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Abstract: A nonlinear Berkson model, particularly the polynomial Berkson model,
is considered in this work. It is shown that without making any identifiability
assumptions, all coefficient parameters in this model can be estimated consistently.

In particular, the model is shown to be identifiable. However, unlike the linear
Berkson model where one can estimate the coefficient parameters by ignoring the
measurement error, in the polynomial Berkson model we must take into account
the measurement error. An iterative reweighted least squares approach is taken to

estimate the parameters in the model. The resulting estimates are found to be the
solution of a set of estimating equations. Simulation results of the three methods
discussed for large samples in a quadratic Berkson model are compared.
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tion, polynomial model, weighted least squares.

1. Introduction

In a classical linear measurement error (errors-in-variables) model, the true
explanatory variable ξ is not observed. The observed variable x equals ξ plus
a measurement error δ where ξ and δ are independent. This is fundamentally
different from the model described by Berkson (1950), where x is controlled by
the experimenter and ξ and δ are dependent. The controlled explanatory variable
x is called a controlled variable in the Berkson model.

More precisely the linear Berkson model is defined as follows:

yi = β0 + β1ξi + εi, ξi = xi − δi, i = 1, . . . , n, (1.1)

where the variables xi (either stochastic or nonstochastic) are controlled by the
experimenter, and the random errors (εi, δi) are two i.i.d. sequences of random
variables. In this case ξi and δi are dependent, which is the main difference from
the classical errors-in-variables model. Model (1.1) can be written as

yi = β0 + β1xi + (εi − β1δi), i = 1, . . . , n,

where xi is uncorrelated with εi −β1δi. In this situation, Berkson (1950) pointed
out that ordinary least squares should be applied and one can estimate the co-
efficient parameters by simply ignoring the measurement error δi. Furthermore,
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there is no need to supply extra information if the goal is to estimate the coeffi-
cient parameters only. On the contrary, if ξi and δi are independent (xi’s are not
controlled) in (1.1), the ordinary least squares method is not appropriate for the
estimation of the same parameters because xi is correlated with εi−β1δi. Now the
question is whether we can estimate the coefficient parameters in a polynomial
Berkson model by ignoring the measurement error δi? A straightforward deriva-
tion shows that the answer is no. However, by using a different approach, we
show that all parameters in the polynomial Berkson model can still be estimated
consistently. In particular, no identifiability assumption is required. In other
words, the polynomial Berkson model is intrinsically identifiable. Theoretically,
one can use a higher order regression to obtain a set of consistent estimates of the
parameters in the model. However this is not the most efficient procedure due
to error variance heteroscedasticity. Hence we propose an iterative reweighted
least squares method which takes heteroscedasticity into account. These iterative
reweighted least squares estimates are found as the solution of a set of estimating
equations.

The difference between the classical linear measurement error model and the
linear Berkson model was first observed by Berkson (1950). Geary (1953) inves-
tigated a cubic Berkson model with replicated data. Fedorov (1974) generalized
Berkson’s model and estimated the parameters by using a certain approxima-
tion technique and the iterative weighted least squares method. Fuller (1987,
p.81) discussed general results in the linear Berkson model and pointed out the
inadequacy of using ordinary least squares if the response is quadratic. He also
referred to Box (1961) who investigated the effects of measurement errors in ex-
periments with nonlinear response. Burr (1988) considered the binary Berkson
probit model and Rudemo, Ruppert and Streibig (1989) used transformation and
weighting techniques to investigate nonlinear Berkson models. Carroll and Ste-
fanski (1990) studied the general theory of common measurement error models
(including the Berkson model) with quasi-likelihood estimation.

Throughout the paper, we consider the model

yi = β0 + β1ξi + · · · + βpξ
p
i + εi, ξi = xi − δi, p > 1, i = 1, . . . , n, (1.2)

where εi are i.i.d. N(0, σ2
ε ), δi are i.i.d. N(0, σ2

δ ), and the εi are independent of δj

for all i and j. Under certain mild conditions all results in the paper hold when
the controlled varibles xi are stochastic, but we will focus the study on the case
of nonstochastic xi. It is assumed that the xi are fixed and

1
n

n∑
i=1

xl
i → µl, l = 0, . . . , 4p, (1.3)

Mn
∆=

1
n

∑
(xi − µ1, . . . , x

2p
i − µ2p)

′
(xi − µ1, . . . , x

2p
i − µ2p) → M, (1.4)
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and
1
n2

n∑
i=1

x2l
i → 0, l = 0, . . . , 4p, (1.5)

where µl are real constants and M is a positive definite matrix.
The rest of the paper is organized as follows. In Section 2 we prove that the

model is identifiable. Explanation is also given as to why higher order regression is
not used. Section 3 utilizes a numerical method to derive a consistent estimate of
σ2

δ and hence the rest of parameters. These estimates are called initial estimates.
In Section 4, by using the constructed initial estimates, we propose an iterative
reweighted least squares method to estimate the parameters. These estimates
are shown to be the solution of a set of estimating equations. Section 5 uses
simulation results to compare the reweighted least squares estimates with those
mentioned in Sections 2 and 3 in a quadratic Berkson model. Proofs are in the
Appendix.

2. Consistent Estimates without Identifiability Assumptions

From (1.2) it follows that the conditional distribution of ξi given xi is
N(xi, σ

2
δ ). As a consequence, the rth moment of ξi given xi equals

E(ξr
i | xi) = E[(xi + σδz)r | xi] =

r∑
l=0

(
r

l

)
xr−l

i σl
δml, (2.1)

where the random variable z has a standard normal distribution and ml is the
lth moment of the distribution, l = 0, . . . , r. By (2.1),

E(yi | xi) = β∗
0 + β∗

1xi + · · · + β∗
pxp

i , (2.2)

where djk =
(j
k

)
mk, j = 1, . . . , p, k = 0, . . . , j, and

(β∗
0 , . . . , β∗

p) = (β0, β1, . . . , βp)




1 0 0 · · 0
d11σδ 1 0 · · 0
d22σ

2
δ d21σδ 1 · · ·

· · · · · ·
· · · · · ·

dppσ
p
δ dp p−1σ

p−1
δ dp p−2σ

p−2
δ · · 1




. (2.3)

Similarly,

E(y2
i | xi) = E(a0 + a1ξi + · · · + a2pξ

2p
i | xi) + E(ε2

i | xi)
= a∗0 + a∗1xi + · · · + a∗2px

2p
i ,

where
as =

∑
{0≤k,l≤p,k+l=s}

βkβl, s = 0, . . . , 2p (2.4)
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and

(a∗0−σ2
ε , a

∗
1, . . . , a

∗
2p)=(a0, . . . , a2p)




1 0 0 · · 0
d11σδ 1 0 · · 0
d22σ

2
δ d21σδ 1 · · ·

· · · · · ·
· · · · · ·

d2p 2pσ
2p
δ d2p 2p−1σ

2p−1
δ d2p 2p−2σ

2p−2
δ · · 1




.

(2.5)
Since all odd moments of N(0, 1) are zero, by (2.3) and (2.5) we have

β∗
p = βp, β∗

p−1 = βp−1, β∗
p−2 = βp−2 + βpσ

2
δ

p(p − 1)
2

(2.6)

and

a∗2p−2 = a2p−2 + a2pσ
2
δ

2p(2p − 1)
2

= (2βpβp−2 + β2
p−1) + β2

pσ2
δp(2p − 1). (2.7)

Substituting (2.6) into (2.7) and simplifying the result, we obtain

a∗2p−2 = 2β∗
p−2β

∗
p + β∗2

p−1 + p2β∗2
p σ2

δ . (2.8)

Now if we regress y2 and y on x, we can obtain the consistent estimates â∗0, . . . , â∗2p

of a∗0, . . . , a∗2p and β̂∗
0 , . . . , β̂∗

p of β∗
0 , . . . , β∗

p . Then from (2.8), a consistent estimate
σ̂2

δ of σ2
δ can be constructed. Consequently, the consistent estimates β̂0, . . . , β̂p of

β0, . . . , βp can be derived by substituting β̂∗
0 , . . . , β̂∗

p and σ̂2
δ for β∗

0 , . . . , β∗
p and σ2

δ

in (2.3), respectively. Also, a consistent estimates σ̂2
ε of σ2

ε can be obtained from
(2.5) since we already established the consistent estimates of a∗0, . . . , a∗2p, σ

2
δ , and

a0, . . . , a2p (which are functions of β0, . . . , βp). In conclusion, all parameters in
the model can be estimated consistently and hence the model is identifiable.

Although we have a way to estimate all parameters in the model, it may
not be adequate because the high order regression of y2 on x is adopted. A
common understanding in the literature of regression analysis (see, for example,
Seber (1976)) indicates that high order polynomial regression may create ill-
conditioned matrix to be inverted in applying the ordinary least squares method.
Furthermore, there is a possibility that an equation different from (2.8) may
be derived and hence a set of different consistent estimates of σ2

δ and other
parameters could be obtained. This leads to the question of which consistent
estimates should be used.

3. Alternative Consistent Estimates of σ2
δ and Other Parameters

In this section we use a different approach to construct a set of consistent
estimates for the parameters. First of all, by (2.3), it is easy to observe that
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the parameters θ = (β0, . . . , βp, σ
2
δ , σ

2
ε ) and θ∗ = (β∗

0 , . . . , β∗
p , σ2

δ , σ
2
ε ) are one-

to-one correspondent. Define ψ = (β∗
0 , . . . , β∗

p) and ψ̂ = (β̂∗
0 , . . . , β̂∗

p), where
β̂∗

0 , . . . , β̂∗
p are the ordinary least squares estimates of β∗

0 , . . . , β∗
p obtained by

regressing y on x. Treating β0, . . . , βp in (2.3) as functions of ψ and σ2
δ (denoted

by β̃0(σ2,ψ), . . . , β̃p(σ2,ψ) in (3.1)), we can rewrite (2.3) as

(β̃0(σ2,ψ), . . . , β̃p(σ2,ψ))=(β∗
0 , . . . , β∗

p)




1 0 0 · · 0
d11σ 1 0 · · 0
d22σ

2 d21σ 1 · · ·
· · · · · ·
· · · · · ·

dppσ
p dp p−1σ

p−1 dp p−2σ
p−2 · · 1




−1

,

(3.1)
where the parameter σ2 is a dummy of σ2

δ , 0 ≤ σ2 < ∞. Similarly, from (2.5),
we have

(ã∗0(σ
2,ψ, σ2

ε ) − σ2
ε , ã

∗
1(σ

2,ψ), . . . , ã∗2p(σ
2,ψ)) = (ã0(σ2,ψ), . . . , ã2p(σ2,ψ))




1 0 0 · · 0
d11σ 1 0 · · 0
d22σ

2 d21σ 1 · · ·
· · · · · ·
· · · · · ·

d2p 2pσ
2p d2p 2p−1σ

2p−1 d2p 2p−2σ
2p−2 · · 1




,

where

ãs(σ2,ψ) =
∑

{0≤k,l≤p, k+l=s}
β̃k(σ2,ψ)β̃l(σ2,ψ), s = 0, . . . , 2p.

From the above relation and ψ̂ P→ ψ, it follows that

β̃j(σ2
δ , ψ̂) P→ βj , ã∗h(σ2

δ , ψ̂) P→ a∗h, j = 0, . . . , p, h = 1, . . . , 2p.

Now, we will mimic the regression of y2 on x to construct a consistent estimate
of σ2

δ . Observe that the sums of squares
∑n

1 (y2
i − a∗0 − a∗1xi − · · · − a∗2px

2p
i )2

and
∑n

1 (y2
i − y2 − a∗1(xi − x̄) − · · · − a∗2p(x

2p
i − x2p))2, y2 = n−1∑n

1 y2
i and

xk = n−1∑n
1 xk

i , k = 1, . . . , 2p, have the same minimum value on the space
of (a∗0, . . . , a∗2p) and (a∗1, . . . , a∗2p), respectively. In order to get rid of parameter
a∗0 (which involves σ2

ε ), we use the second form to define the average sum of
squares

Sn(σ2,ψ) =
1
n

n∑
1

[y2
i − y2 − ã∗1(σ

2,ψ)(xi − x̄) − · · · − ã∗2p(σ
2,ψ)(x2p

i − x2p)]2
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=
1
n

n∑
1

[y2c
i − ã∗1(σ

2,ψ)x1c
i − · · · − ã∗2p(σ

2,ψ)x2pc
i ]2,

where y2c
i = y2

i − y2 and xkc
i = xk

i − xk, k = 1, . . . , 2p. Note that Sn(σ2, ψ̂) =
Sn(σ2,ψ) |

ψ=
ˆψ

is a function of data and the parameter σ2 only. Suppose that

σ̂2
δ is the value of σ2, 0 ≤ σ2 < ∞, where Sn(σ2, ψ̂) achieves its minimum, i.e.,

Sn(σ̂2
δ , ψ̂) = inf

0≤σ2<∞
Sn(σ2, ψ̂). (3.2)

It can be seen (see the Remark after Lemma 2) that Sn(σ2, ψ̂) always achieves
its minimum value at certain finite number. It is also worth noting that only the
regression of y on x (to obtain ψ̂) and some numerical minimization technique
are needed to obtain σ̂2

δ in this approach. The higher order regression of y2

on x has been avoided and the problem of inverting ill-conditioned matrix that
might arise during the regression will not be encountered. Now, we prove the
consistency of σ̂2

δ in (3.2).

Theorem. Assume that Model (1.2) and Conditions (1.3)−(1.5) hold with p ≥ 2
and β0, . . . , βp, σ

2
δ and σ2

ε are unknown parameters. Then σ̂2
δ

P→σ2
δ , where σ̂2

δ is as
defined in (3.2).

Proof. See the Appendix.

After constructing the consistent estimates ψ̂ and σ̂2
δ , by (3.1) we obtain the

consistent estimates (β̂0, . . . , β̂p) = (β̃0(σ̂2
δ , ψ̂), . . . , β̃p(σ̂2

δ , ψ̂)). For estimating
σ2

ε , note that Var (yi | xi) = (β1, . . . , βp)Σi(β1, . . . , βp)
′
+ σ2

ε , where Σi is the
covariance matrix of the conditional distribution of (ξi, ξ

2
i , . . . , ξp

i ) given xi. Here
Σi can be computed by (2.1) and estimated by Σ̂i which is obtained with σ̂2

δ in
the place of σ2

δ . Now, define ei = yi − β̂∗
0 − · · · − β̂∗

pxp
i where β̂∗

0 , . . . , β̂∗
p are the

least squares estimates of β∗
0 , . . . , β∗

p . Then it is easy to show that

σ̂2
ε =

1
n

[
n∑
1

e2
i −

n∑
1

β̂
′
1Σ̂iβ̂1]

∨
0, (3.3)

where β̂1 = (β̃1(σ̂2
δ , ψ̂), . . . , β̃p(σ̂2

δ , ψ̂))′ converges to σ2
ε in probability.

4. Improved Estimates

The procedure to derive the consistent estimates of β0, . . . , βp, σ
2
δ and σ2

ε in
the last section is not efficient. The least squares estimates ψ̂ = (β̂∗

0 , . . . , β̂∗
p)

used in formulating Sn(σ2, ψ̂) in (3.2) are not efficient estimates because the
conditional variance of y given x depends on x. Also, in minimizing Sn(σ2, ψ̂)
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over [0,∞), we mimic the regression of y2 on x. However, we do not take into
account that the conditional variance of y2 given x depends on x as well.

In regression, the usual way to resolve the heteroscedasticity is to apply a
weighted least squares approach. Denote the estimates ψ̂, σ̂2

δ , and σ̂2
ε obtained

in the last section as the initial estimates ψ̂0 (=(β̂∗
00, . . . , β̂

∗
p0)), σ̂2

δ0, and σ̂2
ε0. We

seek weighted least squares estimates of ψ in (2.2), i.e., we find the minimizer of

n∑
1

Ŵ−1
i (yi − β∗

0 − · · · − β∗
pxp

i )
2, (4.1)

where Ŵi is a consistent estimate of Wi = Var (yi | xi) defined below. We also
find the minimizer of

n∑
1

Û−1
i [y2c

i − ã∗1(σ
2, ψ̂)x1c

i − · · · − ã∗2p(σ
2, ψ̂)x2pc

i ]2, (4.2)

where Ûi is a consistent estimate of Ui = V ar(y2
i | xi) (which is approximately

E[y2c
i −ã∗1(σ2

δ , ψ̂0)x1c
i −· · ·−ã∗2p(σ

2
δ , ψ̂0)x

2pc
i ]2 for large n). To obtain Ŵi, one only

needs to replace β0, . . . , βp, σ
2
δ , and σ2

ε with β̂00, . . . , β̂p0 (can be obtained from
ψ̂0 and σ̂2

δ0), σ̂2
δ0, and σ̂2

ε0 in Wi = (β1, . . . , βp)Σi(β1, . . . , βp)
′
+ σ2

ε , respectively.
Hence, Ŵi = Wi(ψ̂0, σ̂

2
δ0, σ̂

2
ε0). Also, observe that

Ui = var(a0 + a1ξi + · · · + a2pξ
2p
i + ε2

i | xi) + var[2(β0 + · · · + βpξ
p
i )εi | xi]

+2cov{[a0 + a1ξi + · · · + a2pξ
2p
i + ε2

i , 2(β0 + · · · + βpξ
p
i )εi] | xi}, (4.3)

where a0, . . . , a2p are given in (2.4). The first term on the right of (4.3) equals

(a1, . . . , a2p)Σ∗
i (a1, . . . , a2p)

′
+ 2σ4

ε , (4.4)

where Σ∗
i is the covariance matrix of the conditional distribution of (ξi, . . . , ξ

2p
i )

given xi. Here Σ∗
i can be computed by (2.1) and estimated by Σ̂

∗
i =

Σ∗
i (ψ̂0, σ̂

2
δ0, σ̂

2
ε0). In addition, ak, k = 1, . . . , 2p, and σ2

ε in (4.4) can be estimated
by âk = ãk(σ̂2

δ0, ψ̂0) and σ̂2
ε0, respectively. The second term of (4.3) is

4σ2
ε [a0 + a1E(ξi | xi) + · · · + a2pE(ξ2p

i | xi)],

which again can be computed by (2.1) and estimated consistently. Finally, the
last term of (4.3) equals zero since εi ∼ N(0, σ2

ε ) and εi is independent of ξi.
Putting all results together, we have Ûi = Ui(ψ̂0, σ̂

2
δ0, σ̂

2
ε0).

Applying the weighted least squares approach above, we propose an iter-
ative algorithm to produce more efficient estimates of the parameters in the
model.
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• 1. Use the initial estimates ψ̂0, σ̂
2
δ0, and σ̂2

ε0 (established in Section 3) to com-
pute the weights Ŵi and Ûi.

• 2. Obtain the weighted least squares estimates β̂∗w

0 , . . . , β̂∗w

p from (4.1) and
update ψ̂ = (β̂∗w

0 , . . . , β̂∗w

p ).
• 3. Generate ã∗1(σ2, ψ̂), . . . , ã∗2p(σ

2, ψ̂) through the updated ψ̂ and find the
value of σ2, σ̂2w

δ , minimizing (4.2). Update σ̂2
δ by letting σ̂2

δ = σ̂2w

δ .
• 4. Update σ̂2

ε in (3.3) by using the latest ψ̂ and σ̂2
δ .

• 5. Treating ψ̂, σ̂2
δ , and σ̂2

ε as the initial estimates, repeat the previous steps
K more times, K decided by the user. Alternatively, stop the iteration if the
change in σ̂2

δ is small.
If ψ̂ and σ̂2

δ are the estimates obtained in the final stage of the above al-
gorithm, we can compute the estimates β̂0, . . . , β̂p from (3.1). Note that the
full iteration of the above algorithm corresponds to setting K = ∞, which is
equivalent to solving the following equations

n∑
1

W−1
i (yi − β∗

0 − β∗
1xi − · · · − β∗

pxp
i )(1, xi, . . . , x

p
i )

′
= 0,

n∑
1

U−1
i

∂

∂σ2
δ

(y2c
i − a∗1x

1c
i − · · · − a∗2px

2pc
i ) = 0, (4.5)

n∑
1

{n−1[
n∑
1

e2
i −

n∑
1

(β1, . . . , βp)Σi(β1, . . . , βp)
′
]
∨

0 − σ2
ε } = 0.

The parameters β∗
0 , . . . , β∗

p , a∗1, . . . , a∗2p in the equations of (4.5) are functions of
β0, . . . , βp, and σ2

δ . We omit the relation in notation for simplicity. Therefore,
the equations in (4.5) involve the parameters β0, . . . , βp, σ

2
δ , and σ2

ε only, and are
a set of estimating equations of them.

To obtain the estimates of the parameters in the model by directly solv-
ing (4.5) can be cumbersome due to the complexity of the equations and hence
the iterative reweighted least squares method is recommended. For a more de-
tailed discussion of estimating equations in this topic, see Carroll, Ruppert and
Stefanski (1995).

5. Simulation

In this section, we use statistical simulation to compare the performance of
the reweighted least squares method with that of the other two methods men-
tioned in Sections 2 and 3. Since the iteration number does not affect the asymp-
totic distributions of the reweighted least squares estimates (Carroll and Ruppert
(1988)), it is chosen here to be two in the procedure of computing the estimates.
In Tables 1-3, we assume that

yi = 3 + 2ξi + ξ2
i + εi, ξi = xi − δi,
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where (εi, δi)
i.i.d.∼ N(0, diag(σ2

ε , σ2
δ )), σ2

ε = σ2
δ = 0.5, 1, n = 200, 1000. For the

controlled variables xi, in order to satisfy (1.3)-(1.5) they are generated as the
random samples from N(0,1), Uniform(0, 3.464), and χ2

1/1.414 (each distribution
has variance one). To treat as an initial guess of σ2

δ in minimizing Sn(σ2, ψ̂) of
(3.2), we draw a random number from Uniform(0, 2S2

x), where S2
x = n−1∑n

1 (xi−
x̄)2. Note that the estimates of β1 and β2 computed by the method in Section 2
are the same as those found by the method in Section 3, because d11 = d21 = 0 in
(2.3). Also it is sensible to define the estimates of σ2

ε computed by the methods in
Sections 2 and 3 to be zero when they are negative. Since the results for σ2

ε = 1
are not appreciably different from those for σ2

ε = 0.5, only the latter cases are
reported. Entries in Tables 1-3 represent the average of 300 repeated estimates,
with standard deviations included in parentheses.

From the tables, we conclude that the reweighted least squares method is
the best among the three methods. When the xi are drawn from N(0, 1), the
reweighted least squares method gives results very close to the desired values.
Between the methods in Sections 2 and 3, the one in Section 3 is better than
the other in estimating β0, σ

2
δ , and σ2

ε . When the xi are from uniform and chi-
squared distributions, the reweighted least squares method still provides results
close to the desired values. At the same time, the method in Section 3 provides
reasonable estimates as well, except for estimating σ2

ε . On the other hand, the
method in Section 2 gives erroneous results in estimating β0 and σ2

δ (the estimate
of β0 even presents the opposite sign). Although the estimate of σ2

ε in this case
seems to be the best among the three methods, negative estimates of σ2

ε have
been masked by truncating them to zero. However, the reweighted least squares
estimate of σ2

ε is still comparable with this estimate for large samples. Note that

Table 1. Simulation results for xi ∼ N(0, 1).
(replication=300)

β0 = 3 β1 = 2 β2 = 1 σ2
δ = 0.5 σ2

ε = 0.5
*3.022 *2.022 *0.980 *0.527 *0.469
(0.191) (0.188) (0.137) (0.148) (0.506)

n=200 ∆3.052 ∆ 2.007 ∆ 0.998 ∆ 0.457 ∆ 1.327
(0.375) (0.215) (0.164) (0.240) (1.358)

� 2.363 � 2.007 � 0.998 � 1.261 � 2.765
(1.393) (0.215) (0.164) (1.754) (3.540)
*3.004 *1.997 *0.994 *0.509 *0.475
(0.082) (0.081) (0.054) (0.070) (0.326)

n=1000 ∆3.014 ∆2.002 ∆ 0.998 ∆ 0.489 ∆ 0.891
(0.190) (0.096) (0.071) (0.139) (0.879)

� 2.758 � 2.002 � 0.998 � 0.768 � 1.899
(0.757) (0.096) (0.071) (0.815) (2.375)
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Table 2. Simulation results for xi ∼ Uniform(0, 3.464).
(replication=300)

β0 = 3 β1 = 2 β2 = 1 σ2
δ = 0.5 σ2

ε = 0.5
*2.985 *2.091 *0.968 *0.575 *1.227
(0.521) (0.934) (0.308) (0.262) (1.957)

n=200 ∆3.054 ∆ 1.946 ∆ 1.014 ∆ 0.555 ∆ 1.536
(0.579) (1.120) (0.363) (0.295) (2.136)

�-20.390 � 1.946 � 1.014 � 33.250 � 0.330
(43.800) (1.120) (0.363) (85.540) (1.632)
*2.984 *2.009 *1.001 *0.508 *0.770
(0.225) (0.413) (0.135) (0.083) (1.000)

n=1000 ∆2.993 ∆ 1.994 ∆ 1.006 ∆ 0.505 ∆ 0.960
(0.252) (0.488) (0.158) (0.097) (1.212)

� -6.269 � 1.994 � 1.006 � 9.922 � 0.372
(13.330) (0.488) (0.158) (14.160) (1.247)

Table 3. Simulation results for xi ∼ χ2
1/1.414.

(replication=300)
β0 = 3 β1 = 2 β2 = 1 σ2

δ = 0.5 σ2
ε = 0.5

*2.942 *2.148 *0.971 *0.565 *1.112
(0.376) (0.704) (0.247) (0.345) (1.530)

n=200 ∆3.095 ∆ 1.988 ∆ 1.017 ∆ 0.403 ∆ 2.836
(0.334) (0.928) (0.302) (0.339) (2.891)

�-17.170 � 1.988 � 1.017 � 26.700 � 0.275
(33.710) (0.928) (0.302) (98.780) (1.010)
*2.959 *2.063 *0.989 *0.534 *0.874
(0.234) (0.286) (0.104) (0.216) (1.108)

n=1000 ∆3.025 ∆ 2.016 ∆ 1.001 ∆ 0.453 ∆ 2.691
(0.335) (0.452) (0.144) (0.337) (2.988)

� -8.737 � 2.016 � 1.001 � 11.930 � 0.326
(18.560) (0.452) (0.144) (18.090) (1.024)

*: Reweighted least squares estimates

∆: Estimates proposed in Section 3

�: Estimates proposed in Section 2

Number in the parenthesis is standard deviation

the convergence of σ̂2
ε to σ2

ε for the reweighted least squares method, except
xi from normal distribution, is very slow and does need very large sample size
to have the desired accuracy. For the same parameter setting of Table 2, the
reweighted least squares method is simulated to obtain σ̂2

ε = .675 (standard
deviation = .766) for n = 2000 and .650 (.584) for n = 5000 (for chi-squared
distribution, the results are similar).
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Appendix

Throughout the Appendix, define ã∗
1(σ2,ψ) = (ã∗1(σ2,ψ), . . . , ã∗2p(σ

2,ψ))
′
,

µ = (µ1, . . . , µ2p)
′
, xi = (xi, . . . , x

2p
i )′, and xc

i = (x1c
i , . . . , x2pc

i )′ = (xi − x̄, x2
i −

x2, . . . , x2p
i − x2p)′. By a direct expansion,

1
n

n∑
1

y2
i =

∑
0≤h,l,h+l≤2p

1
n

n∑
i=1

ch,lx
h
i δl

i +
∑

0≤m,k,m+k≤p

1
n

n∑
i=1

fm,kx
m
i δk

i εi +
1
n

n∑
1

ε2
i ,

where ch,l and fm,k are sums of coefficients of xh
i δl

i and xm
i δk

i εi, respectively. Since
n−1∑n

1 xh
i δl

i has mean n−1∑n
1 xh

i Eδl
i and variance n−2∑n

1 x2h
i var(δl

i) (which con-
verges to 0 by (1.5)), as a result n−1∑n

1 xh
i δl

i
P→ µhEδl

i by Kolmogrov’s theorem
and (1.3). Similarly, n−1∑n

1 xm
i δk

i εi
P→ 0. In conclusion,

1
n

n∑
1

y2
i

P→
∑

0≤h,l,h+l≤2p

ch,lµhEδl
i + σ2

ε
∆= µy2.

To prove the main theorem, we need the following three lemmas.

Lemma 1. Suppose that Model (1.2) and Conditions (1.3) − (1.5) hold with
p ≥ 2 and that β0, . . . , βp, σ

2
δ , and σ2

ε are unknown parameters. Define Si(σ2) =
E[y2

i − µy2
i
− ã∗1(σ2,ψ)(xi − µ1)− · · · − ã∗2p(σ

2,ψ)(x2p
i − µ2p)]2, where µy2

i
= Ey2

i

and µl, 1 ≤ l ≤ 2p, are given in (1.3). For any τ > 0, there exists a n0(τ) > 0
and ρ(τ) > 0 such that n−1∑n

1 Si(σ2) − n−1∑n
1 Si(σ2

δ ) ≥ ρ(τ) if n > n0(τ) and
| σ2 − σ2

δ |> τ .

Proof. Since a∗j = ã∗j(σ2
δ ,ψ), 1 ≤ j ≤ 2p, it follows that E(y2

i | xi) = a∗0 +
ã∗

1(σ
2
δ ,ψ)

′
xi. By a straightforward calculation,

1
n

n∑
1

Si(σ
2) =

1
n

n∑
1

Si(σ
2
δ ) +

2
n

n∑
1

E{[y2
i − µy2

i
− ã∗

1(σ
2
δ ,ψ)′(xi − µ)][ã∗

1(σ
2
δ ,ψ)

−ã∗
1(σ

2,ψ)]
′
(xi − µ)} + [ã∗

1(σ
2
δ ,ψ) − ã∗

1(σ
2,ψ)]

′
Mn[ã∗

1(σ
2
δ ,ψ)

−ã∗
1(σ

2,ψ)], (A.1)

where Mn = n−1∑n
1 (xi − µ)(xi − µ)

′
. By (1.3) the second term on the right

of (A.1) converges to 0. Also, by (1.4) λmin(Mn) → λmin(M ) > 0, where
λmin(Mn) and λmin(M) are minimum eigenvalues of Mn and M, respectively.
Then the result follows easily.
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Lemma 2. Let the assumptions of Lemma 1 hold. If ψ̂ − ψ = Op(n− 1
2 ), there

exists a number b > σ2
δ such that limn→∞ P (σ̂2

δ > b) = 0.

Proof. First we will show that for any c > 0, there exists a number b1 > 0 such
that

lim
n→∞P [ inf

σ2>b1

Sn(σ2, ψ̂) > c] = 1. (A.2)

Observe that

Sn(σ2, ψ̂) ≥ 1
n

n∑
1

(gi − ḡ)2 +(
1
n

n∑
1

q2
i )

1
2 [(

1
n

n∑
1

q2
i )

1
2 −2(

1
n

n∑
1

(gi − ḡ)2)
1
2 ], (A.3)

where gi = y2
i − ã∗

1(σ
2
δ ,ψ)

′
xi and qi = [ã∗

1(σ
2
δ ,ψ) − ã∗

1(σ
2, ψ̂)]

′
xc

i . By a direct
expansion of n−1∑n

1 (gi − ḡ)2, (1.3), (1.4), and Kolmogrov’s theorem, it follows
that n−1∑n

1 (gi − ḡ)2 = σ2
g + op(1), where σ2

g is a constant. Also observe that

1
n

n∑
1

q2
i ≥| ã∗2p−2(σ

2
δ ,ψ) − ã∗2p−2(σ

2, ψ̂) |2 λmin(M∗
n), (A.4)

where M∗
n = n−1∑n

1 x
c
ix

c′
i and λmin(M∗

n) is the minimum eigenvalue of M∗
n.

The right hand side of (A.4), by (2.8), equals

(2β∗
p−2β

∗
p + β∗2

p−1 + p2β∗2
p σ2

δ − 2β̂∗
p−2β̂

∗
p − β̂∗2

p−1 − p2β̂∗2
p σ2)2λmin(M∗

n). (A.5)

Since β̂∗
p , β̂∗

p−1, and β̂∗
p−2 converge to β∗

p(�= 0), β∗
p−1, and β∗

p−2 in probability,
respectively and λmin(M∗

n) → λmin(M)(> 0), consequently, for any number c∗

we can choose b∗1 large enough that limn→∞ P [infσ2>b∗1
( 1

n

∑n
1 q2

i )
1
2 > c∗] = 1.

Applying this result and n−1∑n
1 (gi − ḡ)2 = σ2

g + op(1) to (A.3), we obtain (A.2)

holds. Placing σ2 = σ2
δ in n−1∑n

1 q2
i of (A.3), and using that ψ̂ −ψ = Op(n− 1

2 )
and n−1∑n

1 (gi − ḡ)2 = σ2
g + op(1), we conclude Sn(σ2

δ , ψ̂) ≥ σ2
g + op(1). Similarly,

Sn(σ2
δ , ψ̂) ≤ σ2

g + op(1). In conclusion, Sn(σ2
δ , ψ̂) = σ2

g + op(1). For 2σ2
g > 0, by

(A.2) there exists a number b > 0 such that

lim
n→∞P [ inf

σ2>b
Sn(σ2, ψ̂) > 2σ2

g ] = 1. (A.6)

The event {σ̂2
δ > b} implies that Sn(σ2

δ , ψ̂) ≥ Sn(σ̂2
δ , ψ̂) = infσ2>b Sn(σ2, ψ̂),

and hence P (σ̂2
δ > b) ≤ P [Sn(σ2

δ , ψ̂) ≥ infσ2>b Sn(σ2, ψ̂)]. From Sn(σ2
δ , ψ̂) =

σ2
g + op(1) and (A.6), the desired result follows.

Remark. From (A.5) it follows that P [limσ2→∞ (A.5)= ∞] = 1, and hence
P [limσ2→∞ Sn(σ2, ψ̂) = ∞] = 1. This guarantees that Sn(σ2, ψ̂) always achieves
its minimum value at a finite positive number.
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Lemma 3. Under the assumptions of Lemma 1, for any number η > 0 and
ν > 0,

lim
n→∞P [ sup

0≤σ2≤η
| Sn(σ2, ψ̂) − 1

n

n∑
1

Si(σ
2) |> ν] = 0,

where Si(σ2) are defined as in Lemma 1.

Proof. Because β̃j(σ2,ψ) is a continuous function of ψ for fixed σ2, and of σ2

on [0, η] for fixed ψ, based on ψ̂ −ψ = Op(n− 1
2 ) that

sup
0≤σ2≤η

| ã∗j (σ
2, ψ̂) − ã∗j(σ

2,ψ) |= Op(n− 1
2 ), j = 1, . . . , 2p. (A.7)

Recall that

Sn(σ2, ψ̂) − Sn(σ2,ψ) = [ã∗
1(σ

2,ψ) − ã∗
1(σ

2, ψ̂)]
′
(
2
n

n∑
1

xc
iy

2c
i ) + [ã∗

1(σ
2, ψ̂)

+ã∗
1(σ

2,ψ)]
′
(
1
n

n∑
1

xc
ix

c′
i )[ã∗

1(σ
2, ψ̂) − ã∗

1(σ
2,ψ)],

where n−1∑n
1 x

c
ix

c′
i →M and n−1∑n

1 x
c
iy

2c
i

P→ some constant. Since ã∗j(σ2,ψ),
1 ≤ j ≤ 2p, are bounded on [0, η] for fixed ψ, we have from (A.7) that

sup
0≤σ2≤η

| Sn(σ2, ψ̂) − Sn(σ2,ψ) | P→ 0. (A.8)

By a straightforward calculation,

Sn(σ2,ψ) − 1
n

n∑
1

Si(σ
2)

=
1
n

n∑
1

[(y2c
i )2−E(y2

i − µy2
i
)2]+

2p∑
j=1

ã∗2j (σ2,ψ)[
1
n

n∑
i=1

(xj
i −xj)2− 1

n

n∑
i=1

(xj
i −µj)2]

−2
2p∑

j=1

ã∗j(σ
2,ψ)[

1
n

n∑
i=1

(xj
i −xj)y2c

i − 1
n

n∑
i=1

(xj
i −µj)E(y2

i −µy2
i
)]

+
∑

1≤l �=k≤2p

ã∗l (σ
2,ψ)ã∗k(σ

2,ψ)[
1
n

n∑
i=1

(xl
i − xl)(xk

i −xk)− 1
n

n∑
i=1

(xl
i−µl)(xk

i −µk)].

Using the argument of Lemma 2, (1.3), and the boundeoness of ã∗j (σ2,ψ) on [0, η]
for fixed ψ, j = 1, . . . , 2p, we conclude that

sup
0≤σ2≤η

| Sn(σ2,ψ) − 1
n

n∑
1

Si(σ
2) | P→ 0. (A.9)
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Combining (A.8) and (A.9), we establish the result.

Proof of Theorem. Let

E1 = {0 ≤ σ̂2
δ ≤ b}, E2 = {| σ̂2

δ − σ2
δ |> τ},

E3 = { sup
0≤σ2≤b

| Sn(σ2, ψ̂) − n−1
n∑
1

Si(σ
2) |< ρ

3
},

where Si(σ2), τ, ρ, and b are defined in Lemmas 1 and 2. By Lemma 1, there
exists a n0 such that E2 ⊂ {n−1∑n

1 Si(σ̂2
δ ) − n−1∑n

1 Si(σ2
δ ) ≥ ρ} if n ≥ n0. As

a consequence, for n ≥ n0, E1 ∩ E2 ∩ E3 ⊂ {Sn(σ̂2
δ , ψ̂) − Sn(σ2

δ , ψ̂) > ρ/3} and
P (E1 ∩E2 ∩E3) ≤ P{Sn(σ̂2

δ , ψ̂)−Sn(σ2
δ , ψ̂) > ρ/3} = 0, where the last equality

holds because Sn(σ2, ψ̂), 0 ≤ σ2 < ∞, achieves its minimum at σ2 = σ̂2
δ . Since by

Lemmas 2 and 3 limn→∞ P (E1) = 1 = limn→∞ P (E3), we have limn→∞ P (E2) =
0, i.e., σ̂2

δ
P→ σ2

δ .
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