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Abstract: The paper introduces a hierarchical Bayesian analysis of binary matched

pairs data with noninformative prior distributions. Certain properties of the poste-

rior distributions, including their propriety, are established. The Bayesian methods

are implemented via Markov chain Monte Carlo integration techniques, and nu-

merical illustrations are provided. For the logit link, the conditional and marginal

maximum likelihood estimators of a treatment effect depend only on the off-main-

diagonal elements of a 2× 2 contingency table, and the same is true of McNemar’s

test. By contrast, the hierarchical Bayes estimators and subsequent analyses de-

pend also on the main-diagonal elements in a natural way.
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1. Introduction

In many studies, especially in biomedical applications, data are collected
from matched pairs. For example, in case-control studies, cases may be matched
with controls on the basis of health or demographic characteristics. Both elements
of the matched pairs sometimes refer to the same subject, such as measurements
on the left and the right eyes or at two time points or for two treatments compared
with a crossover experiment. For concreteness, we refer to the two components
of the matched pair as treatments.

This paper considers the special case of a binary response. This response
may depend not only on the treatment administered but also on a pair effect.
Our analysis of such matched-pairs data is handled within the framework of one-
parameter item response models. Let Xij denote the binary response, say 0 or 1,
of the jth observation within the ith pair, with pij = P (Xij = 1), i = 1, . . . , n,
j = 1, 2. The {pij} are modeled as pij = F (θi + αj), where F is a distribution
function. In this formulation the parameter θi for pair i is usually a nuisance
parameter, while αj represents the effect of the jth treatment. Three common
choices of F are the standard logistic, normal, and extreme value distribution
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functions, the corresponding F−1 being the logit, probit, and log-log link functions.
The parameter of interest is the treatment difference α1 − α2.

To our knowledge, Cox (1958) first introduced this model, with logistic F .
This is a special case of the celebrated Rasch model (Rasch (1961)). Andersen
(1973) showed that in this case the maximum likelihood estimator (MLE) of
α1 − α2 is inconsistent. This is the famous Neyman-Scott phenomenon in which
the number of nuisance parameters grows in direct proportion to the sample
size. Various adjustments of the likelihood can attack this inconsistency problem,
such as modified profile likelihood (Barndroff-Nielsen (1983)), conditional profile
likelihood (Cox and Reid (1987)), and adjusted profile likelihood (McCullagh and
Tibshirani (1990)). It is not clear, however, whether the resulting MLE of α1−α2

based on these adjusted likelihoods is indeed consistent.
Andersen (1970, 1973) showed that for logistic F , if one finds the likelihood of

α1−α2 conditional on Ti = Xi1+Xi2 (i = 1, . . . , n), the sufficient statistics for the
nuisance parameters, then the resulting conditional MLE of α1−α2 is consistent.
Breslow and Day (1980) provided an excellent account of the analysis of binary
matched-pairs data via conditional logistic regression. However, for other links,
sufficient statistics for the nuisance parameters do not exist. The usual approach
in such cases is to treat the model as a mixed model, with random effects {θi}.
The method assigns a distribution function to {θi} and then integrates them out;
the resulting likelihood for (α1, α2), referred to as the marginal likelihood (e.g.,
Kalbfleisch and Sprott (1970)), is then maximized to find the marginal MLE of
α1 − α2.

Suppose that F is logistic and the {θi} are i.i.d. N(µ, σ2). Then, from
Neuhaus, Kalbfleisch and Hauck (1994), the marginal MLE of α1 − α2 is iden-
tical with its conditional MLE whenever the sample association between re-
sponses displays a nonnegative log odds ratio. Moreover, Neuhaus, Kalbfleisch
and Hauck (1994) showed that this result applies for any continuous distribu-
tion for {θi}, when a version of that distribution exists that is consistent with
the sample data (i.e., when the model is saturated for the observed data). Let
nrs =

∑n
i=1 I[xi1=r,xi2=s] (r = 0, 1; s = 0, 1). Then, this common estimate of

α1 − α2 is log(n10/n01).
Consider Table 1, for instance, based on the General Social Survey of 1989

in the United States. Subjects were asked whether government spending should
increase or decrease on health spending and on law enforcement spending. The
two responses for each subject form a matched pair. For the model with logit
link, the estimated effect is log(25/14) = .580. For each subject, the estimated
odds of responding “increase” on health spending are exp(.580) = 1.79 times the
estimated odds of responding “increase” on law enforcement. With this analysis
for the logit model, the estimate of the treatment effect and subsequent inference
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does not depend on n00 and n11. Matched-pairs data usually display a positive
association, with the majority of the observations falling in these two cells. In
Table 1, for instance, 301 of the 340 observations make no contribution to the
analysis. The same remark applies to McNemar’s test of equality of matched
proportions. It is a chi-squared approximation for the probability that a binomial
random variable with 14+25=39 trials and parameter .5 takes value of at most
14 or at least 25. The exact two-sided binomial P-value equals .108.

Table 1. Opinions about government spending.

Health Law Enforcement

Spending Spending

Decrease Increase

Decrease 9 14

Increase 25 292

The marginal ML approach is essentially an empirical Bayes (EB) approach.
While the EB method is usually suitable for point estimation, it often leads to
underestimation of the associated standard error due to failure to account for
the uncertainty in σ2. We propose instead a hierarchical Bayes (HB) procedure
that assigns i.i.d. N(0, σ2) prior distributions for {θi} and an inverse gamma
prior distribution for σ2 at the second stage. This amounts to a multivariate
t-prior distribution for {θi}, which is known to be more robust than a multi-
variate normal prior distribution. Throughout, flat prior distributions are used
for (α1, α2), independent of the prior distributions for {θi} and also independent
among themselves. With this choice of prior distributions, the propriety of the
joint posterior distribution for α1, α2, θ = (θ1, . . . , θn) is established for the logit,
probit, and log-log links whenever n01 ≥ 1 and n10 ≥ 1.

Section 3 discusses implementation of the hierarchical Bayes procedure via
Markov chain Monte Carlo (MC2). Hierarchical Bayes estimators of α1 − α2

are compared with the marginal MLE’s. Also, we study the sensitivity of the
Bayesian analysis with respect to the choice of the parameters of the inverse
gamma prior distribution of σ2.

As mentioned above, for the logit link the traditional analyses ignore the
main-diagonal counts of pairs making the same response for each component.
The lack of contribution of these counts is counterintuitive to many data analysts
and has been the basis of discussion at least back to Cochran (1950). By contrast,
these main-diagonal entries influence the HB estimates in a very natural way, the
estimated treatment effect diminishing as n00 or n11 increases.
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2. The Hierarchical Bayes (HB) Approach

2.1. The model, priors and the propriety of posteriors

We first express the likelihood function of θ = (θ1, . . . , θn), α1 and α2 as

L(θ, α1, α2) =
n∏

i=1

2∏
j=1

[
F xij (θi + αj)F̄ 1−xij (θi + αj)

]
,

where F̄ = 1 − F . For prior distributions for θ and α = (α1, α2), marginally
we assume that θ and α are mutually independent, with α uniform on R2 and
(conditional on σ2) {θi} i.i.d. N(0, σ2). At the second stage, we assume that σ2

has the inverse gamma probability density function (pdf)

π2(σ2) ∝ (σ2)−
1
2
l−1 exp

(
− a

2σ2

)
, a > 0,

denoted by IG(1
2a, 1

2 l). This prior distribution is proper when a > 0 and l > 0,
though later we also use improper prior distributions with l = 0.

Integrating with respect to σ2, θ has the marginal multivariate t-prior dis-
tribution given by

π1(θ) ∝
(
a +

n∑
i=1

θ2
i

)− 1
2
l
.

Letting x denote the vector of sample observations, the joint posterior distribu-
tion of θ and α is

π(θ, α|x) ∝ L(θ, α)
(
a +

n∑
i=1

θ2
i

)− 1
2
l
.

The following theorem provides a sufficient condition for the propriety of this
posterior distribution, for the logit, probit, and log-log links.

Theorem 1. Suppose n10 ≥ 1 and n01 ≥ 1. Then, for the logit, probit, and
log-log links, π(θ, α|x) is a proper pdf.

The proof of the theorem is technical and is omitted. The reader is referred
to Ghosh, Chen, Ghosh and Agresti (1997) for the details.

Remark 1. There is no loss of generality in choosing the prior means to be zero
since the posterior distribution of α1 − α2 is invariant under the choice of this
mean. Indeed, the result holds in a more general framework as we now see.

Suppose that, given σ2, θ1, . . . , θn are i.i.d., and their common marginal pdf

is
π(θ) =

∫ ∞

0

1
σ

g

(
θ − µ0

σ

)
h(σ2)dσ2,
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where g and h are pdf ’s, and µ0 is known. (In our case g is standard normal
and h is inverse gamma.) Then with the reparameterization φi = θi − µ0 and
βj = αj + µ0 (i = 1, . . . , n; j = 1, 2), (θ, α) is one-to-one with (φ, β), where
φ = (φ1, . . . , φn) and β = (β1, β2). Also, the posterior distribution of β is

π(β|x) ∝
∫ ∞

−∞
· · ·
∫ ∞

−∞
L(φ, β)

[ ∫ ∞

0
(σ2)−

n
2 exp

(
− 1

2σ2

n∑
i=1

φ2
i

)
h(σ2)dσ2

]
dφ.

Hence, α1 − α2 = β1 − β2 has the same posterior distribution regardless of µ0.
One may wonder at this point about the possibility of using a prior distribu-

tion as above with µ0 replaced by an unknown µ, then using a uniform (over the
real line) prior distribution for µ independent of σ2 at the second stage. How-
ever, the resulting posterior distribution is improper. The details are available
in Ghosh, Chen, Ghosh and Agresti (1997).

Remark 2. For the logit link, the condition that n10 ≥ 1 and n01 ≥ 1 is also
necessary and sufficient for the conditional MLE of α1 − α2, log(n10/n01), to
remain finite.

2.2. Properties of posteriors

Next we prove results that describe, as a function of n10 − n01, the behavior
of the posterior mean of α1 − α2 and the posterior probability that treatment 1
is better than treatment 2. The results hold for an arbitrary link F .
Theorem 2. Consider the prior distribution π(θ, α, σ2) ∝ σ−n [

∏n
i=1 g(θi/σ)]

h(σ2), and let ρ = α1 − α2.
(a) For every t ≥ 0, P (ρ > t|x) − P (ρ < −t|x) has the same sign as n10 − n01;
(b) P (ρ > 0|x)≥

<
1/2 according as n10

≥
<

n01;

(c) E(ρ|x) has the same sign as n10 − n01.

Proof. With the transformation u = θi + 1
2 (α1 + α2), ρ = α1 − α2, and ξ =

1
2(α1 + α2), the posterior distribution of ρ is given by

π(ρ|x)

= k(x)
∫ ∞

0

∫ ∞

−∞
an11

11 (ρ, ξ, σ)an00
00 (ρ, ξ, σ)an10

10 (ρ, ξ, σ)an01
01 (ρ, ξ, σ)σ−nh(σ2)dξdσ2,

where k(x) is the normalizing constant, and

a11(ρ, ξ, σ) =
∫ ∞

−∞
F (u +

1
2
ρ)F (u − 1

2
ρ)g

(
u − ξ

σ

)
du,

a00(ρ, ξ, σ) =
∫ ∞

−∞

[
1 − F (u +

1
2
ρ)
] [

1 − F (u − 1
2
ρ)
]
g

(
u − ξ

σ

)
du,
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a10(ρ, ξ, σ) =
∫ ∞

−∞
F (u +

1
2
ρ)
[
1 − F (u − 1

2
ρ)
]
g

(
u − ξ

σ

)
du,

a01(ρ, ξ, σ) =
∫ ∞

−∞

[
1 − F (u +

1
2
ρ)
]
F (u − 1

2
ρ)g

(
u − ξ

σ

)
du.

This implies that

π(ρ|x) − π(−ρ|x) = k(x)
∫ ∞

0

∫ ∞

−∞
an11

11 (ρ, ξ, σ)an00
00 (ρ, ξ, σ)

× [an10
10 (ρ, ξ, σ)an01

01 (ρ, ξ, σ) − an10
01 (ρ, ξ, σ)an01

10 (ρ, ξ, σ)] σ−nh(σ2)dξdσ2. (2.1)

(a) Now for ρ > 0, a10(ρ, ξ, σ) > a01(ρ, ξ, σ), which implies that an10
10 (ρ, ξ, σ)

an01
01 (ρ, ξ, σ) ≥

<
an10

01 (ρ, ξ, σ) an01
10 (ρ, ξ, σ) according as n10

≥
<

n01. This proves

that for ρ > 0, π(ρ|x)− π(−ρ|x) has the same sign as n10 − n01. Then, since

P (ρ > t|x) − P (ρ < −t|x) =
∫ ∞

t
π(ρ|x)dρ −

∫ −t

−∞
π(ρ|x)dρ

=
∫ ∞

t
[π(ρ|x) − π(−ρ|x)]dρ,

result (a) follows.
(b) This follows from (a) by putting t = 0.
(c) Write

E(ρ|x) =
∫ ∞

0
P (ρ > t|x)dt −

∫ 0

−∞
P (ρ < t|x)dt

=
∫ ∞

0
[P (ρ > t|x) − P (ρ < −t|x)]dt.

The result is now a consequence of (a).

Remark 3. The above result is intuitive. When n10 = n01, the posterior
distribution of ρ = α1−α2 is symmetric about 0, and the natural Bayes estimator
of ρ equals 0. Using i.i.d. prior distributions g

(
θ−ξ
σ

)
for the {θi}, one can see

that the marginal likelihood L(ρ, ξ, σ) then satisfies L(ρ, ξ, σ) = L(−ρ, ξ, σ). If
for fixed ξ and σ, log L(ρ, ξ, σ) is concave in ρ, then the MMLE of ρ also equals
0. Other than this special case, the MMLE and the posterior Bayes estimate
usually do not agree. For the logit link, for instance, if (n00n11/n01n10) ≥ 1, the
MMLE of ρ equals the conditional MLE and does not depend on n00 and n11.
The Bayes estimate of ρ, on the other hand, depends on all four cell counts.

It is also true in our Bayesian model that for fixed n10 and n01, the magnitude
of the difference in the treatment effects decreases in n00 and n11. The result is
intuitively reasonable; as the number of agreements increases, for a fixed number
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of disagreements, one naturally feels that the difference diminishes. The next
theorem provides details.

Theorem 3. Consider the prior distribution given in Theorem 2. Then for fixed
n10 and n01, (a) P (|ρ| > t|x), (b) E(|ρ| |x), and (c) |P (ρ > 0|x) − 1/2| are
decreasing in n00 and n11.

Proof.
(a) For every t ≥ 0,

P (|ρ| > t|x) =
∫ ∞

t
π(ρ|x)dρ +

∫ −t

−∞
π(ρ|x)dρ

=
∫ ∞

t
[π(ρ|x) + π(−ρ|x)]dρ

= k(x)
∫ ∞

t

∫ ∞

0

∫ ∞

−∞

[
σ−1a11(ρ, ξ, σ)

]n11
[
σ−1a00(ρ, ξ, σ)

]n00

×
{[

σ−1a10(ρ, ξ, σ)
]n10

[
σ−1a01(ρ, ξ, σ)

]n01

+
[
σ−1a01(ρ, ξ, σ)

]n10
[
σ−1a10(ρ, ξ, σ)

]n01
}

h(σ2)dξdσ2dρ.

Since σ−1ars(ρ, ξ, σ) <
∫∞
−∞ σ−1g

(
u−ξ
σ

)
du = 1 for all r, s = 0, 1, it follows

that for fixed n10 and n01, P (|ρ| > t |x) decreases in n11 and in n00 for every
t ≥ 0.

(b) This follows from (a) by writing

E(|ρ||x) =
∫ ∞

0
P (|ρ| > t|x)dt.

(c) Note that

P (ρ > 0|x) − 1/2 = (1/2)
∫ ∞

0
[π(ρ|x) − π(−ρ|x)]dρ. (2.2)

From the proof of (a) in Theorem 1, π(ρ|x) − π(−ρ|x) has the same sign for
all ρ > 0. Using (2.1) for each ρ and the fact that σ−1arr(ρ, ξ, σ) < 1 for r

= 0,1 implies that the right-hand side of (2.2) is decreasing in absolute value
as n00 or n11 increases.

3. Implementation and Illustration of the HB Method

The marginal posterior distribution of α1−α2 is analytically intractable.
However, it is easily calculated using the Gibbs sampling numerical integration
technique. To this end, when we use the multivariate t-prior distribution for θ,
with the standard parameter augmentation technique,

π(θi | θl (l �= i), α1, α2, σ
2, x)
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∝
2∏

j=1

[
F xij(θi + αj)F̄ 1−xij (θi + αj)

]
exp

(
− 1

2σ2
θ2
i

)
, (i = 1, . . . , n); (3.1)

π(αj | αk (k �= j), θ, σ2, x) ∝
n∏

i=1

[
F xij (θi + αj)F̄ 1−xij (θi + αj)

]
, j = 1, 2;

(3.2)

π(σ2 | θ, α1, α2, x) ∝ (σ2)−
n+l
2

−1 exp

[
− 1

2σ2

(
a +

n∑
i=1

θ2
i

)]
. (3.3)

It is simple to simulate from the inverse gamma density (3.3). The conditionals
(3.1) and (3.2) are not standard densities, but if F and F̄ are both log-concave
(which is true when F is increasing failure rate), they are log-concave. Then,
one can use the adaptive rejection sampling algorithm of Gilks and Wild (1992)
to generate samples from these full conditionals. To construct the posterior
distribution of α1 −α2, it is convenient to use the one-to-one reparameterization
from (θ, α1, α2) to (u, ρ, ξ).

Table 2. Characteristics of the posterior distribution of |ρ|, as a function of
the main-diagonal counts, when n10 = n01 = 5.

50th 90th 95th
(n00, n11) E(|ρ| | x) [V (|ρ| | x)]1/2 Percentile Percentile Percentile

Prior
l = 3, a = 10

(10, 10) .531 .416 .448 .758 1.327

(15, 45) .526 .400 .416 .712 1.274

(50, 50) .492 .387 .412 .700 1.241
Prior
l = 5, a = 3
(10, 10) .483 .374 .395 .666 1.165

(15, 45) .470 .369 .383 .653 1.160

(50, 50) .458 .360 .369 .629 1.095

We now numerically illustrate some results of the previous section for the
logit link. Similar results occur for the probit and log-log links. We first illustrate
Theorem 3 on characteristics of the posterior distribution of |ρ|. We fix n10 =
n01 = 5 and choose two quite different prior distributions: one very diffuse
(l = 3, a = 10, for which E(σ2) = 10 and V (σ2) = ∞), and one considerably
more informative (l = 5, a = 3, for which E(σ2) = 1 and V (σ2) = 2). Since
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n10 = n01, the posterior distribution of ρ is symmetric about 0. The Gibbs
sampling procedure, using every 15th iterate, produced 50,000 observations that
showed negligible autocorrelation. Table 2 reports E(|ρ| | x), [V (|ρ| | x)]1/2, and
various percentiles of the distribution of |ρ| for these prior distributions and for
various choices of n00 and n11. The reported value of E(|ρ| | x) has a simulation
standard error of about .002. The table shows that E(|ρ| | x) and the percentiles
decrease as n00 and n11 increase. The main diagonal counts have an effect,
and there is a substantive weakening of the estimated effect when those counts
increase dramatically. The same table also provides the 50th, 90th and 95th
percentiles of the distribution of |ρ| for various choices of n00 and n11. Since the
posterior distribution of ρ is symmetric about 0, these are also the 75th, 95th
and 97.5th percentiles of the posterior distribution of ρ.

Table 3. Characteristics of the posterior distribution of the treatment effect,
as a function of the prior distribution, for Table 1.

Prior Parameters E(ρ|x) [V (ρ|x)]1/2 P (ρ < 0|x) 95% HPD Interval

1. l = 5, a = 3 .481 .293 .047 (−.083, 1.064)

2. l = 4.0001, a = 2.0001 .477 .292 .045 (−.093, 1.054)

2a. (2) with n00 = 3, n11 = 117 .639 .355 .027 (−.032, 1.360)

2b. (2) with n00 = 27, n11 = 876 .223 .200 .132 (−.165, 0.615)

3. l = 0, a = 0.1 .468 .289 .049 (−.089, 1.045)

4. l = 0, a = 0.01 .477 .281 .047 (−.111, 1.051)

5. l = 0, a = 0.001 .441 .277 .053 (−.103, 0.987)

6. Conditional, Marginal MLE .580 .334 .054 (−.074, 1.234)

Table 3 shows results of HB analyses for various prior distributions for Table
1 on government spending. We consider whether there is any difference in the
opinion distributions for the two types of spending and whether the conclusion is
sensitive to the choice of prior distributions. Here, E(ρ|x) > 0, since n10−n01 > 0.
Table 3 provides E(ρ|x), [V (ρ|x)]1/2, P (ρ < 0|x), and the 95% HPD interval for ρ

for various choices of l and a for the prior distribution. The simulation standard
error is about .003 for the reported posterior means.

The first two inverse gamma prior distributions for σ2 in Table 3 have
E(σ2) = 1, but V (σ2) = 2 in the first case and V (σ2) = 20, 000 in the second.
The three prior distributions with l = 0 are improper. These prior distributions,
with a close to 0, are close to π(σ2) ∝ (σ2)−1. The Bayes estimator of ρ and
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P (ρ < 0|x) are not very sensitive to the choice of prior parameters. An alterna-
tive prior structure would be to use independent t prior distributions for the {θi},
rather than the multivariate t that results from our hierarchical approach. We did
this for Table 1 and obtained similar results. For contrast, the table also reports
results for the common conditional and marginal MLE, the interval in this case
being the standard 95% Wald confidence interval and the entry in the P (ρ < 0|x)
column being instead the one-sided P-value. Although the Bayesian analyses do
utilize the main diagonal counts, for these data the substantive results do not
differ from those using standard methods.

To illustrate the potential effect of the main-diagonal counts on the Bayesian
analysis, we used the second prior distribution (l = 4.0, a = 2.0) to analyze
the data with two possible changes in those counts. The first case has smaller
main diagonal counts (n00 = 3, n11 = 117) for which the odds ratio between
the two responses is about 1.0, rather than the observed value of 7.5. The
posterior mean is now substantially larger (.639 instead of .477), and P (ρ < 0|x)
is smaller (.027 instead of .045). The second case has main diagonal counts
(n00 = 27, n11 = 876) that are triple the originals, corresponding to an odds
ratio of 67.6. The posterior mean is now less than half the original value (.223
instead of .477), and the evidence of an effect is much smaller (P (ρ < 0|x) =
.132 instead of .045). The main diagonal counts can have considerable impact on
the results (unlike in the traditional analyses), with increases in main-diagonal
counts resulting in diminished estimated effects. It may be noted also that with
n00 = 27, n11 = 876, for testing H0 : ρ ≤ 0 against H1 : ρ > 0, while the posterior
odds ratio increases significantly from .047 to .152, the one-sided P-value for
McNemar’s test remains the same at .054.

In summary, the hierarchical Bayesian analysis for matched pairs differs from
the conditional ML and marginal ML approaches in using information on the
number of pairs making the same response for each treatment. One might expect
that this would be true of any Bayesian analysis. However, for a Bayesian model
with Dirichlet prior distribution for the four multinomial counts {nrs}, Altham
(1971) showed that n00 and n11 affect the posterior distribution but not P (ρ >

0|x).
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