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Abstract: In this paper we consider inference based on very general divergence

measures, under assumptions of multinomial sampling and loglinear models. We

define the minimum φ-divergence estimator, which is seen to be a generalization of

the maximum likelihood estimator. This estimator is then used in a φ-divergence

goodness-of-fit statistic, which is the basis of two new statistics for solving the

problem of testing a nested sequence of loglinear models.
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1. Introduction

We consider the problem of statistical inference for multinomial data, and
we devise a general theory for parameter estimation and goodness-of-fit. Further,
we show how the theory can be applied to the problem of inference on a nested
sequence of loglinear models. Consider a sample Y1, . . . , Yn of size n ∈ N with re-
alizations from X = {1, . . . , k} and independent and identically distributed (i.i.d.)
according to a probability distribution P (θ0). This distribution is assumed to be
unknown, but belonging to a known family P ={P (θ) = (p1(θ), . . . , pk(θ))T : θ ∈
Θ} of distributions on X with Θ ⊂ Rt (t < k− 1). In other words, the true value
θ0 of parameter θ = (θ1, . . . , θt)T ∈ Θ is assumed to be unknown. We denote
P̂ = (p̂1, . . . , p̂k)T with

p̂j =
Xj

n
and Xj =

n∑
i=1

I{j}(Yi); j = 1, . . . , k. (1)

Here and in the sequel,
“T ”

denotes the vector or matrix transpose. The statistic
(X1, . . . ,Xk) is obviously sufficient for the statistical model under consideration
and is multinomially distributed; that is,

P (X1 = x1, . . . ,Xk = xk) =
n!

x1! · · · xk!p1(θ0)x1 × · · · × pk(θ0)xk , (2)

for integers x1, . . . , xk ≥ 0 such that x1 + · · · + xk = n.
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If
∑k
j=1 p̂j log pj(θ) is almost surely (a.s.) maximized over Θ at some θ̂, then

θ̂ is the point maximum likelihood estimator (MLE). The MLE can equivalently
be defined by,

θ̂ = arg min
θ∈Θ

D(P̂ , P (θ)) a.s., (3)

where D(P,Q) =
∑k
j=1 pj log pj

qj
is the Kullback-Leibler divergence and P =

(p1, . . . , pk)T , Q = (q1, . . . , qk)T . This divergence is a particular case of the φ-
divergence defined by Csiszár (1967):

Dφ(P,Q) =
k∑
j=1

qjφ
(pj
qj

)
;φ ∈ Φ∗, (4)

where Φ∗ is the class of all convex functions φ(x), x > 0, such that at x =
1, φ(1) = 0, φ′′(1) > 0, and at x = 0, 0φ(0/0) = 0 and 0φ(p/0) = limu→∞ φ(u)/u.
For every φ ∈ Φ∗ that is differentiable at x = 1, the function ψ(x) ≡ φ(x) −
φ′(1)(x− 1), also belongs to Φ∗. Then we have Dψ(P,Q) = Dφ(P,Q), and ψ has
the additional property that ψ′(1) = 0. Because the two divergence measures are
equivalent, we can consider the set Φ∗ to be equivalent to the set Φ ≡ Φ∗ ∩ {φ :
φ′(1) = 0}. In what follows, we give our theoretical results for φ ∈ Φ but we often
apply them to choices of functions in Φ∗.

For example, an important family of φ-divergences in statistical problems is
the power divergence family,

φ(λ)(x) = (λ(λ+ 1))−1(xλ+1 − x); λ �= 0, λ �= −1,

φ(0)(x) = lim
λ→0

φ(λ)(x), φ(−1)(x) = lim
λ→−1

φ(λ)(x),
(5)

introduced and studied by Cressie and Read (1984). We can observe that the
functions φ(λ)(x) and ψ(λ)(x) ≡ φ(λ)(x)− (x− 1)(λ+ 1)−1define the same diver-
gence measure. In the following, we denote the power-divergence measures by
Iλ(P,Q) ≡ Dφ(λ)

(P,Q) = Dψ(λ)
(P,Q).

As a generalization of the MLE θ̂, Cressie and Read (1984) considered the
minimum power-divergence estimator θ̂(λ) ≡ arg minθ∈Θ I

λ(P̂ , P (θ)), and studied
its properties. Notice that when λ→ 0, the MLE is obtained and, for λ = 1, the
minimum chi-squared estimator is obtained.

Later, Morales, Pardo and Vajda (1995) considered the minimum φ-diver-
gence estimator,

θ̂φ = arg min
θ∈Θ

Dφ(P̂ , P (θ)), (6)

and studied its properties. For testing whether the data are generated by a
probability distribution contained in P, it is natural then to use as goodness-of-
fit statistic, Dφ(P̂ , P (θ̂φ)). It is a generalization of the likelihood-ratio statistic
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and Pearson’s chi-squared statistic (Cressie and Read (1984); Morales, Pardo
and Vajda (1995)).

In what is to follow, we assume that P (θ) belongs to the general class of
loglinear models. That is, we assume

pu(θ) = exp(wTu θ)/
k∑
v=1

exp(wTv θ); u = 1, . . . , k, (7)

where the k × t matrix W = (w1, . . . , wk)T is assumed to have full column rank
t < k−1 and columns linearly independent of the k×1 column vector (1, . . . , 1)T .

Then we are interested in the properties of θ̂φ given by (6) and how θ̂φ might
be used in (4) to test a nested sequence of hypotheses,

Hl : θ ∈ Θl; l = 1, . . . ,m, m ≤ t < k − 1, (8)

where Θm ⊂ Θm−1 ⊂ · · · ⊂ Θ1 ⊂ Rt; t < k − 1 and dim(Θl) = dl; l = 1, . . . ,m,
with

dm < dm−1 < · · · < d1 ≤ t. (9)

Our strategy is to test successively the hypotheses Hl+1 against Hl; l =
1, . . . ,m − 1, as null and alternative hypotheses respectively. We continue to
test as long as the null hypothesis is accepted and choose the loglinear model Θl

according to the first l for which Hl+1 is rejected (as a null hypothesis) in favour
of Hl (as an alternative hypothesis). This strategy is quite standard for nested
models (Read and Cressie (1988, p.42)). The nesting occurs naturally because of
the hierarchical principle, which says that interactions should not be fitted unless
the corresponding main effects are present (e.g., Collett (1994, p.78)).

In Section 2, we derive asymptotic results for minimum divergence estima-
tors under multinomial sampling and loglinear model assumptions (7). In Section
3, the main result for hierarchical testing in loglinear models using general di-
vergence measures is given. In Section 4, we present an example to demonstrate
how the results of Sections 2 and 3 can be applied in practice.

2. Asymptotic Results for Minimum φ-divergence Estimators under
the Loglinear Model

In this section, we present some asymptotic results for the minimum φ-
divergence estimator under the loglinear model (7).

Theorem 1. If θ̂φ is the minimum φ-divergence estimator for the loglinear

model, pu(θ) = exp(wTu θ)/
k∑
v=1

exp(wTv θ); u = 1, . . . , k, we have

n1/2(θ̂φ − θ0)
L−→

n→∞N
(
0, (W TΣP (θ0)W )−1

)
,
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where ΣP ≡ diag(P )−PP T and “ L−→
n→∞” denotes convergence in law (or distribu-

tion).

Proof. By Morales, Pardo and Vajda (1995), we know that

n1/2(θ̂φ − θ0)
L−→

n→∞N(0, IF (θ0)−1),

where IF (θ0) is the Fisher Information matrix, given by

IF (θ0) =
( k∑
j=1

1
pj(θ0)

∂pj(θ0)
∂θr

∂pj(θ0)
∂θs

)
r,s=1,...,t

= A(θ0)TA(θ0),

with A(θ0) = diag(P (θ0)−1/2)∂P (θ0)
∂θ being a k × k diagonal matrix times a k × t

matrix ∂P (θ0)
∂θ ≡

(
∂pj(θ0)
∂θr

)
j=1,...,k
r=1,...,t

.

For the loglinear models we have ∂pj(θ0)
∂θr

= pj(θ0)wrj − pj(θ0)
k∑
v=1

wrvpv(θ0).

Then ∂P (θ0)
∂θ = (diag(P (θ0)) − P (θ0)P (θ0)T )W = ΣP (θ0)W , and hence A(θ0) =

diag(P (θ0)−1/2)ΣP (θ0)W. Finally, IF (θ0) = A(θ0)TA(θ0) = W TΣP (θ0)W, and we
have

n1/2( θ̂φ − θ0)
L−→

n→∞N(0, (W TΣP (θ0)W )−1).

Remark 1. By Morales, Pardo and Vajda (1995), we know that the asymptotic
expansion of the minimum φ-divergence estimator of θ0 under H0 : θ ∈ Θ0 is,

θ̂φ = θ0 + IF (θ0)−1A(θ0)T diag(P (θ0)−1/2)(P̂ − P (θ0)) + o(‖P̂ − P (θ0)‖),
where we recall that P̂ = (X1/n, . . . ,Xk/n)T .

Then, using the theorem above, we see that for loglinear models,

θ̂φ = θ0 + IF (θ0)−1W TΣP (θ0)diag(P (θ0)−1)(P̂ − P (θ0)) + o(‖P̂ − P (θ0)‖).
Another interesting result, useful later in this paper, is the following.

Theorem 2. If θ̂φ is the minimum φ-divergence estimator for the loglinear

model, pu(θ) = exp(wTu θ)/
k∑
v=1

exp(wTv θ); u = 1, . . . , k, then

n1/2(P (θ̂φ) − P (θ0))
L−→

n→∞N(0,ΣP (θ0)W (W TΣP (θ0)W )−1W TΣP (θ0)).

Proof. We know that (P (θ̂φ) − P (θ0)) = ∂P (θ0)
∂θ (θ̂φ − θ0) + o(‖θ̂φ − θ0‖), and

because n1/2o(‖θ̂φ − θ0‖) = op(1), the random variables n1/2(P (θ̂φ) − P (θ0))
and n1/2 ∂P (θ0)

∂θ (θ̂φ − θ0) have the same asymptotic distribution. Using the
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previous theorem, we have n1/2(P (θ̂φ) − P (θ0))
L−→

n→∞N(0,Σ0), where Σ0 =
∂P (θ0)
∂θ (W TΣP (θ0)W )−1(∂P (θ0)

∂θ )T . But, in the proof of Theorem 1, we saw that
∂P (θ0)
∂θ = ΣP (θ0)W, and hence the proof is complete.

3. Testing a Hierarchical Sequence of Loglinear Models

Assuming that the multinomial data {Xj : j = 1, . . . , k} follow the loglin-
ear model (7), we now consider the problem of testing the nested sequence of
hypotheses given by (8) and (9). The suggested hypothesis-testing strategy is to
test successively the null hypothesis Hl+1 versus Hl; l = 1, . . . ,m − 1, choosing
the first l for which Hl+1 is rejected in favor of Hl. To solve this problem, we
make use of the following results.

Theorem 3. Suppose that data (X1, . . . ,Xk) is multinomially distributed ac-
cording to (2) and (7). Consider the nested sequence of hypotheses given by
(8) and (9). Choose functions φ1, φ2 ∈ Φ. Then, for testing hypotheses, H0 :
Hl+1 against H1 : Hl, the asymptotic null distribution of the test statistic,

T
(l)
φ1,φ2

≡ 2n
φ′′1(1)

Dφ1(P (θ̂(l+1)
φ2

), P (θ̂(l)
φ2

)) (10)

is a chi-squared distribution with dl − dl+1 degrees of freedom, l = 1, . . . ,m− 1.
In (10), θ̂(l)

φ2
and θ̂

(l+1)
φ2

are the minimum φ2-divergence estimators under the
models Hl and Hl+1, respectively, where the minimum φ-divergence estimators
are defined by (6).

Proof. The second-order expansion of Dφ1,φ2 ≡ Dφ1(P (θ̂(l+1)
φ2

), P (θ̂(l)
φ2

)) about
(P (θ0), P (θ0)) gives

Dφ1,φ2 =Dφ1(P (θ0), P (θ0))

+
k∑
j=1

(
∂Dφ1(P,Q)

∂pj
)(P (θ0),P (θ0))(pj(θ̂

(l+1)
φ2

) − pj(θ0))

+
k∑
j=1

(
∂Dφ1(P,Q)

∂qj
)(P (θ0),P (θ0))(pj(θ̂

(l)
φ2

) − pj(θ0))

+
1
2

k∑
j=1

(
∂2Dφ1(P,Q)

∂p2
j

)(P (θ0),P (θ0))(pj(θ̂
(l+1)
φ2

) − pj(θ0))2

+
1
2

k∑
j=1

(
∂2Dφ1(P,Q)

∂q2j
)(P (θ0),P (θ0))(pj(θ̂

(l)
φ2

) − pj(θ0))2

+
k∑
i=1

k∑
j=1

(
∂2Dφ1(P,Q)
∂pi∂qj

)(P (θ0),P (θ0))(pi(θ̂
(l+1)
φ2

)−pi(θ0))(pj(θ̂(l)
φ2

)−pj(θ0))
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+o(‖P (θ̂(l+1)
φ2

) − P (θ0)‖2 + ‖P (θ̂(l)
φ2

) − P (θ0)‖2).

Recall that φ1(1) = 0, by assumption, and hence it is easy to see that
Dφ1(P (θ0), P (θ0)) = 0. Furthermore,

k∑
j=1

(∂Dφ1(P,Q)
∂pj

)
(P (θ0),P (θ0))

(pj(θ̂
(l+1)
φ2

) − pj(θ0)) = 0.

This is because Dφ1(P,Q) =
k∑
j=1

qjφ1(
pj

qj
), and hence (∂Dφ1

(P,Q)

∂pj
)(P (θ0),P (θ0)) =

φ′1(1).
Similar calculations yield second partial derivatives. Thus,

T
(l)
φ1,φ2

=
2n
φ′′1(1)

Dφ1(P (θ̂(l+1)
φ2

), P (θ̂(l)
φ2

))

can be written as,

T
(l)
φ1,φ2

= n
k∑
j=1

1
pj(θ0)

(pj(θ̂
(l+1)
φ2

) − pj(θ0))2

+n
k∑
j=1

1
pj(θ0)

(pj(θ̂
(l)
φ2

) − pj(θ0))2

−2n
k∑
j=1

1
pj(θ0)

(pj(θ̂
(l+1)
φ2

) − pj(θ0))(pj(θ̂
(l)
φ2

) − pj(θ0))

+n o(‖P (θ̂(l+1)
φ2

) − P (θ0)‖2 + ‖P (θ̂(l)
φ2

) − P (θ0)‖2)

= (n1/2diag(P (θ0)−1/2)(P (θ̂(l+1)
φ2

) − P (θ̂(l)
φ2

)))T .

·(n1/2diag(P (θ0)−1/2)(P (θ̂(l+1)
φ2

) − P (θ̂(l)
φ2

)))

+n o(‖P (θ̂(l+1)
φ2

) − P (θ0)‖2 + ‖P (θ̂(l)
φ2

) − P (θ0)‖2).

We know from Theorem 2 that, under the loglinear model (7) and the null hy-
pothesis Hl+1, n

1/2(P (θ̂(l+1)
φ2

) − P (θ0))
L−→

n→∞N(0,Σ∗), with Σ∗ = ΣP (θ0)W(l+1)

(W T
(l+1)ΣP (θ0)W(l+1))−1W T

(l+1)ΣP (θ0)
, and W(l+1) the loglinear model matrix of

explanatory variables under the null hypothesis Hl+1.

Then ‖P (θ̂(l+1)
φ2

) − P (θ0)‖2 = Op(n−1), and because it is assumed that θ0 ∈
Θl+1 ⊂ Θl, we also have that ‖P (θ̂(l)

φ2
) − P (θ0)‖2 = Op(n−1). Consequently,

n o(‖P (θ̂(l+1)
φ2

)−P (θ0)‖2 +‖P (θ̂(l)
φ2

)−P (θ0)‖2) = op(1), and hence the asymptotic

distribution of the statistic T (l)
φ1,φ2

is the same as the asymptotic distribution of

the random variable ZTZ, where Z ≡ n1/2diag(P (θ0)−1/2)(P (θ̂(l+1)
φ2

) − P (θ̂(l)
φ2

)).
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Now, from Theorem 2, (P (θ̂(i)
φ2

)−P (θ0)) = ΣP (θ0)W(i)(θ̂
(i)
φ2
−θ0)+o(‖θ̂(i)

φ2
−θ0‖),

i = l, l + 1. Then, using Remark 1, we obtain

P (θ̂(l+1)
φ2

) − P (θ̂(l)
φ2

) =
{
ΣP (θ0)W(l+1)(W

T
(l+1)ΣP (θ0)W(l+1))

−1W T
(l+1)ΣP (θ0)

−ΣP (θ0)W(l)(W
T
(l)ΣP (θ0)W(l))

−1W T
(l)ΣP (θ0)

}

·diag(P (θ0)−1)(P̂ − P (θ0))

+o(‖θ̂(l+1)
φ2

− θ0‖) − o(‖θ̂(l)
φ2

− θ0‖).

If we denote

A(i) ≡ diag(P (θ0)−1/2)ΣP (θ0)W(i)(W
T
(i)ΣP (θ0)W(i))

−1W T
(i)ΣP (θ0)diag(P (θ0)−1/2),

i = l, l + 1,

which is a symmetric matrix, then

diag(P (θ0)−1/2)(P (θ̂(l+1)
φ2

) − P (θ̂(l)
φ2

))

= (A(l+1)−A(l))diag(P (θ0)−1/2)(P̂−P (θ0)) + o(‖θ̂(l+1)
φ2

−θ0‖)−o(‖θ̂(l)
φ2

− θ0‖).

Thus, n1/2diag(P (θ0)−1/2)(P (θ̂(l+1)
φ2

) − P (θ̂(l)
φ2

)) L−→
n→∞N(0,Σ∗), where

Σ∗ = (A(l+1) −A(l))diag(P (θ0)−1/2)ΣP (θ0)diag(P (θ0)−1/2)(A(l+1) −A(l))

= (A(l+1) −A(l))(I − P (θ0)1/2(P (θ0)1/2)T )(A(l+1) −A(l)),

and P (θ0)1/2 = (p1(θ0)1/2, . . . , pk(θ0)1/2)T . Then, because (P (θ0)1/2)Tdiag
(P (θ0)−1/2)ΣP (θ0)W(i) = 0, i = l, l + 1, we see that the expression above is
Σ∗ = (A(l+1)−A(l))(A(l+1)−A(l)) = A(l) −A(l+1). Now the matrix (A(l) −A(l+1))
is symmetric and idempotent with trace (A(l) − A(l+1)) = dl − dl+1, and hence
ZTZ is asymptotically a chi-squared distribution with dl − dl+1 degrees of free-
dom.

Finally then, T (l)
φ1,φ2

≡ 2n
φ′′1 (1)Dφ1(P (θ̂(l+1)

φ2
), P (θ̂(l)

φ2
)) L−→
n→∞χ2

dl−dl+1
.

Remark 2. There are important measures of divergence that are not possible
to write as φ-divergences, for instance, the divergence measures given by Bat-
tacharya, Renyi, and Sharma and Mittal. However, such measures can be written
in the following form: Dφ,h(P,Q) = h(Dφ(P,Q)), where h is a differentiable in-
creasing function mapping from [0,∞) onto [0,∞), with h(0) = 0 and h′(0) > 0,
and φ ∈ Φ. In the following table, we present these divergence measures.
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Divergence h(x) φ(x)

Renyi 1
r(r−1) log(r(r − 1)x+ 1); r �= 0, 1 xr−r(x−1)−1

r(r−1) ; r �= 0, 1

Sharma-Mittal 1
s−1{(1 + r(r − 1)x)

s−1
r−1 − 1}; s, r �= 1 xr−r(x−1)−1

r(r−1) ; r �= 0, 1

Battacharya − log(−x+ 1) −x1/2 + 1
2 (x + 1)

In the case of Renyi’s divergence, we have

D(r)(P,Q) =
1

r(r − 1)
log(

k∑
j=1

prjq
1−r
j ), r �= 0, 1,

and limiting cases for r = 0 and r = 1. That is, D(1)(P,Q) ≡ limr→1D
(r)(P,Q) =∑k

j=1 pj log pj

qj
, which is the Kullback-Leibler divergence. Similarly, D(0)(P,Q) =

k∑
j=1

qj log pj

qj
= D(1)(Q,P ).

Theorem 4. Under the assumptions given in Theorem 3, the asymptotic null
distribution of the test statistic

T
(l)
φ1,φ2,h1,h2

≡ 2n
φ′′1(1)h′1(0)

h1(Dφ1(P (θ̂(l+1)
φ2,h2

), P (θ̂(l)
φ2,h2

)))

is a chi-squared distribution with dl − dl+1 degrees of freedom, l = 1, . . . ,m − 1,
where θ̂

(l)
φ2,h2

and θ̂
(l+1)
φ2,h2

are the minimum (φ2, h2)-divergence estimators under

the models Hl and Hl+1, respectively, defined by θ̂
(l)
φ2,h2

≡ arg minθ∈Θl
h2(Dφ2

(P̂ , P (θ))), l = 1, . . . ,m.

Proof. Using a similar approach to that given in the proof of Theorem 3, it can
be established that Dφ1(P (θ̂(l+1)

φ2,h2
), P (θ̂(l)

φ2,h2
)) = φ′′1 (1)

2n Z̃T Z̃+ op(n−1), where Z̃T Z̃
is asymptotically a chi-squared distribution with dl − dl+1 degrees of freedom.

Further, because h1(x) = h1(0)+h′1(0)x+o(x), we have T (l)
φ1,φ2,h1,h2

= Z̃T Z̃+

op(1)
L−→n→∞ χ2

dl−dl+1
.

In the particular case of Renyi’s divergence, h1(x) = 1
r(r−1) log(r(r − 1)x +

1) and φ1(x) = xr−r(x−1)−1
r(r−1) , with r �= 0, 1. Then, from Theorem 4, we have

2n
r(r−1) log

k∑
j=1

pj(θ̂
(l+1)
φ2,h2

)rpj(θ̂
(l)
φ2,h2

)1−r L−→
n→∞χ2

dl−dl+1
.

Theorem 5. Under the assumptions of Theorems 3 and 4, the asymptotic null
distribution of each of the test statistics,

T̃
(l)
φ1,φ2

=
2n
φ′′1(1)

Dφ1(P (θ̂(l)
φ2

), P (θ̂(l+1)
φ2

)) (11)
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and
T̃

(l)
φ1,φ2,h1,h2

=
2n

φ′′1(1)h′1(0)
h1(Dφ1(P (θ̂(l)

φ2,h2
), P (θ̂(l+1)

φ2,h2
))), (12)

is a chi-squared distribution with dl − dl+1 degrees of freedom.

Proof. We consider the function ϕ(x) = xφ1(x−1). It is clear that ϕ(x) ∈
Φ, T (l)

ϕ,φ2
= T̃

(l)
φ1,φ2

, and T (l)
ϕ,φ2,h1,h2

= T̃
(l)
φ1,φ2,h1,h2

. Then the result follows directly
from Theorems 3 and 4.

A special case occurs if we put h1(x) = h2(x) = x, φ1(x) = − log x + x −
1, φ2(x) = x log x−(x−1) in the statistic T (l)

φ1,φ2
given in (10), or h1(x) = h2(x) =

x, φ1(x) = φ2(x) = x log x− (x − 1) in the statistic T̃ (l)
φ1,φ2

given in (11). In this
case, we obtain the classical likelihood ratio test statistic (Agresti (1996, p.197),
Christensen (1997, p.322)) and the well known result,

2n
k∑
j=1

pj(θ̂(l)) log
pj(θ̂(l))
pj(θ̂(l+1))

L−→
n→∞χ2

dl−dl+1
,

where θ̂(i) is the maximum likelihood estimator of θ under the model Hi (θ ∈ Θi);
i = l, l + 1.

Another important case occurs if we put h1(x) = h2(x) = x, φ1(x) = 1
x(1 −

x)2, φ2(x) = x log x − (x − 1) in the statistic T (l)
φ1,φ2

given in (10), or h1(x) =

h2(x) = x, φ1(x) = (1− x)2, φ2(x) = x log x− (x− 1) in the statistic T̃ (l)
φ1,φ2

given
in (11). Then we obtain a Pearson-type test statistic given in Agresti (1996,
p.197), and the result,

n
k∑
j=1

(pj(θ̂(l)) − pj(θ̂(l+1)))2

pj(θ̂(l+1))
L−→

n→∞χ2
dl−dl+1

.

Theorem 6. Suppose that data (X1, . . . ,Xk) are multinomially distributed ac-
cording to (2) and (7). Consider the nested sequence of hypotheses given by
(8) and (9). Choose functions φ1, φ2 ∈ Φ. Then, for testing hypotheses, H0 :
Hl+1 against H1 : Hl; l = 1, . . . ,m− 1, the test statistics,

S
(l)
φ =

2n
φ′′(1)

{Dφ(P̂ , P (θ̂(l+1)
φ )) −Dφ(P̂ , P (θ̂(l)

φ ))}, (13)

and
S

(l)
φ,h =

2n
φ′′(1)h′(0)

{h(Dφ(P̂ , P (θ̂(l+1)
φ,h ))) − h(Dφ(P̂ , P (θ̂(l)

φ,h)))}, (14)

are nonnegative and their asymptotic null distribution is chi-squared with dl−dl+1

degrees of freedom, l = 1, . . . ,m−1, where h is a differentiable increasing function
mapping from [0,∞) onto [0,∞), with h(0) = 0 and h′(0) > 0.
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Proof. It is clear that S(l)
φ ≥ 0, l = 1, . . . ,m − 1, because Dφ(P̂ , P (θ̂(l+1)

φ )) =

infθ∈Θl+1
Dφ(P̂ , P (θ)) ≥ infθ∈Θl

Dφ(P̂ , P (θ)) = Dφ(P̂ , P (θ̂(l)
φ )). Furthermore,

from the results of Menéndez, Morales and Pardo (1997), under Hl+1, we have
that S(l)

φ
L−→

n→∞χ2
dl−dl+1

. In a similar way, the results for S(l)
φ,h can be established.

Remark 3. The asymptotic result of Theorem 6 can be generalized further to
include a φ1 for divergence Dφ1 , and a φ2 for estimation θ̂(i)

φ2
. That is, the statistic

S
(l)
φ1,φ2

≡ 2n
φ′′1(1)

{Dφ1(P̂ , P (θ̂(l+1)
φ2

)) −Dφ1(P̂ , P (θ̂(l)
φ2

))} L−→
n→∞χ2

dl−dl+1

under Hl+1.

The special case of φ1(x) = (1 − x)2, φ2(x) = x log x − (x − 1) yields a
statistic based on the difference of Pearson X2 statistics with maximum likelihood
estimation used to obtain the expected frequencies (e.g., Agresti (1996, p.197)),
namely n{D(1−x)2(P̂ , P (θ̂(l+1))) −D(1−x)2(P̂ , P (θ̂(l)))}.

However, the nonnegativity of S(l)
φ1,φ2

does not hold when φ1 �= φ2. Thus, for
the case above, considered by Agresti, the difference of the Pearson X2 statistics
is not necessarily nonnegative. Since it is common to use maximum likelihood
estimation (that is, φ2(x) = x log x−(x−1)), the statistic S(l)

φ1,φ2
, where φ1 �= φ2, is

not all that interesting to us. Instead, we concentrate on the statistics T (l)
φ1,φ2,h1,h2

and T̃
(l)
φ1,φ2,h1,h2

given in Theorems 4 and 5, respectively, which are nonnegative
for all choices of φ1, φ2 ∈ Φ.

4. Application of Hierarchical Testing

In this section, we present an example of loglinear modeling of contingency
tables to demonstrate how Theorem 3 and its generalizations can be applied in
practice. We choose interesting cases (see below) for φ1, h1, φ2, h2 in the statistic,
T

(l)
φ1,φ2,h1,h2

≡ 2n
φ′′1 (1)h′1(0)h1(Dφ1(P (θ̂(l+1)

φ2,h2
), P (θ̂(l)

φ2,h2
))), to demonstrate its versatil-

ity.
During the period 1948 to August 1952, community members of Framing-

ham, Masachusetts had their cholesterol and systolic blood pressure measured.
The data analyzed here are for 1329 males aged 40-59 who showed no heart dis-
ease at the time of initial measurement. During a six-year follow-up, 92 of the
original 1329 males developed clinically manifest coronary heart disease. The
data are given in Table I. This example has been analyzed by Cornfield (1962)
and Medak and Cressie (1991).

We see that there are k = 2 × 4 × 4 = 32 categories. Although it is a slight
abuse of the notation used above, we use triple subscripts “ijk” to denote the
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categories: subscript “i” is for presence or absence of coronary heart disease,
subscript “j” is for level of systolic blood pressure, and subscript “k” is for level
of serum cholesterol.

Table I.

Coronary Heart Disease: Present (i = 1)
Systolic Blood Pressure (mm Hg)

Serum Cholesterol (j = 1) (j = 2) (j = 3) (j = 4)
(mg/100cc) < 127 127-146 147-166 ≥ 167
< 200 (k = 1) 2 3 3 4

200-219 (k = 2) 3 2 0 3
220-259 (k = 3) 8 11 6 6
≥ 260 (k = 4) 7 12 11 11

Coronary Heart Disease: Absent (i = 2)
Systolic Blood Pressure (mm Hg)

Serum Cholesterol (j = 1) (j = 2) (j = 3) (j = 4)
(mg/100cc) < 127 127-146 147-166 ≥ 167
< 200 (k = 1) 117 121 47 22

200-219 (k = 2) 85 98 43 20
220-259 (k = 3) 119 209 68 43
≥ 260 (k = 4) 67 99 46 33

Grand Total 1329

Following Medak and Cressie (1991), consider the following hierarchy of log-
linear models:

H1 : log(pijk(θ)) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ13(ik) + θ23(jk)
H2 : log(pijk(θ)) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ13(ik)
H3 : log(pijk(θ)) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij)
H4 : log(pijk(θ)) = u+ θ1(i) + θ2(j) + θ3(k)
H5 : log(pijk(θ)) = u+ θ1(i) + θ3(k)
H6 : log(pijk(θ)) = u+ θ3(k)
H7 : log(pijk(θ)) = u,

where i = 1, 2; j = 1, 2, 3, 4; and k = 1, 2, 3, 4. Here, exp(−u) is the normalizing
constant and the subscripted θ-terms add to zero over each of their indices. Write
θ as the collection of these subscripted terms; then the models H1, . . . ,H7 can
be written as Hl : θ ∈ Θl, l = 1, . . . , 7, respectively.

We consider the minimum power-divergence estimator given by θ̂φ2,h2, where
φ2(x) = φ(λ)(x) ≡ (λ(λ + 1))−1(xλ+1 − x), h2(x) = x. Cressie and Read (1984)
introduced this family and showed that not only were the familiar likelihood-
based (λ = 0) and Pearson-based (λ = 1) estimators and test statistics included,
but that a new member, λ = 2/3, demonstrated superior performance in some
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settings. For estimating parameters in a mixture of normal distributions, Pardo
(1999) showed that the best member of the family was λ = 2/3.

For the goodness-of-fit statistic, we choose Renyi’s divergence given by,
φ1(x) = φ(r)(x) ≡ xr−r(x−1)−1

r(r−1) , h1(x) = 1
r(r−1) log(r(r − 1)x + 1), r �= 0, 1, and

limiting cases for r = 0, 1. Renyi’s divergence has been used succesfully for testing
composite hypotheses in a normal model, in Morales, Pardo and Vajda (1997).

Therefore, the statistic for testing the nested sequence of hypotheses is given
by,

T
(l)
φ(r),φ(λ),h1,h2

=
2n

r(r − 1)
log

k∑
j=1

pj(θ̂
(l+1)
(λ) )rpj(θ̂

(l)
(λ))

1−r, r �= 0, 1,

and limiting cases for r = 0 or 1. For example, for r = 1,

T
(l)
φ(1),φ(λ),h1,h2

= 2n
k∑
j=1

pj(θ̂
(l+1)
(λ) ) log

pj(θ̂
(l+1)
(λ) )

pj(θ̂
(l)
(λ))

,

where l = 1, . . . ,m− 1. In the analysis that follows, we consider λ = 0, 2/3, 1 in
φ2 and r = 1, 2 in φ1.

λ = 0
In the following table we give the minimum power-divergence estimator for

the case λ = 0 (i.e., the MLE) and the model H1. This estimator has been
obtained using the statistics package Statgraphics Plus (1993).

MODEL H1

Factor θ̂
(1)
φ(0)

Factor θ̂
(1)
φ(0)

Factor θ̂
(1)
φ(0)

Factor θ̂
(1)
φ(0)

θij 21 0.21226 32 0.01286

θ1(i) 11 -0.21140 22 0.31617 33 -0.05763

1 -1.31713 12 -0.23215 23 -0.06875 34 0.07857

2 1.31713 13 0.05477 24 -0.45968 41 -0.16907

θ2(j) 14 0.38878 θjk 42 -0.08602

1 0.17515 21 0.21140 11 0.22180 43 0.01803

2 0.43751 22 0.23215 12 0.11373 44 0.23706

3 -0.19092 23 -0.05477 13 -0.11440

4 -0.42174 24 -0.38878 14 -0.22113

θ3(k) θik 21 -0.01894

1 -0.23167 11 -0.21226 22 -0.04057

2 -0.52367 12 -0.31617 23 0.15400

3 0.42836 13 0.06875 24 -0.09449

4 0.32698 14 0.45968 31 -0.03380

In the following table, we present the expected frequencies obtained using
the estimator θ̂(1)

φ(0)
given in the table above.
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Coronary Heart Disease: Present (i = 1)
Systolic Blood Pressure (mm Hg)

Serum Cholesterol (j = 1) (j = 2) (j = 3) (j = 4)
(mg/100cc) < 127 127-146 147-166 ≥ 167
< 200 (k = 1) 3.6 3.6 2.5 2.4

200-219 (k = 2) 2.1 2.3 1.8 1.8
220-259 (k = 3) 6.5 10.8 6.2 7.4
≥ 260 (k = 4) 7.8 11.3 9.5 12.4

Coronary Heart Disease: Absent (i = 2)
Systolic Blood Pressure (mm Hg)

Serum Cholesterol (j = 1) (j = 2) (j = 3) (j = 4)
(mg/100cc) < 127 127-146 147-166 ≥ 167
< 200 (k = 1) 115.5 120.4 47.5 23.6

200-219 (k = 2) 85.9 97.7 41.2 21.2
220-259 (k = 3) 120.5 209.2 67.8 41.6
≥ 260 (k = 4) 66.2 99.7 47.5 31.6

Grand Total 1329

In a similar way, we have obtained the corresponding values for the models
H2, . . . ,H7, although they are not given here.

Now, for λ = 0, we present the values of the statistics T (l)
φ(1),φ(0),h1,h2

and

T
(l)
φ(2),φ(0),h1,h2

, as well as the critical points to be used for the selection of an
appropriate model.

Hl+1 v. Hl dl − dl+1 T
(l)
φ(1),φ(0),h1,h2

T
(l)
φ(2),φ(0),h1,h2

χ2
dl−dl+1,0.01

2 versus 1 9 18.8821 18.5993 21.6676
3 versus 2 3 32.3665 34.0836 11.3462
4 versus 3 3 21.2012 19.6293 11.3462
5 versus 4 3 348.3705 357.1923 11.3462
6 versus 5 1 1792.9995 1796.7157 6.6385
7 versus 6 3 77.3392 70.9508 11.3462

We can see, using the model-selection criterion given above, that we must choose
the model H2. That is, given the presence/absence of coronary heart disease,
cholesterol and blood pressure are conditionally independent.

To obtain minimum power-divergence estimators of θ′s for λ �= 0, we use
the IMSL subroutine ZXMIN based on a quasi-Newton method of minimization.
Good starting values are crucial for the iterative procedures. Given a model
for Hl, we computed the MLE’s of θ′s. Then, for each lambda, we generated
2000 starting points from a dl-dimensional hypercube centered on the MLE’s.
Averaging the resulting minimum power-divergence estimators avoids difficulties
with bad starting values.
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λ = 1
For comparison and illustration, we give the minimum power-divergence es-

timator for the case λ = 1 and the models H1 and H4.

MODEL H1

Factor θ̂
(1)
φ(1)

Factor θ̂
(1)
φ(1)

Factor θ̂
(1)
φ(1)

Factor θ̂
(1)
φ(1)

θij 21 0.21282 32 0.01383

θ1(i) 11 -0.21061 22 0.31545 33 -0.05738

1 -1.31671 12 -0.23150 23 -0.06917 34 0.07836

2 1.31671 13 0.05526 24 -0.45919 41 -0.16760

θ2(j) 14 0.38685 θjk 42 -0.08633

1 0.17528 21 0.21061 11 0.21827 43 0.01981

2 0.43689 22 0.23150 12 0.11334 44 0.23412

3 -0.19030 23 -0.05526 13 -0.11537

4 -0.42187 24 -0.38684 14 -0.21979

θ3(k) θik 21 −0.01975

1 -0.23150 11 -0.21291 22 −0.04084

2 -0.52371 12 -0.31545 23 0.15329

3 0.42806 13 0.06917 24 −0.09269

4 0.32714 14 0.45919 31 -0.03446

MODEL H4

Factor θ̂
(4)
φ(1)

θ1(i)
1 -1.16226
2 1.16226

θ2(j)
1 0.32255
2 0.62154
3 -0.27516
4 -0.66893

θ3(k)

1 -0.01078
2 -0.24357
3 0.35180
4 0.09744

Now, for λ = 1, we present the values of the statistics T (l)
φ(1),φ(1),h1,h2

, and

T
(l)
φ(2),φ(1),h1,h2

, as well as the critical points to be used for the selection of an
appropriate model.
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Hl+1 v. Hl dl − dl+1 T
(l)
φ(1),φ(1),h1,h2

T
(l)
φ(2),φ(1),h1,h2

χ2
dl+1−dl,0.01

2 versus 1 9 19.1562 18.7796 21.6676
3 versus 2 3 38.5508 45.7661 11.3462
4 versus 3 3 29.9479 30.9946 11.3462
5 versus 4 3 327.1631 331.6542 11.3462
6 versus 5 1 1732.8761 1732.8202 6.6385
7 versus 6 3 91.4849 86.7172 11.3462

Notice that similar results are obtained here as for λ = 0, leading to the same
choice of model, namely H2.

λ = 2/3
For comparison and illustration, we give the minimum power-divergence es-

timators for the case λ = 2/3 and the model H1 and H5.

MODEL H1

Factor θ̂
(1)
φ(2/3)

Factor θ̂
(1)
φ(2/3)

Factor θ̂
(1)
φ(2/3)

Factor θ̂
(1)
φ(2/3)

θij 21 0.21291 32 0.01383
θ1(i) 11 -2.10608 22 0.31542 33 -0.05773

1 -1.31671 12 -0.23150 23 -0.06917 34 0.07837
2 1.31671 13 0.05526 24 -0.45919 41 -0.16760

θ2(j) 14 0.38685 θjk 42 -0.08633
1 0.17528 21 0.21061 11 0.22182 43 0.01981
2 0.43689 22 0.23150 12 0.11333 44 0.23412
3 -0.19030 23 -0.05263 13 -0.11537
4 -0.42187 24 -0.38685 14 -0.21979

θ3(k) θik 21 -0.01975
1 -0.23150 11 -0.21291 22 -0.04084
2 -0.52371 12 -0.31545 23 0.15329
3 0.42806 13 0.06917 24 -0.09269
4 0.32715 14 0.45919 31 -0.03446

MODEL H5

Factor θ̂
(5)
φ(2/3)

θ1(i)
1 -1.27839
2 1.27839

θ3(k)

1 0.00129
2 -0.23751
3 0.38131
4 -0.45101



882 NOEL CRESSIE AND LEANDRO PARDO

Now, for λ = 2/3, we present the values of the statistics T (l)
φ(1),φ(2/3),h1,h2

and

T
(l)
φ(2),φ(2/3),h1,h2

, as well as the critical points to be used for the selection of an
appropriate model.

Hl+1 v. Hl dl − dl+1 T
(l)
φ(1),φ(2/3),h1,h2

T
(l)
φ(2),φ(2/3),h1,h2

χ2
dl+1−dl,0.01

2 versus 1 9 19.1562 18.7796 21.6676
3 versus 2 3 34.7833 39.6591 11.3462
4 versus 3 3 26.7233 26.4015 11.3462
5 versus 4 3 332.6503 338.4426 11.3462
6 versus 5 1 1756.0330 1755.9999 6.6385
7 versus 6 3 85.6067 81.0606 11.3462

Once again, the model H2 is chosen from among the sequence of nested models
hypotheses, H1, . . . ,H7.

Remark 4. We can also solve the nested-hypothesis problem with the statis-
tic S(l)

φ given in (13) of Theorem 6. If we consider φ(x) = φ(λ)(x) ≡ (λ(λ +
1))−1(xλ+1 − 1), then for testing Hl+1 versus Hl, we obtain the statistic,

S
(l)
φ(λ)

=
2n

λ(λ+ 1)

{ k∑
j=1

p̂j
(( p̂j

pj(θ̂
(l+1)
φ(λ)

)

)λ − ( p̂j

pj(θ̂
(l)
φ(λ)

)

)λ)}
.

When λ = 2/3, we obtain the following values of the statistic S(l)
φ(2/3)

, as well as
the critical points to be used for the selection of an appropriate model. Once
again, model H2 is chosen.

Hl v. Hl+1 dl − dl+1 S
(l)
φ(2/3)

χ2
dl+1−dl,0.01

2 versus 1 9 19.860 21.6676
3 versus 2 3 31.018 11.3462
4 versus 3 3 30.129 11.3462
5 versus 4 3 304.275 11.3462
6 versus 5 1 1170.346 6.6385
7 versus 6 3 187.891 11.3462

It should be noted that the choice of different test statistics yields different
values but no difference in model choice. This is to be hoped for, however it is
not guaranteed in every problem and for every choice of φ and h. Asymptotically,
the statistics have the same distribution, but in finite samples their performances
will differ. In future work we will compare important family members, inter alia
those considered here, through a simulation study.
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5. Conclusions

Inference for categorical data is an important problem whose history goes
back at least as far as Karl Pearson’s work in the late nineteenth century on
goodness-of-fit statistics. In the 1920s, Ronald Fisher advocated likelihood-based
methods and, for much of the rest of the twentieth century, the pros and cons of
both were debated. In the recent past, it has been realized that inferences can
be based on the more general notion of divergence between discrete probability
measures; see Section 1 for a brief literature review. The purpose of this paper has
been to build on this reseach. Assuming multinomial sampling and a loglinear
model, we present the most general asymptotic results possible for minimum-
divergence estimation, divergence-based goodness-of-fit testing, and choosing a
model from a nested sequence of hypotheses. Any estimator or statistic that
is divergence-based is covered by our results. We apply them in interesting
special cases (e.g., the minimum power-divergence estimator coupled with Renyi’s
goodness-of-fit statistic) to a data set concerned with heart disease, cholesterol,
and blood pressure.
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