫ ∞

0
K2 (t) dt = 1

2 , (see Pensky and Singh (1995)), we find

{
Var (u (vi) I(Vj − vi)/u(Vj)) ≤ ψi (vi) ,
Var (u (vi) I(Vj − vi)K((Vj − vi)/h)/u(Vj)) ≤ hgi(vi)

2 .
(3.3)

Therefore, {
Var (ψik (vi)) ≤ ψi (vi) / (k − 1) ,
Var (gik (vi)) ≤ gi (vi) / [2 (k − 1)h] .

(3.4)

Hence, ψik (vi) and gik (vi) are consistent estimators of ψi (vi) and gi (vi) , respec-
tively. Define

Wik (vi) = (vi − θ0) gik (vi) + (M −m)ψik (vi) . (3.5)
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We have {
Ei[Wik (vi)] = W (vi) + (θ0 − vi)BH (vi, k) ,

Var (Wik (vi)) ≤ (θ0−vi)
2gi(vi)

(k−1)h + 2(M−m)2ψi(vi)
k−1 .

(3.6)

Thus, Wik (vi) is a consistent estimator of W (vi) . Based on Wik (vi), i = 1, . . . , k,
and akin to δ

˜
H at (2.7), we propose an empirical Bayes simultaneous inspection

procedure δ
˜
∗ = (δ∗1 , . . . , δ∗k) as follows: for each i = 1, . . . , k, define

δ∗i (v˜
) = δ∗i (vi, v˜

(i)) =

{
1, if (vi ≥ θ0) or (vi < θ0 and Wik (vi) ≥ 0) ,
0, otherwise.

(3.7)

The Bayes risk of δ
˜
∗ is

R(H, δ
˜
∗) =

k∑
i=1

Ri (H, δ∗i ) , (3.8)

where
Ri (H, δ∗i ) =

∫ ∞

0
Ei[δ∗i (vi, V˜

(i))] [−α (vi)] gi (vi) dvi +DH . (3.9)

Since δ
˜
H is the Bayes inspection procedure, for any inspection procedure

δ
˜

= (δ1, . . . , δk), Ri (H, δi) − Ri(H, δHi ) ≥ 0 for each i = 1, . . . , k, and therefore
R(H, δ

˜
)−R(H, δ

˜
H) ≥ 0. Define ρ(H, δ

˜
) = [R(H, δ

˜
)−R(H, δ

˜
H)]/R(H, δ

˜
H). Then

ρ(H, δ
˜
) is called the relative regret Bayes risk of δ

˜
.

An inspection procedure δ
˜

is said to be asymptotically optimal relative to H,
if ρ(H, δ

˜
) → 0 as k → ∞. An inspection procedure δ

˜
is said to be asymptotically

optimal, relative to H, at a rate of order O (βk) , if ρ(H, δ˜
) = O (βk) , where {βk}

is a sequence of decreasing, positive numbers such that limk→∞ βk = 0.
In the following sections, we investigate the asymptotic optimality and rate

of convergence of the empirical Bayes simultaneous inspection procedure δ
˜
∗.

Before ending this section, we provide a numerical example to illustrate the
implementation of δ

˜
∗.

An illustrative numerical example

Suppose that k = 10 shipments, each consisting of M = 30 components,
are presented for acceptance sampling. Let Yi denote the total lifetime of the
M items of shipment πi. Shipment πi is accepied if Yi ≥ θ0 = 35;πi is rejected
if Yi < θ0. In order to implement the empirical Bayes simultaneous inspection
procedure δ

˜
∗, a sample of five components are selected at random from each πi

and put on life test. We denote the total lifetime of the five sampled item from
πi by vi. The following data are observed.
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i 1 2 3 4 5 6 7 8 9 10
vi 2.4 3.2 4.0 4.8 7.8 12.5 18.2 24.3 28.1 32.4

Using (3.1), (3.5), and (3.7), the values of gik(vi), ψik(vi),Wik(vi) and δ∗i (v˜
)

are computed and tabulated in the following. Note that δ∗i (v˜
) = 1 means that πi

is accepted while δ∗j (v˜
) = 0 means that πj is rejected. According to the numerical

results, shipments π1, π2 and π3 are rejected and the others are accepted.
Numerical result for the procedure δ

˜
∗ based on (v1, . . . , v10) with k = 10,M =

30,m = 5 and θ0 = 35.

i gik(vi) psiik(vi) Wik(vi) δ∗i (v˜
)

1 0.05220 0.05770 -0.25920 0
2 0.09756 0.07125 -1.32108 0
3 0.05965 0.06285 -0.27800 0
4 0.00031 0.01921 0.47076 1
5 -0.00030 0.02281 0.57834 1
6 -0.00090 0.03932 1.00315 1
7 0.00963 0.06558 1.47772 1
8 0.01964 0.09729 2.22220 1
9 0.01174 0.06286 1.49059 1
10 0.00000 0.00000 0.00000 1

4. Asymptotic Optimality and Rate of Convergence

4.1. Asymptotic Optimality of δ
˜
∗

Under the model described previously, one can see that for the Bayes in-
spection procedure δ

˜
H , R1(H, δH1 ) = · · · = Rk(H, δHk ). Also, by the symmetric

property of the empirical Bayes simultaneous inspection procedure δ
˜
∗, we have

R1 (H, δ∗1) = · · · = Rk(H, δ∗k). Therefore, ρ(H, δ∗) = D1 (H, δ∗1) /R1(H, δH1 ) where
D1(H1, δ

∗
1) = R1 (H, δ∗1) −R1

(
H, δH1

)
. Note that R1(H, δH1 ) is a constant, inde-

pendent of the number of shipments k. So, to study the asymptotic optimality
of δ

˜
∗, it suffices to investigate the asymptotic behavior of the regret Bayes risk

D1 (H, δ∗1) for sufficiently large k. From (2.8), (2.10), (3.7) and (3.9), the regret
Bayes risk D1(H, δ∗1) can be expressed as

D1 (H, δ∗1) =
∫ aH

0
P {W1k(v)≥0} [−W (v)]dv +

∫ θ0

aH

P {W1k(v) < 0}W (v) dv.

(4.1)
Note that

∫ θ0
0 |W (v)| dv <∞. Therefore, from Corollary 2 of Robbins (1964),

to show the asymptotic optimality of δ∗1 it suffices to show that P {W1k (v) ≥ 0}→
0 for each v in (0, aH) and P {W1k (v) < 0} → 0 for each v in (aH , θ0) . By
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Markov’s inequality, for v in (0, aH ) ,

P {W1k (v)≥0}=P {W1k (v) −W (v)≥−W (v)}≤E1[W1k (v)−W (v)]2/[W (v)]2.

From (3.6) ,

E1[W1k (v) −W (v)]2

= V ar(W1k(v)) + [E1W1k (v) −W (v)]2

≤ (θ0 − v)2 g1 (v)
(k − 1)h

+
2 (M −m)2 ψ1 (v)

k − 1
+ (θ0 − v)2 [BH (v, k)]2,

which tends to 0 as k → ∞. Therefore, for each v in (0, aH), P {W1k (v) ≥ 0} → 0
as k → ∞. Similarly, for each v in (aH , θ0) , we can obtain that P {W1k (v) < 0} →
0 as k → ∞.

The preceding result is summarized as a theorem.

Theorem 4.1. Let δ
˜
∗ be the empirical Bayes simultaneous inspection procedure

constructed in Section 3. Assume that
∫∞
0 θdH (θ) < ∞. Then, δ

˜
∗is asymptoti-

cally optimal in the sense that ρ(H, δ
˜
∗) → 0 as k → ∞.

4.2. Rate of convergence

We investigate the rate of convergence of the empirical Bayes simultaneous
inspection procedure δ

˜
∗by establishing an upper bound on the regret Bayes risk

D1(H, δ∗1). Note that as aH = 0, the first term in the RHS of (4.1) equals zero.
Without loss of generality, in the following, we assume that aH > 0.

Since α (v) is strictly increasing in v and α (aH) = 0, for sufficiently large k,
there exists a point aH (k) between aH/2 and aH such that

α (aH (k)) = − ln2 k/k. (4.2)

The regret Bayes risk D1 (H, δ∗1) can be expressed as

D1 (H, δ∗1) = Ik + IIk + IIIk + IVk, (4.3)

where

Ik =
∫ aH/2

0
P {W1k (v) ≥ 0} [−W (v)] dv, (4.4)

IIk =
∫ aH(k)

aH/2
P {W1k (v) ≥ 0} [−W (v)] dv, (4.5)

IIIk =
∫ aH

aH(k)
P {W1k (v) ≥ 0} [−W (v)] dv, (4.6)

IVk =
∫ θ0

aH

P {W1k (v) < 0}W (v) dv. (4.7)



962 TACHEN LIANG

To investigate the asymptotic behavior of the regret Bayes risk D1 (H, δ∗1) , it
suffices to investigate the asymptotic behavior of each of the terms (4.4) - (4.7).
Let CH (m, v) =

∫∞
0

1
θm exp(−v/θ)dH (θ) . We have the following lemmas (proofs

are provided in Section 6).

Lemma 4.1. Assume that CH (m, 0) <∞. Then

Ik ≤
8θ0CH (m, 0) [5θ2

0 (ln k)2 + 3aHM2β(aH
2 )]

3m (k − 1)CH(m, aH
2 )α2(aH

2 )
= O(

(ln k)2

k
),

where β(v) = ψ1(v)
g1(v)

.

Lemma 4.2. Assume that CH (m, 0) <∞. Then

IIk ≤ 4τ2
[
5θ2

0 + 6h (k, aH)M2β (aH)
]

3 (k − 1)h(k, aH
2 )d2

= O(
(ln k)2

k
),

where d2 = minaH/2≤v≤aH
g1 (v) > 0 and 0 < τ2 = maxaH/2≤v≤aH

g1(v)
α(1)(v)

<∞.

Lemma 4.3. IIIk ≤ (lnk)2

k .

Lemma 4.4. IVk ≤ τ4[3θ20+6h(k,θ0)M2β(θ0)+4θ0α(θ0)]
3(k−1)h(k,aH)d4

= O( (ln k)2

k ), where d4 =

minaH≤v≤θ0 g1 (v) > 0 and 0 < τ4 = maxaH≤v≤θ0
g1(v)

α(1)(v)
<∞.

From (4.3) and Lemmas 4.1 - 4.4, we can establish an upper bound for the
convergence rate of the regret Bayes risk D1 (H, δ∗1). We summarize this main
result as follows.

Theorem 4.2. Suppose the prior distribution H is such that (a)
∫∞
0 θdH(θ) <

∞, and (b)
∫∞
0

1
θmdH (θ) <∞. Then the empirical Bayes simultaneous inspection

procedure δ
˜
∗ is asymptotically optimal, D1(H, δ∗1) = O( (lnk)2

k ), and ρ(H, δ
˜
∗) =

O( (ln k)2

k ).

5. A Lower Bound for D1(H, δ∗1)

In the following, we establish a lower bound on the convergence rate of
D1(H, δ∗1). More precisely, we provide a lower bound for IIk + IIIk where IIk +
IIIk =

∫ aH

aH/2
P {W1k (v) ≥ 0} [−W (v)] dv. Since D1(H, δ∗1) ≥ IIk + IIIk, the

lower bound of IIk + IIIk is also a lower bound of D1(H, δ∗1).
For each v in [aH/2, aH ],W (v) = α (v) g1 (v) < 0. From (6.6), E1[W1k (v)] >

W (v) . From (6.1) - (6.2) and for sufficiently large k, it follows from Lemma 3,
p. 47, of Lamperti (1966) that for all ξ > 0,

P {W1k (v) ≥ 0}



SIMULTANEOUS INSPECTION 963

= P {W1k (v) − E1[W1k (v)] ≥ −E1[W1k (v)]}
≥ P {W1k (v) − E1[W1k (v)] ≥ −W (v)}

= P

{√
k − 1[W1k(v) − E1[W1k (v)]]√

V ar (Q2 (v))
≥ −√

k − 1W (v)
V ar (Q2 (v))

}

≥ exp

{
−(k − 1)W 2 (v) (1 + ξ)

2V ar (Q2 (v))

}
, (5.1)

where Q2 (v) = (v−θ0)
h

u(v)I(V2−v)
u(V2) K

(
V2−v
h

)
+(M −m) u(v)I(V2−v)

u(V2) , see (6.1) - (6.2).
Note that Var (Q2 (v)) ≥ EH [Var (Q2 (v) |θ)] and Var (Q2 (v) |θ) = E

[
Q2

2 (v) |θ]
− (E [Q2 (v) |θ])2 . Straightforward computations show that

E [Q2 (v) |θ] =
(v − θ0) u (v) e−v/θ

θm
× [1 − exp(−θ/h)] +

(M −m) u (v) θ
θm

e−v/θ ;

E
[
Q2

2 (v) |θ
]
=

(θ0 − v)2 u2(v)e−v/θ

hθm

∫ ∞

0

1
u (v + hy)

e−hy/θK2 (y) dy

+
h (M −m)2 u2(v)e−v/θ

θm

∫ ∞

0

1
u (v + hy)

e−hy/θdy

−2 (M −m) (θ0 − v) u2(v)
θm

e−v/θ
∫ ∞

0

1
u (v + hy)

e−hy/θK (y) dy.

Hence, E
[
Q2

2 (v) |θ]− (E [Q2 (v) |θ])2 = u2(v)
θm e−v/θC (θ, v, h), where

C (θ, v, h)=
(θ0 − v)2

h

∫ ∞

0

1
u (v + hy)

e−hy/θK2 (y) dy + h

∫ ∞

0

1
u (v + hy)

e−hy/θdy

−2 (M −m) (θ0 − v)
∫ ∞

0

1
u (v + hy)

e−hy/θK (y) dy

−(θ0 − v)2 e−v/θ

θm

[
1 − e−θ/h

]2 − (M −m)2 θ
2

θm
e−v/θ

+
2 (θ0 − v) (M −m) θe−v/θ

θm

[
1 − e−θ/h

]
.

Let 0 < θ1 < θ2 < ∞ be two finite points such that H (θ1) < H (θ2) . Note that
aH/2 ≤ v ≤ aH . For each θ in [θ1, θ2] and sufficiently large k,

C (θ, v, h) ≥ (θ0 − v)2

2h

∫ ∞

0

1
u (v + hy)

e−hy/θK2 (y) dy,

≥ (θ0 − v)2

2h

∫ ∞

0

1
u (v + hy)

e−hy/θ1K2 (y) dy,

and therefore, Var (Q2 (v) |θ) ≥ u2(v)
θm e−v/θ (θ0−v)2

2h

∫∞
0

1
u(v+hy)e

−hy/θ1K2 (y) dy.
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Hence,

Var (Q2 (v))

≥ EH [V ar (Q2 (v) |θ)]

≥ (θ0 − v)2 u2 (v)
2

∫ θ2

θ1

e−v/θ

θm
dH (θ) × 1

h

∫ ∞

0

1
u (v + hy)

e−hy/θ1K2 (y) dy

≥ (θ0 − aH)2 u2 (aH/2)
2

∫ θ2

θ1

e−aH/θ

θm
dH (θ) × 1

h

∫ ∞

0

1
u(v + hy)

e−hy/θ1K2 (y) dy

=
C∗e (h)

h
, (5.2)

where C∗ = (θ0−aH)2u2(aH/2)
2

∫ θ2
θ1

e−aH/θ

θm dH (θ) > 0, and

e (h)=
∫ ∞

0

1
u (v + hy)

e−hy/θ1K2 (y) dy→e (0)≡
∫ ∞

0

1
u (v)

K2 (y) dy>0 as k→∞.

Let b1 = maxaH/2≤v≤aH
g2
1(v) and b2 = minaH/2≤v≤aH

[
g1(v)

α(1)(v)

]
. Then b1 < ∞

and b2 > 0. Combining (5.1) and (5.2) and plugging the inequality into IIk+IIIk,
since α(aH) = 0, we obtain

D1 (H, δ∗1)

≥
∫ aH

aH/2
P {W1k (v) ≥ 0} [−W (v)] dv

≥
∫ aH

aH/2
exp

{
−(k − 1)h (1 + ξ)W 2 (v)

2C∗e (h)

}
[−W (v)] dv

=
∫ aH

aH/2
exp

{
−(k − 1)h (k, v) (1 + ξ) g2

1 (v)α2 (v)
2C∗e (h)

}
[−α (v)] g1 (v) dv

≥
∫ aH

aH/2
exp

{
−(k − 1)h (k, aH) (1 + ξ) b1α2 (v)

2C∗e (h)

}
[−α (v)]α(1) (v)

[
g1 (v)
α(1) (v)

]
dv

≥ b2

∫ aH

aH/2
exp

{
−(k − 1)h (k, aH) (1 + ξ) b1α2 (v)

2C∗e (h)

}
[−α (v)]α(1) (v) dv

≥ b2C
∗e (h)

(k − 1)h (k, aH) (1 + ξ) b1
.

Hence, we have the following theorem.

Theorem 5.1. Suppose that the distribution H is such that H (θ1) < H (θ2) for
some 0 < θ1 < θ2 <∞. Then for any ξ > 0, the following hold.
(a) D1(H, δ∗1) ≥ b2C∗e(h)

(k−1)h(k,aH)(1+ξ)b1
;

(b) ρ(H, δ
˜
∗) ≥ b2C∗e(h)

(k−1)h(k,aH)(1+ξ)b1R1(H,δH
1 )
.
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Theorem 5.1 provides a lower bound of order O((ln k)2/k) for the conver-
gence rate of ρ(H, δ

˜
∗) and Theorem 4.2 gives an upper bound of the same order.

Hence, the simultaneous inspection procedure δ
˜
∗ is asymptotically optimal at a

convergence rate of order O((ln k)2/k).

6. Auxiliary Results

Let CH (m, v) =
∫∞
0

1
θm e

−v/θdH (θ) . In this section, the analysis is made for
sufficiently large k and under the assumption that CH (m, 0) <∞. To investigate
the asymptotic behavior of the four terms given in (4.4)-(4.7), we first study
certain properties related to W1k (v) .

Note that

W1k (v) =
1

k − 1

k∑
j=2

Qj (v) , (6.1)

where

Qj (v) =
(v − θ0)

h

u (v) I(Vj − v)
u (Vj)

K(
Vj − v

h
) + (M −m)

u (v) I (Vj − v)
u (Vj)

. (6.2)

Since 0 ≤ u(v)I(Vj−v)
u(Vj)

≤ 1 and |K (t)| ≤ 1, for sufficiently large k,

|Qj (v)| ≤ 2θ0
h

and |Qj (v) − E1[Qj (v)]| ≤ 4θ0
h
. (6.3)

Also, from (3.3),

Var (Qj (v)) ≤ 2Var

(
(v − θ0)

h

u (v) I(Vj − v)
u(Vj)

K(
Vj − v

h
)

)

+2Var ((M −m)
u (v) I (Vj − v)

u (Vj)
)

≤ θ2
0gi (v)
h

+ 2M2ψ1 (v) . (6.4)

From (3.6), E1[W1k (v)] = W (v) + (θ0 − v)BH (v, k) , where

0 < BH (v, k) =
∫ ∞

0
u (v) exp(−v/θ) exp(−θ/h)/θmdH (θ)

≤ u (v)
k

∫ ∞

0
θ−mdH (θ) =

u (v)
k

CH (m, 0) . (6.5)

Therefore,

E1[W1k (v)] > W (v) for all v. (6.6)
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Since α (v) is strictly increasing in v and by the definition of aH (k) , for 0 < v <

aH (k) ,
α (v) ≤ α (aH (k)) = − ln2 k/k. (6.7)

Thus, for sufficiently large k and 0 < v < aH (k) , from (6.5) and (6.7),

α (v) + (θ0 − v)
BH (v, k)

u (v)CH (m, v)
≤ α (v)

2
+
α (v)

2
+

(θ0 − v)CH (m, 0)
kCH (m, v)

≤ α (v)
2

− ln2 k

k
+

(θ0 − v)CH (m, 0)
kCH (m, v)

≤ α (v)
2

.

Therefore, for 0 < v < aH (k) , we obtain

E1[W1k (v)] = g1 (v) [α (v) + (θ0 − v)
BH (v, k)

u (v)CH (m, v)
] ≤ g1 (v)α (v) /2

=W (v) /2 < 0. (6.8)

Let β (v) = ψ1 (v) /g1 (v) . Then α (v) = v− θ0 + β (v) . Note that both β(v) and
α (v) are nondecreasing and differentiable in v. Hence, α(1) (v) = 1 + β(1)(v) ≥ 1
for all v.

Proof of Lemma 4.1. For 0 < v < aH/2,

vm−1

Γ (m)
CH (m,aH/2) ≤ g1 (v) ≤ vm−1

Γ (m)
CH (m, 0) and − θ0 < α (v) < 0. (6.9)

From (6.1) - (6.4), (6.8) - (6.9) and the Bernstein inequality. (see Shorack and
Wellner (1986, p.855)), for 0 < v < aH/2,

P {W1k (v) ≥ 0} ≤ P

{
W1k (v) − E1[W1k (v)] ≥ −1

2
W (v)

}

≤ exp


−

(k − 1)
[

1
2W (v)

]2
/2

V ar (Q2 (v)) + 4θ0
3h ×

∣∣∣W (v)
2

∣∣∣



= exp

{
−3

8
(k − 1)hg1 (v)α2 (v)

3θ2
0 + 6hM2β (v) + 2θ0 |α (v)|

}

≤ exp


−3

8

(k − 1) v
(ln k)2

vm−1

Γ(m)CH
(
m, aH

2

)
α2

(aH
2

)
3θ2

0 + 6aH

2(ln k)2
M2β

(aH
2

)
+ 2θ2

0




= exp {−C1(k)vm} , (6.10)

where C1 (k) =
3(k−1)CH(m, aH

2 )α2(
aH
2

)

8Γ(m)[5θ20(ln k)2+3aHM2β(aH
2 )] .
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Plugging (6.10) into Ik and by (6.9), we obtain

Ik ≤
∫ aH

2

0
exp {−C1(k)vm} θ0

Γ (m)
CH (m, 0) vm−1dv ≤ θ0CH (m, 0)

mΓ (m)C1 (k)

=
8θ0CH (m, 0)

[
5θ2

0 (ln k)2 + 3aHM2β
(aH

2

)]
3m (k − 1)CH

(
m, aH

2

)
α2

(aH
2

) .

Proof of Lemma 4.2. For aH
2 < v < aH (k) , following a discussion analogous

to (6.10), we obtain

P {W1k (v)≥0}≤exp

{
−3

8
× (k−1)hg1 (v)α2 (v)

5θ2
0+6hM2β (v)

}
.

≤exp

{
−3

8
× (k−1)h

(
k, aH

2

)
d2α

2 (v)
5θ2

0+6h (k, aH)M2β (aH)

}
=exp

{
−C2 (k)α2 (v)

}
,

(6.11)

where C2 (k) = 3(k−1)h(k,
aH
2

)d2

8[5θ20+6h(k,aH)M2β(aH )], and d2 = minaH/2≤v≤aH
g1 (v) ≥

u(aH/2)
Γ(m) CH (m,aH) > 0. Let τ2 = maxaH/2≤v≤aH

g1(v)

α(1)(v)
. Note that τ2 ≤

maxaH/2≤v≤aH
g1 (v) ≤ u(aH)

Γ(m) CH(m,aH/2) < ∞, since α(1) (v) ≥ 1. Plugging
(6.11) and the preceding inequality into IIk, we obtain

IIk ≤
∫ aH

aH/2
exp

{
−C2 (k)α2 (v)

}
[α (v)]α(1) (v) [

g1 (v)
α(1) (v)

]dv.

≤ τ2

∫ aH

aH/2
exp

{
−C2 (k)α2 (v)

}
[−α (v)]α(1) (v) dv ≤ τ2

2C2(k)

=
4τ2

[
5θ2

0 + 6h (k, aH)M2β (aH)
]

3(k − 1)h
(
k, aH

2

)
d2

.

Proof of Lemma 4.3. According to the definitions of aH (k) and aH , and by
the increasing property of the function α (v) in v, for aH (k) ≤ v ≤ aH ,− (lnk)2

k =
α (aH (k)) ≤ α(v) ≤ α (aH) = 0. Hence,

IIIk ≤
∫ aH

aH(k)
[−α(v)]g1(v)dv ≤ (

(ln k)2

k
).

Proof of Lemma 4.4. For aH < v < θ0,W (v) > 0. From (6.6) and following a
discussion analogous to (6.10), we have

P {W1k (v) < 0} ≤ P {W1k (v) − E1[W1k (v)] < −W (v)}
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≤ exp

{
−3

2
× (k − 1)hg1 (v)α2 (v)

3θ2
0 + 6hM2β (v) + 4θ0α (v)

}

≤ exp

{
−3

2
× (k − 1)h (k, aH) d4α

2 (v)
3θ2

0 + 6h (k, θ0)M2β (θ0) + 4θ0α (θ0)

}

= exp
{
−C4 (k)α2 (v)

}
, (6.12)

where C4 (k) = 3(k−1)h(k,aH)d4
2[3θ20+6h(k,θ0)M2β(θ0)+4θ0α(θ0)] , and d4 ≥ u(aH )

Γ(m) CH (m, θ0) > 0. Let

τ4 = maxaH≤v≤θ0
g1(v)
α(1)(v)

. Note that τ4 ≤ u(θ0)
Γ(m)CH (m,aH) < ∞. Plugging (6.12)

and the preceding inequality into IVk, we obtain

IVk ≤
∫ θ0

aH

exp{−C4(k)α2(v)}α(v)α(1)(v)[
g1 (v)
α(1)(v)

]dv

≤ τ4

∫ θ0

aH

exp{−C4(k)α2(v)}α(v)α(1)(v)dv

≤ τ4[3θ2
0 + 6h(k, θ0)M2β(θ0) + 4θ0α(θ0)]

3(k − 1)h(k, aH )d4
.
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