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Abstract: In this paper penalized weighted least-squares is used to jointly estimate

nonparametric functions from contemporaneously correlated data. Under condi-

tions generally encountered in practice, it is shown that these joint estimates have

smaller posterior variances than those of marginal estimates and are therefore more

efficient. We describe three methods: generalized maximum likelihood (GML), gen-

eralized cross validation (GCV) and leaving-out-one-pair cross validation (CV) to

estimate the smoothing parameters, the weighting parameter and the correlation

parameter simultaneously. Based on simulations we conclude that the GML method

has smaller mean-square errors for the nonparametric functions and the parame-

ters and needs less computational time than the other methods. Also, it does not

overfit data when the sample size is small. Our research is motivated by and is

applied to the problem of estimating associations between hormones. We find that

the circadian rhythms of the hormones ACTH and cortisol have similar patterns

and that cortisol lags ACTH.
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1. Introduction

In many applications two or more dependent variables are observed at several
values of the independent variables, such as at multiple time points. The statis-
tical problem is (i) to estimate functions that model their dependences on the
independent variables, and (ii) to investigate relationships between these func-
tions. This paper was motivated by the problem of possible association between
hormone levels that vary over time. Hormone concentrations are assayed in a
sequence of blood samples from each of several subjects. The biomedical investi-
gators want to test whether the secretion of one hormone influences the secretion
of another and/or whether the concentration level of a hormone provides feed-
back to another. Even though temporal associations between the two responses
do not prove a causal relationship, they provide valuable insights and interesting
hypotheses that motivate further studies.
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There is a vast literature on parametric regression models with more than
one response variable. Zellner (1962) and Gallant (1975) proposed generalized
least-squares estimators for a set of seemingly unrelated linear and nonlinear re-
gression functions respectively. Box and Draper (1965) developed a determinant
criterion based on a Bayesian argument for multiresponse data. They showed
that combining information from several responses provides more precise esti-
mates of the parameters when design matrices are different.

When it is difficult to assume specific forms for the regression functions, it is
preferable to make few assumptions about these functions (see, e.g., Wang and
Brown (1996)). Nonparametric regression models, especially smoothing splines,
provide powerful tools to model these functions. Many authors have considered
nonparametric models for multiresponse data. Wegman (1981), Miller and Weg-
man (1987) and Fessler (1991) proposed algorithms for spline smoothing. Wahba
(1992) developed the theory of general smoothing splines using reproducing ker-
nel Hilbert spaces. Soo and Bates (1996) used regression splines. Yee and Wild
(1996) considered additive models for multiresponse data from exponential fami-
lies. All but Soo and Bates (1996) assumed that the covariance matrix is known,
which is usually not true in practice. When the covariance matrix is known, a
simple transformation can be used. Therefore the existing methods can be easily
modified for calculation. When the covariance matrix is unknown, it has to be es-
timated from the data and can affect the estimates of the smoothing parameters
(Wang (1998)).

In this paper the covariance parameters are unknown. Penalized weighted
least-squares is used to estimate the nonparametric functions. Contrary to the
well-known results for multivariate linear regression models, it is shown that
these penalized weighted least-squares estimates are more efficient than function-
by-function estimates when design points are the same. The equations for the
coefficients in the representations of the solutions are different from those in
the independent cases. Therefore, existing algorithms can not be used directly.
We propose a method to calculate the estimates and develop the necessary al-
gorithm. We extend the GML and GCV methods to estimate the covariance
parameters and the smoothing parameters simultaneously. We also propose a
new leaving-out-one-pair CV method and derive a “leaving-out-one-pair” lemma
for computations. We compare the GML, GCV and CV methods by simulation.

Kalman filter representations of polynomial smoothing splines were used
in Anderson, Jones and Swanson (1990) to model bivariate responses. Their
methods were limited to cases where the domains of the functions are intervals. In
this paper we consider general spline models in reproducing kernel Hilbert spaces.
In doing so, our models can be easily adapted to situations where the domains
of the functions are Euclidean spaces and/or observations are linear functionals
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instead of evaluations. Myers (1991) discussed these cases with examples in earth
science. He commented that co-kriging, instead of thin plate spline, was used
for multiple responses since “kriging is more easily extended in a natural way”.
Our proposed methods show that extensions of the spline models are just as
easy and natural. Another interesting application of our model is the problem of
combining data from multiple sources (Myers (1991), Gao (1994)). This problem
arises in meteorology where one attribute such as rainfall is measured by several
different methods such as rain gauges and radar. Our model can combine these
measurements to provide more precise estimates or predictions. For simplicity we
use cubic splines in this paper. Our models and methods can be written in terms
of general spline models and therefore have many more potential applications.

In the next section, we formulate the model for bivariate responses and pro-
pose methods for estimating the nonparametric functions and the parameters in
the model. We also show that the joint estimates are more efficient than function-
by-function estimates, a property different from that in multivariate linear regres-
sion models. In Section 3, we conduct simulations to compare the performance
of the CV, GCV and GML methods. We fit a SEMOR (self-modeling) model to
data consisting of sequences of hormone concentration levels and investigate pos-
sible associations between two hormones in Section 4. Discussion and conclusions
are in Section 5.

2. Models and Estimation

2.1. Bivariate models

For simplicity we only consider bivariate responses. Our methods can be
easily extended to multiresponse data. Assume the following model:

yki = fk(tki) + εki, k = 1, 2; i = 1, . . . , nk, (1)

where the ith response of the kth variable yki is generated by the kth function
fk evaluated at the design point tki plus a random error εki. Assume εki

i.i.d.∼
N(0, σ2

k) for fixed k = 1, 2, and Corr(ε1i, ε2j) = ρ if y1i and y2j are a pair (e.g.
observations obtained at the same time) and zero otherwise. We do not assume
that the design points t1i and t2i are the same. For a design point where only
one response variable is measured, it is conceptually equivalent to a pair with
the other response variable missing at random.

For simplicity of notation, we assume that the domains of both functions are
[0, 1] and fk ∈ W2, where

W2 = {f : f, f ′ absolutely continuous,
∫ 1

0
(f ′′(t))2dt < ∞}.
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Our methods can be easily extended to the general smoothing spline models
where the two domains are arbitrary (thus could be different) and the observa-
tions are linear functionals instead of evaluations (Wahba (1990, 1992)).

2.2. Estimation of the nonparametric functions

Denote tk = (tk1, . . . , tknk
)T , fk = (fk(tk1), . . . , fk(tknk

))T , yk = (yk1, . . .,
yknk

)T , εk = (εk1, . . . , εknk
)T , f = (fT

1 ,fT
2 )T , and y = (yT

1 ,yT
2 )T , where the

superscript T refers to transpose. Let θ = σ1σ2; r = σ1/σ2; J be a n1 × n2

matrix with (i, j)th element equal to 1 if the ith element of y1 and the jth
element of y2 is a pair, and zero otherwise. Note that J = I, the identity matrix,
when all observations come in pairs. Let

W−1 =

(
rIn1 ρJ

ρJT In2/r

)
, (2)

then y ∼ N(f , θW−1).
The functions fk are estimated by carrying out the following penalized

weighted least-squares

min
f1,f2∈W2

{
(y − f)T W (y − f) + λ1

∫ 1

0
(f ′′

1 (t))2dt + λ2

∫ 1

0
(f ′′

2 (t))2dt

}
. (3)

The parameters λk control the trade-off between goodness-of-fit and the smooth-
ness of the estimates and are referred to as smoothing parameters.

Let φ1(t) = 1, φ2(t) = t−1/2, R1(s, t) = k2(s)k2(t)−k4(s−t), where kν(·) =
Bν(·)/ν! and Bν(·) is the νth Bernoulli polynomial. Let Tk = {φν(tki)}nk

i=1
2
ν=1;

T = diag(T1, T2); Σk = {R1(tki, tkj)}nk
i=1

nk

j=1 and Σ = diag(Σ1,Σ2). Similar to
Wahba (1990) we can show that for fixed λ1, λ2, r and ρ, the solution to (3) is

f̂k(t) =
2∑

ν=1

dkνφν(t) +
nk∑
i=1

ckiR
1(t, tki), k = 1, 2, (4)

where c = (c11, . . . , c1n1 , c21, . . . , c2n2)
T and d = (d11, d12, d21, d22)T are solutions

to (
T T WT T T WΣ
ΣWT ΣWΣ + diag(λ1Σ1, λ2Σ2)

)(
d

c

)
=

(
T T Wy

ΣWy

)
. (5)

It is easy to show that f̂ = (f̂1(t11), . . . , f̂1(t1n1), f̂2(t21), . . . , f̂2(t2n2))
T = Td+Σc

is always unique when T is of full column rank, which we assume to be true in
this paper. It can be verified that a solution to{

(Σ + W−1diag(λ1In1, λ2In2))c + Td = y,

T T c = 0,
(6)
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is also a solution to (5). Thus we need to solve (6) for c and d. Since observa-
tions are correlated, equations (6) are different from (8) in Gu (1989). There-
fore existing programs such as RKPACK cannot be used to solve (6). In fact,
W−1diag(λ1In1, λ2In2) is asymmetric if λ1 �= λ2 and ρ �= 0. To calculate the coef-
ficients c and d, we use the following transformations: Σ̃ = Σdiag(In1/λ1, In2/λ2)
and c̃ = diag(λ1In1, λ2In2)c. Then (6) is equivalent to{

(Σ̃ + W−1)c̃ + Td = y,

T T c̃ = 0.
(7)

Let

Tk = (Qk1, Qk2)

(
Rk

0

)
, k = 1, 2,

be the QR decompositions. Let Q1 = diag(Q11, Q21); Q2 = diag(Q12, Q22);
R = diag(R1, R2) and B = Σ̃ + W−1. Similar to Wahba (1990), it can be shown
that the solutions to (7) are

c̃ = Q2(QT
2 BQ2)−1QT

2 y,

Rd = QT
1 (y − Bc̃). (8)

It is easy to check that f̂ = Ay, where

A = I − W−1Q2(QT
2 BQ2)−1QT

2 (9)

is the “hat” matrix. Note that A is not symmetric, which is different from the
usual independent case.

2.3. Estimations of parameters

So far we have assumed that the parameters λ1, λ2, r and ρ are fixed. In
practice it is very important to estimate these parameters from the data. Since
observations are correlated, popular methods such as the usual GML method and
the GCV method may underestimate the smoothing parameters λ1 and λ2 (Wang
(1998)). In this section we propose the following three methods to estimate the
smoothing parameters λ1 and λ2, the weighting parameter r and the correlation
parameter ρ simultaneously: (1) an extension of the GML method based on a
Bayesian model; (2) an extension of the GCV method; and (3) leaving-out-one-
pair cross validation. We compare these three methods through simulation in
Section 3.

Wang (1998) proposed the GML and GCV methods for correlated obser-
vations with one smoothing parameter. In a bivariate model, there are two
smoothing parameters which need to be estimated simultaneously together with
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the covariance parameters. Following a similar derivation, we extend the GML
and GCV in Wang (1998) as follows.

The GML estimates of λ1, λ2, r and ρ are minimizers of the following GML
function:

M(λ1, λ2, r, ρ) =
yT W (I − A)y

[det+(W (I − A))]
1

n−4

=
zT (QT

2 BQ2)−1z

[det(QT
2 BQ2)−1]

1
n−4

, (10)

where n = n1 +n2; det+ is the product of the nonzero eigenvalues and z = QT
2 y.

The minimizers of M(λ1, λ2, r, ρ) are called GML estimates.
The GCV estimates of λ1, λ2, r and ρ are minimizers of the following GCV

function:

V (λ1, λ2, r, ρ) =
||W (I − A)y||2
[Tr(W (I − A))]2

=
zT (QT

2 BQ2)−2z

[Tr(QT
2 BQ2)−1]2

. (11)

In the following we propose a cross validation method based on a leaving-out-
one-pair procedure. Suppose there are a total of N (N ≥ max{n1, n2}) distinct
time points and thus N pairs of observations. Any one observation in a pair
may be missing. These pairs are numbered from 1 to N . We use the following
notation: superscripts (i) to denote the collection of elements corresponding to
the ith pair; superscripts [i] to denote the collection of elements after deleting
the ith pair; superscripts {i} to denote solution of fk without the ith pair. When
one observation in a pair is missing, superscripts indicate a single observation
instead of a pair. f̂

{i}
1 and f̂

{i}
2 are solutions to

min
f1,f2∈W2

{
(y[i] − f [i])T W [i](y[i] − f [i]) + λ1

∫ 1

0
(f ′′

1 (t))2dt + λ2

∫ 1

0
(f ′′

2 (t))2dt

}
.

(12)
Assume that there are two elements in the ith pair (it is simple if there is only

one). Denote i1 and i2 as the row numbers of this pair in y1 and y2 respectively.
Define

y∗kj =

{
ykj, j �= ik,

f̂
{i}
k (tkik), j = ik, k = 1, 2.

Denote y∗
k = (y∗k1, . . . , y

∗
knk

)T , y∗ = (y∗T
1 ,y∗T

2 )T and f̂{i}(t) = (f̂{i}
1 (t11), . . .,

f̂
{i}
1 (t1n1), f̂

{i}
2 (t21), . . . , f̂

{i}
2 (t2n2)). Then we have the following “leaving-out-

one-pair” lemma.

Lemma 1. For fixed λ1, λ2, r, ρ and i, f̂{i}(t) = Ay∗.

As a consequence of this lemma, we do not need to solve separate minimiza-
tion problems (12) for each deleting-one-pair set. All we need to do is to solve
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the following equations(
1 − a(i1, i1) −a(i1, n1 + i2)

−a(n1 + i2, i1) 1 − a(n1 + i2, n1 + i2)

)(
f̂
{i}
1 (t1i1) − y1i1

f̂
{i}
2 (t2i2) − y2i2

)
=

(
f̂1(t1i1) − y1i1

f̂2(t2i2) − y2i2

)

(13)
for f̂

{i}
k (tkik) − ykik , where a(i, j) are elements of the matrix A. If there is only

one observation in the ith pair, for example y1i1, we then have the following
equation

(1 − a(i1, i1))(f̂
{i}
1 (t1i1) − y1i1) = f̂1(t1i1) − y1i1 . (14)

Note that (14) is exactly the same as the “leaving-out-one” lemma in the inde-
pendent case. The proofs of Lemma 1 and (13) are given in the Appendix.

Let f̂
{−}
k = (f̂{ik1}

k (tk1), . . . , f̂
{iknk

}
k (tknk

))T and f̂
{−}

= (f̂
{−}T

1 , f̂
{−}T

2 )T ,
where ikj denotes the index of the pair for observation ykj. Define the cross
validation score as

C(λ1, λ2, r, ρ) =
1
n
||W (y − f̂

{−}
)||2. (15)

C estimates the weighted mean-square errors (WMSE) (Wang (1998)). The min-
imizers of C(λ1, λ2, r, ρ) are called cross validation estimates of the parameters.

It is obvious from the proofs in the Appendix that the leaving-out-one-pair
lemma is true for leaving-out-one-cluster. So this cross validation method can
be easily modified for longitudinal data and curved data, where a cluster is a
subject or a curve. This lemma is more general than that of Rice and Silverman
(1991) since weighted least-squares, instead of least-squares is used and we do
not assume that the design points are the same for all curves.

We developed a new package BIVSPLINE using Fortran 77 and some sub-
routines from LINPACK (Dongarra, Moler, Bunch and Stewart (1979)). This
package solves equation (7) and estimates smoothing parameters and covariance
parameters using GML, GCV and leaving-out-one-pair CV. The package is avail-
able from the authors.

2.4. Properties of the joint estimates

In Section 2.2 we proposed to estimate functions f1 and f2 jointly by mini-
mizing the joint weighted least-squares. One may also estimate these functions
separately by minimizing the marginal least-squares. For multivariate linear
regression models it is well-known that the joint estimates equal function-by-
function estimates when the sampling points for the two functions are the same
(t1 = t2). When sampling points are different, the joint estimates are more
efficient (Zellner (1962), Gallant (1975)). In the smoothing spline context the
posterior covariances are often used to construct Bayesian confidence intervals
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(Wahba (1990)). In this section we show that the covariance matrix of the sepa-
rately estimated functions minus the covariance matrix of the jointly estimated
functions is positive semi-definite when t1 = t2. Therefore the joint estimates
are more efficient even when design points are the same.

Consider the following prior for fk:

Fk(t) =
2∑

ν=1

δkνφν(t) + b
1/2
k Xk(t), k = 1, 2, (16)

where δkν
i.i.d.∼ N(0, a); a and bk are positive constants; Xk(t) is a zero mean Gaus-

sian stochastic process independent of δkν with covariance function E(Xk(s)Xk(t))
= R1(s, t). Assume F1 and F2 are independent and observations are generated
by

yk = F k + εk, k = 1, 2, (17)

where F k = (Fk(tk1), . . . , Fk(tknk
))T , εk is as defined in (1). Let F = (F T

1 ,F T
2 )T .

Following the same arguments as in Wahba (1990) and Wang (1998), with λk =
θ/bk, we have

lim
a→∞E(F |y) = f̂ ,

lim
a→∞Cov(F |y) = θAW−1. (18)

For simplicity we assume that there are no missing data and t1 = t2. Let
f̃k be the function-by-function estimates. That is, they are minimizers of the
following separate marginal penalized least-squares

min
fk∈W2

{
(yk − fk)

T (yk − fk) + λ̃k

∫ 1

0
(f ′′

k (t))2dt

}
, (19)

where λ̃k are smoothing parameters. Let f̃k = (f̃k(tk1), . . . , f̃k(tknk
)) and f̃ =

(f̃
T
1 , f̃

T
2 )T . From Wahba (1990), f̃k = Akyk, where Ak = I − Qk2(QT

k2(I +
Σk/λ̃k)Qk2)−1QT

k2. With the same Bayesian model defined in (16) and (17), it is
shown in the Appendix that with λ̃k = σ2

k/bk,

lim
a→∞E(F k|yk) = f̃k,

lim
a→∞Cov(f̃ − F ) = θG, (20)

where

G =

(
rA1 ρA1A2

ρA2A1 A2/r

)
.

Theorem 1. G−AW−1 is positive semi-definite. Furthermore, if ρ �= 0, λ1 < ∞,
λ2 < ∞ and the Σk are full rank, then xT (G−AW−1)x > 0 for any x∈̄span(T ).
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The proof is given in the Appendix. The diagonal elements of these posterior
covariances are often used to construct Bayesian confidence intervals. Theorem
1 indicates that the Bayesian confidence intervals of the joint estimates are nar-
rower than those of the separate estimates. Since vectors with all elements but
one equal to zero are usually not in the space spanned by T , the confidence inter-
vals of the joint estimates are usually strictly narrower. Note that when λ1 = ∞
and λ2 = ∞, the spline models are reduced to multivariate linear regression mod-
els. As is well-known, the joint estimates and the function-by-function estimates
are the same.

3. Simulation

In this section we conduct simulations to compare the CV, GCV and GML
methods. The underlying model is

y1i = sin 2πi/N + ε1i,

y2i = sin 2π(i/N)2 + ε2i, i = 1, . . . , N.

Four different sample sizes N = 50, 100, 200, 400, all four combinations of
standard deviations σ1, σ2 = 0.1, 0.2, and seven different correlations ρ = −0.75,
−0.5,−0.25, 0, 0.25, 0.5, 0.75 are used. Other functions and combinations of pa-
rameters are also used. Since all the results are similar, we only report results
for N = 100, σ1 = σ2 = 0.1 and ρ = 0.5. Responses are generated for 100
replications.

r ρ MSE of f1 MSE of f2
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Figure 1. Plots from left to right are: estimates of r, estimates of ρ, mean-
square errors of f̂1 and mean-square errors of f̂2. The dotted lines in the left
two plots indicate the true values.

Figure 1 presents the estimates of r and ρ, and the mean-square errors of
f̂1 and f̂2 in 100 replications. From these plots we can see that the GML and
GCV estimates of r and ρ have small biases and variances. The CV estimates
of r have smaller variances, but the CV estimates of ρ have larger biases. From
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the mean-square errors and plots of the estimated functions (not shown here)
we conclude that all three methods estimate the smoothing parameters and the
functions well. The GML and CV provide better estimates than GCV in terms
of mean-square error. The GML method is more stable when the sample size is
small, such as when N = 50. In this case there were several replications where
GCV and CV provided very small estimates of smoothing parameters which lead
to over-fitting the data. This behavior of the GCV method was investigated in
Wahba and Wang (1993) and Wang (1998). The GCV method performs as well as
the GML method for moderate sample sizes (N = 200, 400) and better than the
GML method for very large sample sizes. The CV method is computationally
more intensive than the GML and GCV methods. Overall the GML method
works well and is recommended.
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Figure 2. Contour plots of the three functions of the first replicate in the
simulation with N = 100, σ1 = σ2 = 0.1 and ρ = 0.5. In the first row criteria
scores are plotted as functions of two smoothing parameters with r = 1 and
ρ = 0.5. In the second row criteria scores are plotted as functions of r and ρ
with two smoothing parameters fixed at − log10 λ1 = − log10 λ2 = 4.

To examine the shape of the functions M , V and C, we show “typical” (i.e.,
the first replicate of the simulation) contour plots of these three functions in
Figure 2. We can see from these plots that each function has a unique minimum
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inside the search region, near the true value of r. The GML and GCV functions
have minima near the true value of ρ, while the minimum of the CV function is
far away. All functions have nice bowl shapes near their local minima.

To compare empirically the marginal and the joint methods, we calculate
ratios between mean-square errors of the function-by-function estimators and
mean-square errors of the penalized weighted least-squares estimators for each
of the 100 replications. The geometric averages of these ratios are presented
in Figure 3. Based on this and other simulations not shown here, we find the
ratio increases with the increase of correlation, complexity of the function and
variances. The improvement in this particular case (N = 100 and σ1 = σ2 = 0.1)
is small. For some simulations the improvement is more than 30%.
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−0.5

Figure 3. N = 100 and σ1 = σ2 = 0.1. Geometric averages of ratios between
mean-square errors of the marginal estimators and mean-square errors of the
joint estimators. Points are marked as 1 for the first function and 2 for the
second function.

For marginal estimators, the diagonal elements in (20) are often used to
construct Bayesian confidence intervals (Wahba (1983)). Similar Bayesian con-
fidence intervals can be constructed for the joint estimators using the diagonal
elements in (18). In the simulation with N = 100, σ1 = σ2 = 0.1 and ρ = 0.5,
we construct Bayesian confidence intervals for joint estimators. We then calcu-
late across-the-function coverages for each of 100 simulation replications as the
percentage of the number of design points at which Bayesian confidence inter-
vals cover the true function. Box plots of these across the function coverage are
presented in the left frame of Figure 4. At each design point, we also calculate
pointwise coverage as the percentage of the number of simulation replicates that
the Bayesian confidence intervals cover the true function at this point. Pointwise
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coverages are presented in the right frame of Figure 4. These plots show that the
Bayesian confidence intervals for the joint estimators performed well.
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Figure 4. Left: Box plots of across the function coverage of 95% Bayesian
confidence intervals. Labels “f1” and “f2” represent the first and the sec-
ond functions. “m” and “j” represent marginal and joint estimators. Right:
above are the pointwise percentages that the 95% Bayesian confidence inter-
vals cover the true first function in 100 replications; below are the pointwise
percentages that the 95% Bayesian confidence intervals miss the true second
function in 100 replications. Stars represent the marginal estimators and
circles represent the joint estimators. Dotted lines: nominal values.

4. Associations Between Hormones

To illustrate our methods, we use data from a stress study conducted in the
medical center of the University of Michigan. Blood samples were collected every
10 minutes for 24 hours from 8 healthy normal female volunteers. These blood
samples were assayed for concentrations of both adrenocortocotropic (ACTH)
and cortisol. This experiment was intended to investigate the pulsatile behavior
of these hormones. Approval for this experiment was obtained from the Institu-
tional Human Subjects Review Committee and informed consent was obtained
from all participants. In this paper we are primarily interested in modeling cir-
cadian rhythms. For each subject we select a subset of the data that contains
the assay values at two hours intervals starting at 9:00 am. These subseries
mimic experiments usually conducted for investigating circadian rhythms where
the sampling rate is low since the long term trend is of interest. We also fitted
other subseries and the conclusions remain the same.

Figure 5 presents the observed concentrations of ACTH and cortisol on a
log scale. It is obvious from these plots that there is a large variation between
subjects. The investigators believe that there is a common function for each
hormone that generates the responses. However, the time axis may be shifted
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and the magnitude of the responses may differ between subjects. Therefore we
assume the following SEMOR models for ACTH and cortisol:

yijk = µik + αikfk(tj − τik) + εijk, i = 1, . . . , 8; j = 1, . . . , 12; k = 1, 2, (21)

where k = 1 and k = 2 correspond to ACTH and cortisol respectively. yijk is the
hormone k concentration on a log scale of the ith individual at the jth time point
tj, µik is the hormone k 24-h mean of the ith individual, αik is the hormone k

amplitude of the ith individual, τik is the hormone k phase of the ith individual,
fk is the common function of hormone k, and εijk’s are random errors. Since
measurements of these two hormones were taken from the same blood samples
and pulses are ignored, εijk may be correlated for the same i and j. Therefore it

is better to estimate the functions fk jointly. We assume that εijk
iid∼ N(0, σ2

k) for
fixed k = 1, 2, and Corr(εij1, εij2) = ρ. The common functions fk are modeled
by periodic splines with the constraints

∫ 1

0
fk(t)dt = 0, sup

t∈[0,1]
|fk(t)| = 1. (22)

See Wang and Brown (1996) for details.
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Figure 5. Plots of ACTH and cortisol concentrations on a log scale for eight
subjects. Letters “a” represent observations of ACTH and letters “c” repre-
sent observations of cortisol. The solid lines are estimates of ACTH and the
dotted lines are estimates of cortisol.

We follow the same procedure as that in Wang and Brown (1996) to estimate
the parameters µik, αik, τik and the common functions fk, where the common
functions are now estimated by the methods proposed in previous sections. The
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GML method is used to select the smoothing parameters, the weighting parame-
ter and the correlation parameter. Estimates of the parameters σ2

1 , σ2
2 and ρ are

0.2000 (0.1477,0.2672), 0.1832 (0.1367,0.2454) and 0.3864 (0.1905,0.5745) respec-
tively, where the numbers in the parentheses are their 95% bootstrap confidence
intervals. (See Wang and Brown (1996) for details about the bootstrap proce-
dure.) Since the confidence interval for ρ does not include zero, we conclude that
there is a positive correlation in the residuals. Fitted lines are plotted in Figure
5. Define acrophase h as the location of the maximum response. Estimates and
bootstrap standard deviations of the 24-h mean µ, amplitude α, and acrophase
h for ACTH and cortisol of all subjects and their means are listed in Table 1.
On average, ACTH and cortisol have similar amplitudes and peak points.

Table 1. Estimates of µ, α, h and their bootstrap standard deviations for
log(ACTH) and log(cortisol). ŝ(ĥ) are in minutes.

subject 1 2 3 4 5 6 7 8 mean
ACTH

µ̂ 0.69 1.31 0.99 -0.33 1.29 1.43 0.12 0.78 0.71
ŝ(µ̂) 0.15 0.14 0.13 0.13 0.13 0.13 0.12 0.13 0.13
α̂ 0.89 0.97 0.95 1.79 0.57 1.38 2.46 1.68 1.33
ŝ(α̂) 0.28 0.25 0.26 0.27 0.23 0.28 0.30 0.29 0.27
ĥ 7:18 4:23 4:52 4:23 5:36 3:10 3:40 6:05 4:56
ŝ(ĥ) 69 66 70 53 116 61 47 46 66

Cortisol
µ̂ 1.47 1.52 1.58 1.49 1.49 1.97 1.69 1.75 1.61
ŝ(µ̂) 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
α̂ 0.99 1.04 1.50 1.52 1.33 0.97 1.05 1.89 1.28
ŝ(α̂) 0.25 0.23 0.27 0.25 0.24 0.26 0.27 0.26 0.26
ĥ 6:34 4:52 4:52 6:05 5:21 2:56 2:56 6:34 5:01
ŝ(ĥ) 64 68 56 54 56 66 64 54 60

The investigators are interested in the possible association between ACTH
and cortisol. There are many potential associations. One interesting hypothesis
is that the two common functions f1 and f2 are linearly related: f1(t) = a +
bf2(t + c). It is equivalent to f1(t) = ±f2(t) because of the constraints (22) and
the phases. For ACTH and cortisol, we are interested in positive associations.
Therefore we want to test

H0 : f1 = f2, H1 : f1 �= f2. (23)

Under the null hypothesis, hormones ACTH and cortisol are generated by the
same common function. Thus we can think of the whole data set as one hormone
from 16 subjects. The procedure developed in Wang and Brown (1996) can then
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be used to fit data under the null hypothesis. The estimated common function
together with 95% Bayesian confidence intervals are plotted in Figure 6. We
superimpose the shifted estimates of the common functions under H1; that is,
they are shifts of the estimates of f1 and f2 in model (21). We can see that a
large portion of these two shifted functions are inside the Bayesian confidence
intervals, which suggests that H0 is true.
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Figure 6. The solid line is the estimate of the common function under H0.
The two dotted lines are 95% Bayesian confidence intervals. The two dashed
lines are the shifted estimates of the common functions under H1.

To formally test the null hypothesis, we calculate a F type statistic

F =
(RSSH0

− RSSH1
)/(d.f.H0

− d.f.H1
)

RSSH1
/d.f.H1

,

and a likelihood ratio statistic

D = 2 × (lH1
− lH0

),

where RSSH0
and RSSH1

are residual sum of squares under H0 and H1 respec-
tively, d.f.H0

and d.f.H1
are degrees of freedom for residuals under H0 and H1

respectively, and lH0
and lH1

are the log likelihoods under H0 and H1 respec-
tively. We use a bootstrap procedure to calculate the null distributions of F

and D. That is, we fit the data under H0. We then generate bootstrap samples
from this fit. These bootstrap samples are fitted under both H0 and H1 to get
bootstrap estimates F ∗ of F and D∗ of D under H0. The empirical distributions
of these F ∗’s and D∗’s are used as the null distributions. Histograms of the
bootstrap statistics F ∗ and D∗ are plotted in Figure 7. The p-values based on
F ∗ and D∗ are 0.7847 and 0.8033 respectively. Therefore, we can not reject H0.
Under H0, that is using the same common function for both ACTH and cortisol,
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we can calculate the lags between ACTH and cortisol for each subject based on
the estimates of the phases. The average lag is 42 minutes, which means that
cortisol lags ACTH by 42 minutes on average.
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F∗ D∗Figure 7. Histograms of F ∗ and D∗. Vertical bars are test statistics F and D.

5. Discussion

General smoothing spline models provide flexibility for estimating nonpara-
metric functions and are widely used in many areas. With multiple correlated
responses it is better to estimate these functions jointly using the penalized
weighted least-squares. Data driven methods for selecting the smoothing param-
eters are very important for smoothing spline estimates and are quite difficult for
correlated observations. We propose to estimate the smoothing parameters and
the covariance parameters simultaneously. Our leaving-out-one-pair cross valida-
tion procedure should be viewed broadly as a leaving-out-one-cluster procedure.
Therefore it can be used to select the smoothing parameters for longitudinal data
and curved data. Missing data often occur in practice and our model deals with
this situation naturally.

Biomedical scientists are often interested in two different kinds of associa-
tions between hormones: the associations between the baselines such as circadian
rhythms and the associations between pulses. We have ignored the pulses since
we are interested in the association between circadian rhythms. We will investi-
gate the associations of the baselines and the pulses simultaneously in our future
research. Our first step is to develop a method to estimate the baseline and
pulses jointly for a single hormone series (Guo, Wang and Brown (1999)).
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Appendix

Proof of Lemma 1. Let f(t) = (f1(t11), . . . , f1(t1n1), f2(t21), . . . , f2(t2n2))
and f̂{i}(t) = (f̂{i}

1 (t11), . . . , f̂
{i}
1 (t1n1), f̂

{i}
2 (t21), . . . , f̂

{i}
2 (t2n2)). Similarly de-

fine f(t[i]) and f̂{i}(t[i]) as f(t) and f̂{i}(t) respectively without the elements
corresponding to the ith pair. For any functions f1 and f2 in W2,

(y∗ − f(t))T W (y∗ − f(t)) + λ1

∫ 1

0
(f ′′

1 (t))2dt + λ2

∫ 1

0
(f ′′

2 (t))2dt

≥ (y[i]−f(t[i]))T W [i](y[i]−f(t[i])) + λ1

∫ 1

0
(f ′′

1 (t))2dt + λ2

∫ 1

0
(f ′′

2 (t))2dt

≥ (y[i]−f̂{i}(t[i]))T W [i](y[i]−f̂{i}(t[i]))+λ1

∫ 1

0
[(f̂{i}

1 (t))′′]2dt+λ2

∫ 1

0
[(f̂{i}

2 (t))′′]2dt

= (y∗−f̂{i}(t))T W (y∗−f̂{i}(t))+λ1

∫ 1

0
[(f̂{i}

1 (t))′′]2dt+λ2

∫ 1

0
[(f̂{i}

2 (t))′′]2dt, (A.1)

where the first inequality holds because after switching rows and columns, we
have

(y∗ − f(t))T W (y∗ − f(t))

=

(
y∗[i] − f(t[i])
y∗(i) − f(t(i))

)T (
W [i] 0
0 W (i)

)(
y∗[i] − f(t[i])
y∗(i) − f(t(i))

)

≥ (y[i] − f(t[i]))T W [i](y[i] − f(t[i])).

The second inequality holds because f̂
{i}
1 and f̂

{i}
2 are solution to (12). The

last equality holds because of the definition of y∗.
The inequality at (A.1) indicates that f̂

{i}
1 and f̂

{i}
2 are solutions to (3) with

y replaced by y∗. Therefore f̂{i}(t) = Ay∗.

Proof of equation (13). From Lemma 1, we have

f̂
{i}
1 (t1i1) − y1i1

=
n1∑
l=1

a(i1, l)y∗1l +
n2∑
l=1

a(i1, n1 + l)y∗2l − y1i1

=
∑
l �=i1

a(i1, l)y1l +
∑
l �=i2

a(i1, n1 + l)y2l + a(i1, i1)f̂
{i}
1 (t1i1)

+a(i1, n1 + i2)f̂
{i}
2 (t2i2) − y1i1
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=
n1∑
l=1

a(i1, l)y1l +
n2∑
l=1

a(i1, n1 + l)y2l − y1i1 + a(i1, i1)(f̂
{i}
1 (t1i1) − y1i1)

+a(i1, n1 + i2)(f̂
{i}
2 (t2i2) − y2i2)

= f̂1(t1i1) − y1i1 + a(i1, i1)(f̂
{i}
1 (t1i1) − y1i1) + a(i1, n1 + i2)(f̂

{i}
2 (t2i2) − y2i2).

Therefore

(1 − a(i1, i1))(f̂
{i}
1 (t1i1) − y1i1)− a(i1, n1 + i2)(f̂

{i}
2 (t2i2) − y2i2) = f̂1(t1i1) − y1i1.

The second equation in (13) can be derived similarly.

Proof of (20). Let Aa
k = (aTkT T

k + bkΣk)(aTkT
T
k + bkΣk + σ2

kI)−1, λ̃k = σ2
k/bk.

It is known that lima→∞ Aa
k = Ak and f̃k = lima→∞ Aa

kyk = lima→∞ E(F k|yk)
(Wahba (1990)). Therefore

f̃ − F =

(
f̃1 − F 1

f̃2 − F 2

)
= − lim

a→∞

[(
I − Aa

1

I − Aa
2

)(
F 1

F 2

)
−
(

Aa
1

Aa
2

)(
ε1

ε2

)]

with covariance

lim
a→∞

[(
I − Aa

1

I − Aa
2

)(
aT1T

T
1 + b1Σ1

aT2T
T
2 + b2Σ2

)(
I − Aa

1

I − Aa
2

)

+

(
Aa

1

Aa
2

)(
σ2

1I σ1σ2ρI

σ1σ2ρI σ2
2I

)(
Aa

1

Aa
2

)]

= lim
a→∞

[(
σ2

1A
a
1(I − Aa

1)
σ2

2A
a
2(I − Aa

2)

)
+

(
σ2

1A
a
1A

a
1 σ1σ2ρAa

1A
a
2

σ1σ2ρAa
2A

a
1 σ2

2A
a
2A

a
2

)]

= θG

Proof of Theorem 1. Since t1 = t2, then T1 = T2, Σ1 = Σ2, Q11 = Q21,
Q12 = Q22, A1 = A2 and

W−1 =

(
rI ρI

ρI I/r

)
.

Let UDUT be the eigenvalue eigenvector decomposition of QT
k2ΣkQk2 and Γk =

Qk2U . U is orthogonal and D is diagonal with nonnegative elements. If Σk is
full rank, the diagonal elements of D are positive. It is easy to check that Ak =
I − Γk2H

−1
k ΓT

k2, where Hk = (I + D/λ̃k). Note that λ̃1 = σ2
1/b1 = rθ/b1 = rλ1

and λ̃2 = σ2
2/b2 = θ/(rb2) = λ2/r. Let Γ = diag(Γ1,Γ2) = Q2diag(U,U). It can

be verified that AW−1 = W−1 − E1 and G = W−1 − E2, where

E1 = W−1Γ

(
rH1 ρI

ρI H2/r

)−1

ΓT W−1
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and

E2 = Γ

(
rH−1

1 ρ(H−1
1 + H−1

2 − H−1
1 H−1

2 )
ρ(H−1

1 + H−1
2 − H−1

1 H−1
2 ) H−1

2 /r

)
ΓT .

Thus we need to show that E1 − E2 is positive semi-definite.

Lemma 2.
(a) E1 − E2 is positive semi-definite iff ΓT (E1 − E2)Γ is positive semi-definite.
(b) If ΓT (E1 −E2)Γ is positive definite, then for any x ∈ Rn, xT (E1 −E2)x = 0

iff x ∈ span(T ).

Proof. (a) ⇒ Obvious. ⇐ Since Γ = Q2diag(U,U) and U is orthogonal, then
QT

2 (E1 −E2)Q2 is positive semi-definite. Since (Q1, Q2) is an orthogonal matrix,
any x ∈ Rn can be represented as x = Q1β1 + Q2β2. Therefore

xT (E1 − E2)x

= βT
1 QT

1 (E1 − E2)Q1β1 + βT
2 QT

2 (E1 − E2)Q2β2 + 2βT
1 QT

1 (E1 − E2)Q2β2

= βT
2 QT

2 (E1 − E2)Q2β2 ≥ 0,

where the second equality holds because QT
1 E1 = QT

1 E2 = 0.
(b) ⇒ From the inequality above, we must have β2 = 0, which implies that
x = Q1β1 ∈ span(T ).

⇐ It is obvious since span(T ) = span(Q1).
Using Lemma 2 and the fact that

ΓTW−1Γ =

(
rIn1−2 ρIn1−2

ρIn1−2 In1−2/r

)
�= W̃−1,

we only need to show

W̃−1

(
rH1 ρI

ρI H2/r

)−1

W̃−1−
(

rH−1
1 ρ(H−1

1 +H−1
2 −H−1

1 H−1
2 )

ρ(H−1
1 +H−1

2 −H−1
1 H−1

2 ) H−1
2 /r

)

is positive semi-definite. Notice that both H1 and H2 are diagonal, by switching
columns and rows, three matrices above can be transformed into block diagonal
forms. Therefore we only need to show all diagonal blocks are positive semi-
definite. That is, we need to show

(
r ρ

ρ 1/r

)(
rh1 ρ

ρ h2/r

)−1(
r ρ

ρ 1/r

)

−
(

r/h1 ρ(1/h1 + 1/h2 − 1/h1h2)
ρ(1/h1 + 1/h2 − 1/h1h2) 1/rh2

)
(A.2)
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is positive semi-definite, where h1 = 1+ d/λ̃1, h2 = 1+ d/λ̃2, and d is a diagonal
element of D. The matrix (A.2) is

ρ2d2

(1 + d/λ̃1)(1 + d/λ̃2) − ρ2


 r

λ̃2
1+λ̃1d

− ρ

(λ̃1+d)(λ̃2+d)

− ρ

(λ̃1+d)(λ̃2+d)
1

r(λ̃2
2+λ̃2d)


 .

Obviously it is positive semi-definite. It is positive definite if ρ �= 0, λ̃1 < ∞,
λ̃2 < ∞ and d > 0.
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