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Abstract: We obtain a second order approximation to the mean squared error

(MSE), and its estimate, of the empirical or estimated best linear unbiased pre-

dictor (EBLUP) of a mixed effect in a general mixed linear normal model. This

covers many important small area models in the literature. Unlike previous research

in this area, we provide a unified theory of measuring uncertainty of an EBLUP for

a complex small area model where the variance components are estimated by vari-

ous standard methods including restricted or residual maximum likelihood (REML)

and maximum likelihood (ML). It turns out that the MSE approximations for the

REML and the ML methods are exactly the same in the second order asymptotic

sense. However, the second order accurate estimator of this MSE based on the for-

mer method requires less bias correction than the one based on the latter method.

This is due to a result in the paper which shows that the bias of the REML esti-

mators of variance components is of lower order than that of the ML estimators. A

simulation is undertaken to compare different methods of estimating the variance

components and to study the properties of various estimators of the MSE of the

mixed effect. In our context it is interesting to note that the residual likelihood

is same as the conditional profile likelihood (CPL) of Cox and Reid (1987). Thus,

this paper addresses an important open problem raised by Cox and Reid (1987) in

small area prediction using the CPL method.
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1. Introduction

Research on small area estimation has received considerable attention in
recent years due to growing demand for reliable small area statistics by various
federal and local government agencies (e.g., the U.S. Census Bureau, U.S. Bureau
of Labor Statistics, Statistics Canada, Australian Bureau of Statistics, and the
Central Statistical Office of U.K.). A small area (domain) usually refers to a
subgroup of a population from which samples are drawn. The subgroup may be
a geographical region (e.g., county or municipality) or a group obtained by cross-
classification of demographic factors such as age, race or sex. The importance
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of reliable small area statistics cannot be over-emphasized as these are needed
in regional planning and fund allocation in many federal and local government
programs.

Most surveys provide very little information on a particular small area of
interest since surveys are generally designed to produce statistics for larger pop-
ulations. Thus, direct design-based estimators (see Cochran (1977)) are unre-
liable since only a few samples are available from the particular small area of
interest. The main idea to improve on a design-based survey estimator is to use
relevant supplementary information, usually available from various administra-
tive records, in conjunction with the sample survey data. See Ghosh and Rao
(1994), Holt, Smith and Tomberlin (1979), Rao (1986), among others.

The estimated best linear unbiased prediction (EBLUP) method has been
widely used to produce small area statistics. In this approach, using Henderson’s
(1975) method, first the best linear unbiased predictor (BLUP) of the mixed
effect of interest is produced using a normal mixed linear model. This predic-
tor usually contains unknown variance components which are then replaced by
their estimates using a standard variance component estimation procedure. The
resulting predictor is known as an EBLUP of the mixed effect. Cressie (1992)
and Dick (1995), among others, prefer the residual maximum likelihood method
(REML) to the maximum likelihood (ML) method in estimating variance com-
ponents in complex small area models. We prove in Theorem A.3 that the order
of bias of the REML estimator is lower than that of the ML estimator, which
justifies the preference of the former estimator over the latter. In Remark 1 in
Section 5 we connect the residual likelihood as defined in Patterson and Thomp-
son (1971) to the conditional profile likelihood (CPL) of Cox and Reid (1987) in
our context.

A naive measure of uncertainty of an EBLUP is the mean squared error
(MSE) of the corresponding BLUP. Prasad and Rao (1990) noted that this mea-
sure could lead to severe underestimation of the true uncertainty of an EBLUP
since it does not incorporate the variability due to the estimation of the vari-
ance components. Using analysis of variance (ANOVA) estimates of the variance
components, Prasad and Rao (1990) approximated the MSE of an EBLUP for
a mixed linear normal model. In their approximation, they neglected terms of
order o(m−1) where m is the number of small areas. To the same order of ap-
proximation they also derived an estimator of their MSE approximation. The
work of Singh, Stukel and Pfeffermann (1998) considers similar approximation
to the MSE.

Prasad and Rao (1990) justified their approximation only for the ANOVA
estimates of variance components. However, the ML and the REML methods are
also widely used to produce EBLUP in small area estimation. Thus, there is a
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need to advance their work when the variance components are estimated by these
other methods. Also, Prasad and Rao (1990) rigorously justified the accuracy of
their MSE only for the Fay-Herriot model.

In Section 2, we consider the general normal mixed linear model used by
Prasad and Rao (1990). The BLUP and EBLUP of a mixed effect are presented
in Section 3. In Section 4, a second order approximation to the MSE of an EBLUP
is provided under certain regularity conditions. This approximation is valid for
a number of variance component estimation methods including the ML and the
REML. In Section 5, an estimator of the MSE of the proposed EBLUP is given for
the general model considered in Section 2. The bias of this estimator is o(m−1)
and its small-sample accuracy is investigated in Section 6 through simulation for
a special case of the model proposed in Section 2. Since the REML estimator
is identical to the maximum CPL estimator, we have addressed an important
problem raised by Cox and Reid (1987) in the context of small area prediction
using the CPL method. In the Appendix, expressions for asymptotic biases
of the ML and the maximum CPL estimators are provided in general setting.
These expressions are used to derive MSE approximations and their estimators,
accurate up to o(m−1), of EBLUP’s of mixed effects.

2. Notation and the Model

Consider the following general normal mixed linear model in small area es-
timation:

Yi = Xiβ + Zivi + ei, i = 1, . . . ,m, (1)

where Xi (ni×p) and Zi (ni×bi) are known matrices, vi and ei are independently
distributed with vi

ind∼ Nbi(0, Gi) and ei
ind∼ Nni(0, Ri), i = 1, . . . ,m. We assume

that Gi = Gi(ψ)(bi × bi) and Ri = Ri(ψ)(ni × ni) possibly depend on ψ =
(ψ1, . . . , ψq)′, a q × 1 vector of fixed variance components. Using the notations
given in Prasad and Rao (1990), write Y = col1≤i≤mYi, e = col1≤i≤mei, X =
col1≤i≤m(Xi), Z = diag1≤i≤m(Zi), G(ψ) = diag1≤i≤mGi, v = col1≤i≤mvi and
R(ψ) = diag1≤i≤mRi. We assume that X has full column rank p. Let Σ(ψ) =
R(ψ) +ZG(ψ)Z ′, the variance-covariance matrix of Y . With these notations we
can write (1) as

Y = Xβ + Zv + e, (2)

where v and e are independently distributed with v ∼ Nb(0, G), e ∼ Nn(0, R),
n =

∑m
i=1 ni and b =

∑m
i=1 bi. This model covers the following two important

small area models.

Fay-Herriot Model (see Fay and Herriot (1979)):

Yi = x′iβ + vi + ei, i = 1, . . . ,m,
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where vi’s and ei’s are independent with vi
iid∼ N(0, A) and ei

ind∼ N(0,Di),
Di (i = 1, . . . ,m) being known. Here, ni = bi = 1, Zi = 1, ψ = A, Ri(ψ) = Di

and Gi(ψ) = A (i = 1, . . . ,m).
Nested Error Regression Model (see Battese, Harter and Fuller (1988)):

Yij = x′ijβ + vi + eij, i = 1, . . . ,m; j = 1, . . . , ni, (3)

where vi and eij are independently distributed with vi
iid∼ N(0, σ2

v) and eij
iid∼

N(0, σ2
e), i = 1, . . . ,m; j = 1, . . . , ni. In this case, Yi = (Yi1, . . . , Yini)

′,Xi =
col1≤j≤nix

′
ij, Zi = 1ni , ei = (ei1, . . . , eini)

′, ψ = (σ2
e , σ

2
v)′, Ri(ψ) = σ2

eIni ,
Gi(ψ) = σ2

v (i = 1, . . . ,m) where Ini(ni×ni) is an identity matrix and 1ni(ni×1)
is a vector of ones.

3. Best Linear Unbiased Predictor (BLUP) and Estimated BLUP

In this paper we are interested in predicting a general mixed effect θ =
h′β+λ′v, where h and λ are known vectors of order p× 1 and b× 1 respectively.
When ψ is known, the BLUP of θ is given by θ̂(ψ) = h′β̂(ψ)+ s′(ψ)[Y −Xβ̂(ψ)],
where s(ψ) = Σ−1(ψ)ZG(ψ)λ and β̂(ψ) = [X ′Σ−1(ψ)X]−1[X ′ Σ−1(ψ)Y ].

In practice ψ is unknown and is estimated from the data. Let ψ̂ be an
estimator of ψ. In this paper, we consider ψ̂ which satisfy condition (f) given in
Section 4. Then an EBLUP of θ is θ̂(ψ̂), obtained from θ̂(ψ) with ψ replaced by
ψ̂.

4. Second Order Approximation to MSE of θ̂(ψ̂)

The MSE of θ̂(ψ̂) is MSE [θ̂(ψ̂)] = E[θ̂(ψ̂)− θ]2, where E denotes the expec-
tation with respect to model (1). Under certain regularity conditions, Prasad and
Rao (1990) provided a second order approximation to MSE [θ̂(ψ̂)]. They obtained
the approximation when ψ is estimated by ψ̂PR = (ψ̂PR1 , . . . , ψ̂PRq )′, where ψ̂PRd =
max{0, Y ′QdY } with Qd = diag1≤i≤m[O(m−1)]ni×ni+[O(m−2)]n×n, [O(m−r)]k×k
being a k×k matrix with all elements O(m−r). Note that the REML and the ML
estimators of ψ are generally not of the form ψ̂PR. While ψ̂PR has closed-form
expression, the REML and the ML estimators of ψ generally do not have closed-
form expressions. Thus the Prasad-Rao theory is not useful for our purposes
when ψ̂ is the REML or the ML estimator of ψ.

We obtain an approximation to MSE [θ̂(ψ̂)] where ψ̂ may be the REML or
the ML estimate of ψ. In our approximation we assume m is large and neglect
all terms of order o(m−1). The following regularity conditions, referred to as RC
later on, will be assumed:
(a) The elements of X and Z are uniformly bounded such that X ′Σ−1(ψ)X =

[O(m)]p×p;
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(b) supi≥1 ni <∞ and supi≥1 bi <∞;
(c) h−X ′s(ψ) = [O(1)]p×1;
(d) ∂

∂ψd
[X ′s(ψ)] = [O(1)]p×1 for d = 1, . . . , q;

(e) Ri(ψ) =
∑q
j=0 ψjDijD

′
ij and Gi(ψ) =

∑q
j=0 ψjFijF

′
ij , where ψ0 = 1, Dij and

Fij (i = 1, . . . ,m, j = 0, . . . , q) are known matrices of order ni× bi and bi× bi
respectively, and the elements are uniformly bounded known constants such
that Ri(ψ) and Gi(ψ) (i = 1, . . . ,m) are all positive definite matrices. (In
special cases, some of Dij and Fij may be null matrices.)

(f) ψ̂ is an estimator of ψ which satisfies (i) ψ̂ − ψ = Op(m−1/2), (ii) ψ̂ − ψ̃ =
Op(m−1), (iii) ψ̂(−Y ) = ψ̂(Y ), and (iv) ψ̂(Y +Xh) = ψ̂(Y ) for any h ∈ Rp

and for all Y , where ψ̃ is the ML estimator of ψ.
Conditions (a)-(d) are in Prasad and Rao (1990) though (c) and (d) were

not explicitly stated. Condition (e) reduces (1) to a generalization of the usual
variance components model (see Rao (1973)). Under (e), we can write (1) as
Yi = Xiβ +

∑q
j=0Eijξij , where Eij = [ZiFij ,Dij ], ξij

ind∼ N(0, ψjI2bi), (i =
1, . . . ,m; j = 0, . . . , q). For our model, unlike the usual variance components
model, we do not restrict matrices Eij to 0 and 1 and entries nor E′

ijEij to be
diagonal for all i = 1, . . . ,m; j = 0, . . . , q. Condition (f) is generally satisfied by
the ML and the REML estimators of variance components.

Define g1(ψ)=λ′G(ψ)λ−s′(ψ)ZG(ψ)λ, g2(ψ)=[h−X ′s(ψ)]′(X ′Σ−1(ψ)X)−1

[h−X ′s(ψ)], Ld(ψ) = ∂
∂ψd

s(ψ)(d = 1, . . . , q), L(ψ) = col1≤d≤qL′
d(ψ) and g3(ψ) =

tr[L(ψ)Σ(ψ)L′(ψ)Var (ψ̂)], where Var (ψ̂) denotes the asymptotic variance of ψ̂.
It is shown in Theorem A.1 in the Appendix that, under regularity conditions

RC,
MSE[θ̂(ψ̂)] .= g1(ψ) + g2(ψ) + g3(ψ), (4)

where .= means that neglected terms are of order o(m−1). A naive approxima-
tion g1(ψ) + g2(ψ) may be a serious underestimate of MSE[θ̂(ψ̂)] since g3(ψ) is
O(m−1), the order of g2(ψ). For this reason, we shall not ignore any O(m−1)
term throughout the paper.

We now write down the formula (4) when ψ is estimated by ψ̂ML and ψ̂REML,
the ML and the REML estimates, respectively. Let η = (β′, ψ′)′ and li(η) denote
the log-likelihood of η based on Yi (i = 1, . . . ,m). Let H(η) = (( ∂2 l̄

∂ηα∂ηγ
)), where

l̄ = m−1 ∑m
i=1 li(η) and Iη(ψ) = −E[H(η)], the average information matrix for

η. It can be checked that, in the sense of Cox and Reid (1987) and Huzurbazar
(1950), β and ψ are orthogonal, i.e., Iη(ψ) = diag(Iβ(ψ), Iψ(ψ)), where Iβ(ψ)
and Iψ(ψ) are the information matrices for β and ψ respectively. It follows
from properties of ML estimators that Var (ψ̂ML) .= Var (ψ̂REML) .= m−1I−1

ψ (ψ)
so that g3(ψ) .= m−1tr[L(ψ)Σ(ψ)L′(ψ)I−1

ψ (ψ)] = g∗3(ψ), say, where ψ̂ML and
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ψ̂REML are the ML and the REML estimators, respectively. Thus (4) reduces to

MSE[θ̂(ψ̂)] .= g1(ψ) + g2(ψ) + g∗3(ψ). (5)

It is interesting to note that formula (5) is valid for both the ML and the
REML methods of estimating the variance components. We now spell out for-
mula (5) for the Fay-Herriot and nested error regression models for estimating the
small area mean. For the Fay-Herriot model let θ̂i(Â) denote an EBLUP of θi =
x′iβ+ vi where Â satisfies regularity condition (f). Then g1i(A) = ADi/(A+Di),
g2i(A) = D2

i (A + Di)−2x′i[
∑m
u=1(A + Du)−1xux

′
u]−1xi (as in Prasad and Rao

(1990)) and g∗3i(A) = 2D2
i (A+Di)−3[

∑m
u=1(A+Du)−2]−1.

For the nested error regression model, let ψ̂ = (σ̂2
v , σ̂

2
e)

′ be an estimator of
ψ = (σ2

v , σ
2
e)

′ and let θ̂i(ψ̂) be an EBLUP of θi = X̄ ′
iβ+vi based on ψ̂ , where X̄i is

the known population mean of the covariate vector xij for the ith small area (i =
1, . . . ,m). Then g1i(ψ) = (1−γi)σ2

v , g2i(ψ) = (X̄i−γix̄i)′ (X ′Σ−1(ψ)X)−1(X̄i−
γix̄i), where γi = σ2

v(σ2
v + σ2

en
−1
i )−1 and x̄i is the sample mean vector of the

covariate X’s for the ith small area (as in Prasad and Rao (1990)). Also, g3i(ψ) =
n−2
i (σ2

v + n−1
i σ2

e)
−3 [σ4

eI
vv + σ4

vI
ee − 2σ2

eσ
2
vI
ve], Ivv = 2a−1 ∑m

u=1[(nu − 1)σ−4
e +

w−2
i ], Iee = 2a−1 ∑m

u=1 n
2
uw

−2
u , Ive = −2a−1 ∑m

u=1 nuw
−2
u , a = [

∑m
u=1 n

2
uw

−2
u ]

[
∑m
u=1{(nu − 1)σ−4

e + w−2
u }] − (

∑m
u=1 nuw

−2
u )2, wi = σ2

e + niσ
2
v and Ivv , Ive and

Iee are the elements of I−1
ψ .

Assuming a superpopulation model of the form (3) for the Ni population
units in the ith area, it can be shown that the EBLUP of Ȳi = N−1

i

∑Ni
j=1 Yij, the

ith finite population mean, is given by θ̂Fi (ψ̂) = fiȳi + (1 − fi)θ̂∗i (ψ̂) under the
nested error regression model, where fi = ni/Ni, θ̂∗i (ψ̂) is θ̂i(ψ̂) except that X̄i

is replaced by X̄∗
i , the mean of the xij for the Ni −ni non-sampled units, and F

stands for finite populations (see (3.6) of Prasad and Rao (1990)). From (4.12) of
Prasad and Rao (1990), it follows that MSE[θ̂Fi (ψ̂)] = (1 − fi)2[MSE(θ̂∗i (ψ̂)) +
N−1
i (1− fi)−1σ2

e ] where MSE(θ̂∗i (ψ̂)) is MSE(θ̂i(ψ̂)), except that X̄i in g2i will
be replaced by X̄∗

i .

5. Estimator of the MSE of EBLUP

Let bψ̂(ψ) be the bias of ψ̂, i.e., E(ψ̂) − ψ, up to the order o(m−1). Let
∇g1(ψ) = ( ∂

∂ψ1
g1(ψ), . . . , ∂

∂ψq
g1(ψ))′, where

∂

∂ψd
g1(ψ) = λ′FdF ′

dλ− [
∂s(ψ)
∂ψd

]′ZG(ψ)λ− s′(ψ)Z
∂G(ψ)
∂ψd

λ, (6)

and Fd = diag1≤i≤mFid, d = 1, . . . , q.
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Using (4), we get an estimator of MSE[θ̂(ψ̂)] whose bias is of order o(m−1).
It is shown in Theorem A.2 that

E[g1(ψ̂)] .= g1(ψ) + b′
ψ̂
(ψ)∇g1(ψ) − g3(ψ), (7)

E[g2(ψ̂)] .= g2(ψ), (8)

E[g3(ψ̂)] .= g3(ψ). (9)

It now follows from (7) and (8) that the naive estimator mseN{θ̂(ψ̂)} = g1(ψ̂) +
g2(ψ̂) has a bias of order O(m−1) in estimating MSE[θ̂(ψ̂)]. Using (4) and
(7)-(9), we get

E[g1(ψ̂) + g2(ψ̂) + 2g3(ψ̂) − b′
ψ̂
(ψ̂)∇g1(ψ̂)] .= MSE[θ̂(ψ̂)].

Thus, mse[θ̂(ψ̂)] = g1(ψ̂) + g2(ψ̂) + 2g3(ψ̂) − b′
ψ̂
(ψ̂)∇g1(ψ̂) is an estimator of

MSE[θ̂(ψ̂)] such that E {mse[θ̂(ψ̂)]} .= MSE[θ̂(ψ̂)].

Remark 1. It follows from Remark A.3 in the Appendix that for the REML
estimator of ψ, ψ̂REML, bψ̂REML

(ψ) .= 0, and it follows from Theorem A.3 in the

Appendix that for the ML estimator of ψ, ψ̂ML = ψ̃, bψ̂ML
(ψ) .= 1

2m
−1I−1

ψ (ψ)
col1≤d≤qtr[I−1

β (ψ) ∂
∂ψd

Iβ(ψ)]. Thus, the method based on the REML estimators
requires less bias correction than the method based on the ML estimators. It
can be checked that for the Fay-Herriot model the bias of ÂML is bÂML

(A) =
−tr{[∑m

u=1(A+Du)−1xux
′
u]−1[

∑m
u=1(A+Du)−2xux

′
u]}/

∑m
u=1(A+Du)−2. Since

∇g1(A) = ( Di
A+Di

)2 > 0 and the bias of ÂML is negative, using the Prasad-Rao
MSE estimate for the ML estimate of A would result in underestimation of the
approximate MSE up to o(m−1).

6. A Simulation Study

In this section we conduct a simulation study for a special case of the Fay-
Herriot model without covariates. In this case, x′iβ = µ (i.e., xi ≡ 1). We
investigate the finite sample performances of θ̂i(Â) when Â, the estimator of
the variance component A, is obtained by ANOVA, REML (ÂREML) and ML
(ÂML) methods. Since the ANOVA estimator could produce negative values, we
need to truncate it at an arbitrary nonnegative real number whenever it yields a
negative value. In this simulation, we consider three different ANOVA estimators,
ÂAOV 0, ÂAOV 1 and ÂAOV 2, which correspond to the trucation points 0, 0.0001
and 0.01, respectively. The finite sample accuracy of the proposed estimators of
MSE are also investigated.

Since the MSE is translation invariant, we set µ = 0 without loss of generality.
We selected m = 30, A = 1 and considered two different Di (i = 1, . . . , 30)
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patterns (see Table 1). Note that the Di’s are more dispersed in pattern (b)
than in pattern (a). These patterns were also used by Lahiri and Rao (1995)
in their robustness study of the Prasad-Rao MSE approximation under a non-
normality assumption of the small area effect in Fay-Herriot model.

Table 1. Values of Di’s for the simulation study.

i 1-6 7-12 13-18 19-24 25-30
Pattern (a) 0.7 0.6 0.5 0.4 0.3
Pattern (b) 4.0 0.6 0.5 0.4 0.1

Using IMSL FORTRAN library, we generated 10,000 independent sets of (vi, ei), i =
1, . . . , 30, for each case with specified parameters. We thus generate 10,000 independent
data sets Yi, i = 1, . . . , 30, using Yi = vi + ei, i = 1, . . . , 30. Simulated MSE[θ̂i(Â)],
E[mse(θ̂i(Â))] and E[mseN{θ̂i(Â)}] were then computed using these 10,000 data sets
for Â = ÂAOV 0, ÂAOV 1, ÂAOV 2, ÂREML and ÂML and averaged over the small areas
with the same value of Di. To obtain ÂML, we used the EM algorithm. We obtained
ÂREML using the relation given in part (b) of Theorem (A.3) with A (i.e., ψ) in the
second term in the right hand side of part (b) replaced by ÂML. (This approximation
to ÂREML reduced computational burden. While the true REML can be obtained by
maximizing (A.13), the above approximation is quite accurate.) The ANOVA estimator
of A (i.e., ÂAOV 0) took negative values 4 times for pattern (a) and 328 times for pattern
(b).

Table 2 reports the simulated MSE’s of the small area estimators θ̂i(Â) for Â =
ÂAOV 0, ÂAOV 1, ÂAOV 2, ÂREML, and ÂML. There is not much difference in efficiency
between the REML and the ML methods, see our comment following equation (5) in
Section 4. Although the efficiency of the ANOVA method is comparable with those of
the REML and the ML for pattern (a), the REML and the ML methods are much more
efficient than the ANOVA method for pattern (b).

Table 2. Simulated MSEx100 of θ̂i(Â) for Â = ÂAOV 0, ÂAOV 1, ÂAOV 2,
ÂREML and ÂML, averaged over areas with the same values of Di.

Pattern (a) Pattern (b)
Di 0.7 0.6 0.5 0.4 0.3 4.0 0.6 0.5 0.4 0.1
AOV0 43.5 39.3 35.6 29.9 24.1 89.5 43.2 39.3 34.1 12.3
AOV1 43.6 39.8 35.1 30.1 24.0 89.1 43.5 40.0 34.2 11.9
AOV2 43.2 39.6 35.0 30.1 24.3 90.0 44.0 38.9 33.7 11.9
REML 43.5 39.3 35.6 29.8 23.9 85.6 39.3 35.1 30.1 9.3
ML 43.6 39.4 35.7 29.9 24.0 85.6 39.4 35.2 30.2 9.3

Percent relative biases (averaged over small areas with the same values of
Di) of the naive MSE estimators and the proposed MSE estimators of θ̂i(Â),
when Â = ÂAOV 0, ÂAOV 1, ÂAOV 2, ÂREML, ÂML, are reported in Table 3. We
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denote the naive estimators by AOV0N, AOV1N, AOV2N, REMLN and MLN,
when A is estimated by ANOVA (truncating the negative estimate at 0, 0.0001
and 0.01), REML and ML methods, respectively. Note that MSE(θ̂i(ÂAOV 0))
is simply the Prasad-Rao approximation. The MSE estimators based on the
ML and the REML are less sensitive to the Di patterns than the Prasad-Rao
approximation, i.e., the one based on the ANOVA method. For pattern (a),
percent relative biases of all the MSE estimators except the naive estimators
are negligible. However, for pattern (b), the Prasad-Rao MSE estimator tends
to overestimate the true MSE quite a bit. Note that the naive estimator based
on the ML method has more negative bias than the one based on the REML
method. This is due to the fact that bias of ÂML is of order O(m−1) but that of
ÂREML is of order o(m−1).

Table 3. Percent relative bias of estimators of MSE, averaged over areas with
the same values of Di.

Pattern (a) Pattern (b)
Di 0.7 0.6 0.5 0.4 0.3 4.0 0.6 0.5 0.4 0.1
AOV0 -0.08 0.34 -1.64 -0.07 -0.06 0.11 12.72 14.16 18.43 143.71
AOV0N -7.24 -6.78 -8.47 -6.60 -6.13 -12.51 -21.04 -22.74 -23.83 -30.77
AOV1 0.10 -0.44 0.31 -0.11 0.42 0.83 12.18 14.92 18.16 145.10
AOV1N -7.01 -7.43 -6.57 -6.67 -5.68 -11.85 -21.37 -22.17 -23.90 -28.84
AOV2 0.71 -0.02 0.23 -0.44 -0.82 -11.07 10.82 14.96 19.29 118.52
AOV2N -6.46 -7.07 -6.68 -7.01 -6.88 -12.66 -22.22 -21.97 -22.86 -28.54
REML -0.70 -0.23 -2.05 -0.19 0.09 -1.12 0.06 -0.71 -1.01 -0.02
REMLN -7.19 -6.57 -8.22 -6.20 -5.44 -5.28 -6.34 -6.89 -6.85 -3.08
ML -0.41 0.12 -1.75 0.00 0.46 -1.06 0.39 -0.38 0.00 0.36
MLN -9.38 -8.70 -10.13 -7.92 -6.95 -9.14 -8.59 -8.96 -8.71 -3.87

Remark 2. A referee asked why the percent relative biases of the MSE esti-
mators reported in Table 3 corresponding to Di = 0.6, 0.5 and 0.4, the values
common between pattern (a) and pattern (b), are quite different in one pattern
from the other for the ANOVA estimator of A. It was further asked why the same
behavior was not obtained for ML and REML estimators of A. At first sight, this
difference in relative biases of Prasad-Rao MSE estimates between pattern (a)
and pattern (b) appears puzzling. The reason that the relative biases of the MSE
estimates based on either ML or REML estimate of A show the same behavior for
both patterns is that the third term, namely, g3i, which is more influential than
the second term, remains stable for ML/REML estimates of A. (Recall that in
our simulations for the Fay-Herriot model, this term for ML/REML estimation of
variance component is g∗3i(A) = 2D2

i (A+Di)−3{∑m
u=1(A+Du)−2}−1, whereas for

ANOVA estimates of A, it is given by gAO3i = 2D2
i (A+Di)−3 ∑m

u=1(A+Du)2/m2.
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The first one involves the harmonic mean of (A+Du)2 values, whereas the second
one involves the arithmatic mean.) Based on the values of Di and A = 1 that
are used in simulations, we calculate the following table.

Table 4. Relative contribution of the estimation error in estimating the re-
gression coefficient to the estimation error in estimating the variance compo-
nent.

Pattern (a) Pattern (b)
i 1-6 7-12 13-18 19-24 25-30 1-6 7-12 13-18 19-24 25-30
Di 0.7 0.6 0.5 0.4 0.3 4.0 0.6 0.5 0.4 0.1
g2i 0.008 0.007 0.006 0.004 0.003 0.035 0.008 0.006 0.004 0.0004
gAO
3i 0.015 0.013 0.011 0.009 0.006 0.056 0.039 0.033 0.026 0.004
g∗3i 0.014 0.012 0.011 0.009 0.006 0.019 0.013 0.011 0.009 0.001
gAO
3i /g2i 1.87 1.85 1.83 2.25 2.00 1.60 4.88 5.50 6.25 10.00
g∗3i/g2i 1.75 1.71 1.83 2.25 2.00 0.54 1.62 1.83 2.25 2.50

From the table we see that while g∗3i/g2i remains fairly stable for both pat-
terns, fluctuation of gAO3i /g2i is substantial. This is the main reason that we do
not get similar relative biases for the MSE estimates for the small areas with
the Di values that are common between the two patterns, when the variance
component A is estimated by ANOVA method. Furthermore, while our algo-
rithm converges to some positive value for ML/REML estimates of A for both
the patterns, the ANOVA method produces more negative estimates of A for the
second pattern.
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Appendix

Some notation is used here. Let t = p + q. Unless noted otherwise the
subscripts α, γ and δ will range from 1 to t, a from 1 to p and d, e, f from 1 to
q. We use ((xad))a=1,...,p;d=1,...,q ≡ ((xad))a,d to denote a p × q matrix. Define
S1(η) = [S′

1β(η), S
′
1ψ(η)]′, where S1β(η) = col1≤a≤p ∂

∂βa
l̄(η) and S1ψ(η) =

col1≤d≤q ∂
∂ψd

l̄(η).
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Theorem A.1. Under (1) and the regularity conditions RC,

MSE[θ̂(ψ̂)] .= g1(ψ) + g2(ψ) + g3(ψ), (4)

where the neglected terms are of order o(m−1).

To prove Theorem A.1 use the following lemma. For a proof of the lemma,
see Srivastava and Tiwari (1976).

Lemma A.1. Let U ∼ N(0,Σ). Then for symmetric matrices A, B and C,

E[(U ′AU)(U ′BU)(U ′CU)]

= 8tr(AΣBΣCΣ) + 2{tr(AΣBΣ)tr(CΣ) + tr(AΣCΣ)tr(BΣ)

+ tr(BΣCΣ)tr(AΣ)} + tr(AΣ)tr(BΣ)tr(CΣ).

Proof of Theorem A.1. Kackar and Harville (1984) showed that MSE[θ̂(ψ̂)] =
MSE[θ̂(ψ)] +E[{θ̂(ψ̂)− θ̂(ψ)}2]. It is straightforward to show that MSE[θ̂(ψ)] =
g1(ψ)+g2(ψ). Now ψ̂−ψ̃ = Op(m−1) implies that E[{θ̂(ψ̂)−θ̂(ψ)}2] .= E[{θ̂(ψ̃)−
θ̂(ψ)}2]. Thus it is enough to show that E[{θ̂(ψ̃) − θ̂(ψ)}2] .= g3(ψ). Writing
∇θ̂(ψ) = [ ∂

∂ψ1
θ̂(ψ), . . . , ∂

∂ψq
θ̂(ψ)]′, and using ψ̃−ψ=Op(m−1/2), ∂2

∂ψd∂ψe
θ̂(ψ)|ψ=ψ̃∗

= Op(1) when ||ψ̃∗ −ψ|| ≤ ||ψ̃−ψ||, by a Taylor expansion of θ̂(ψ̃) around ψ, we
get

θ̂(ψ̃) − θ̂(ψ) = (ψ̃ − ψ)′∇θ̂(ψ) +Op(m−1). (A.1)

Now using ∂
∂ψd

θ̂(ψ)=
∑p
a=1

∂
∂βa

θ̂∗(β, ψ)|β=β̂(ψ)
∂
∂ψd

β̂a(ψ) + ∂
∂ψd

θ̂∗(β, ψ)|β=β̂(ψ),

where θ̂∗(β, ψ)= h′β+s′(ψ)(Y −Xβ), condition (f), and the fact that ∂
∂ψd

β̂a(ψ) =
Op(m−1/2) (see Cox and Reid (1987)), we get from (A.1) that

θ̂(ψ̃) − θ̂(ψ) = (ψ̃ − ψ)′∇θ̂∗(ψ) +Op(m−1), (A.2)

where ∇θ̂∗(ψ)=
[
∂
∂ψ1

θ̂∗(β, ψ)|β=β̂(ψ), . . . ,
∂
∂ψq

θ̂∗(β, ψ)|β=β̂(ψ)

]′
=L(ψ)(Y −Xβ̂(ψ)).

Using conditions (c), (d), the fact that β̂(ψ)−β = Op(m−1/2) and (A.2), we
get

E[{θ̂(ψ̃) − θ̂(ψ)}2] .= E[{(ψ̃ − ψ)′L(ψ)(Y −Xβ)}2]. (A.3)

Using the Taylor series expansion of the likelihood equation S1(η̃) = 0 and
the orthogonality of β and ψ, it follows that

ψ̃ − ψ = I−1
ψ (ψ)S1ψ(η) +Op(m−1)

=
1
2
m−1I−1

ψ (ψ)col1≤d≤q [−tr{Σ−1(ψ)
∂

∂ψd
Σ(ψ)} + u′Ad(ψ)u] +Op(m−1),

(A.4)
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where u = Y − Xβ and Ad(ψ) = Σ−1(ψ){ ∂
∂ψd

Σ(ψ)}Σ−1(ψ). Using (A.3) and
(A.4), we get

E[{θ̂(ψ̃) − θ̂(ψ)}2]

.=
1

4m2
E

[ q∑
d=1

q∑
e=1

{u′Ad(ψ)u − νd}{u′Ae(ψ)u − νe}u′{Ce(ψ)C ′
d(ψ)}u

]
, (A.5)

where C(ψ) = col1≤d≤q C ′
d(ψ) = I−1

ψ (ψ)L(ψ) and νd(ψ) = E[u′Ad(ψ)u], d =
1, . . . , q.

Note that u′Ce(ψ)C ′
d(ψ)u = u′Ode(ψ)u, where Ode(ψ) = 1

2 [Cd(ψ)C ′
e(ψ) +

Ce(ψ)C ′
d(ψ)] is symmetric, and for any arbitrary matrix M ,

tr[OdeM ] =
1
2
[C ′
e(ψ)MCd(ψ) + C ′

d(ψ)MCe(ψ)].

Now applying Lemma A.1, we get from (A.5) that

E[{θ̂(ψ̃) − θ̂(ψ)}2] .=
1
4
m−2tr[Var {col1≤d≤qu′Ad(ψ)u}Var {C(ψ)u}]. (A.6)

Thus g3(ψ) = tr[L(ψ)Σ(ψ)L′(ψ)Var (ψ̂)].

Remark A.1. It follows from (A.4) and C(ψ) = I−1
ψ (ψ)L(ψ) that g3(ψ) =

tr[Var (Iψ(ψ)ψ̃) Var {I−1
ψ (ψ)L(ψ)u}] = tr[Var (ψ̃)Var (L(ψ)u)].

Remark A.2. Let F (ψ) denote the first term in the right hand side of (A.4).
Define W (ψ) = [{F (ψ)}′∇θ̂∗(ψ)]2. Then, [θ̂(ψ̃)− θ̂(ψ)]2 = W (ψ)+ op(m−1). We
interpret .= in (A.6) in the following sense: the expression in the right hand side
of (A.6) is based on the limiting distribution of [θ̂(ψ̃)− θ̂(ψ)]2 up to o(m−1), and
is calculated based on the distribution of W (ψ). This interpretation is an adap-
tation of Ghosh (1994, p.8 and p.19). In his monograph, Ghosh (1994) obtained
higher order asymptotic expansion of mean, variance and risk function of an ML
estimator. These expansions were not obtained as the limits of the moments
of the ML estimator, rather they were calculated using the limiting distribu-
tion (say, Edgeworth expansion) of the ML estimator. For more discussion, see
Sections 2.1 and 2.7 of the monograph.

Theorem A.2. Under (1) and regularity conditions RC, we have
(a) E[g1(ψ̂) − b′

ψ̂
(ψ̂)∇g1(ψ̂) + g3(ψ̂)] .= g1(ψ),

(b) E[g2(ψ̂)] .= g2(ψ),
(c) E[g3(ψ̂)] .= g3(ψ),
where neglected terms are of order o(m−1).
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Proof. (a) Since G(ψ) and Σ(ψ) are linear functions of ψ, we get (A.8) from
(A.7).

Ld(ψ) =
∂

∂ψd
s(ψ) = −Σ−1(ψ)

∂Σ(ψ)
∂ψd

Σ−1(ψ)ZG(ψ)λ+Σ−1(ψ)Z
∂G(ψ)
∂ψd

λ, (A.7)

∂2s(ψ)
∂ψe∂ψd

= Σ−1(ψ)
∂Σ(ψ)
∂ψe

Σ−1(ψ)
∂Σ(ψ)
∂ψd

Σ−1(ψ)ZG(ψ)λ

+Σ−1(ψ)
∂Σ(ψ)
∂ψd

Σ−1(ψ)
∂Σ(ψ)
∂ψe

Σ−1(ψ)ZG(ψ)λ

−Σ−1(ψ)
∂Σ(ψ)
∂ψd

Σ−1(ψ)Z
∂G(ψ)
∂ψe

λ

−Σ−1(ψ)
∂Σ(ψ)
∂ψe

Σ−1(ψ)Z
∂G(ψ)
∂ψd

λ. (A.8)

Using (6), (A.7) and (A.8), we get for d, e = 1, . . . , q,

∂2g1(ψ)
∂ψe∂ψd

= −2s′(ψ)
∂Σ(ψ)
∂ψd

Σ−1(ψ)
∂Σ(ψ)
∂ψe

s(ψ)

+2s′(ψ)
∂Σ(ψ)
∂ψd

Σ−1(ψ)
∂

∂ψe
(ZG(ψ)λ)

+2s′(ψ)
∂Σ(ψ)
∂ψe

Σ−1(ψ)
∂

∂ψd
(ZG(ψ)λ)

−2
∂

∂ψd
(ZG(ψ)λ)′Σ−1(ψ)

∂

∂ψe
(ZG(ψ)λ). (A.9)

Using the definition of s(ψ) it follows that Ld(ψ) = −Σ−1(ψ)∂Σ(ψ)
∂ψd

s(ψ)+
Σ−1(ψ) ∂

∂ψd
[ZG(ψ)λ]. Then with (A.9), one can show that

Cov (L′
d(ψ)Y,L′

e(ψ)Y ) = −1
2
∂2g1(ψ)
∂ψe∂ψd

. (A.10)

Writing Hg1(ψ) = ((∂
2g1(ψ)
∂ψd∂ψe

)), the Hessian matrix of g1, from (A.10) and Remark
A.1,

g3(ψ) = −1
2
tr[Hg1(ψ)Var (ψ̂)]. (A.11)

Using ψ̂ − ψ = Op(m−1/2) and ∂3

∂ψd∂ψe∂ψf
g1(ψ)|ψ=ψ̂∗ = Op(1), when ||ψ̂∗ −

ψ|| ≤ ||ψ̂ − ψ|| the Taylor series expansion of g1(ψ̂) around ψ gives

g1(ψ̂) .= g1(ψ)+(ψ̂−ψ)′∇g1(ψ)+
1
2
tr[(ψ̂−ψ)(ψ̂−ψ)′Hg1(ψ)]+op(m−1) (A.12)
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To obtain (a) use (7), (A.11) and (A.12).
(b) Using ψ̂ − ψ = Op(m−1/2) and ∂2

∂ψd∂ψe
g2(ψ)|ψ=ψ̂ = Op(m−1), where

||ψ̂∗−ψ|| ≤ ||ψ̂−ψ||, we obtain (b) by an application of Taylor’s series expansion
of g2(ψ̂) around ψ.

Proof of (c) is similar to that of (b).

Theorem A.3. Under (1) and regularity conditions RC, we have
(a) E(ψ̃ − ψ) .= 1

2m
−1I−1

ψ (ψ)col1≤d≤qtr[I−1
β (ψ) ∂

∂ψd
Iβ(ψ)],

(b) ψ̂CP
.= ψ̃ − 1

2m
−1I−1

ψ (ψ)col1≤d≤q [trI−1
β (ψ) ∂

∂ψd
Iβ(ψ)],

(c) E(ψ̂CP − ψ) .= 0.

Proof. Part (a) follows from Peers and Iqbal (1985, p.554) after rewriting their
notations in ours. For part (b) note that, when β and ψ are orthogonal, the
average conditional profile log-likelihood of ψ in Cox and Reid (1987, Equation
10) is given by

l̄CP (ψ) = l̄(ψ, β̃(ψ)) − 1
2m

ln | Iβ(ψ, β̃(ψ)) |, (A.13)

where β̃(ψ) is the ML estimator of β for given ψ and l̄(ψ, β) is the average log-
likelihood for (β′, ψ′)′. With the orthogonality of ψ and β one can show from
(A.13) that

ψ̂CP
.= ψ̃ − 1

2
m−1I−1

ψ (ψ)col1≤d≤q [trI−1
β (ψ)

∂

∂ψd
Iβ(ψ)],

where ψ̂CP is the maximum CPL estimator of ψ. The details are omitted to save
space. Part (c) follows from part (a) and part (b).

Remark A.3. It follows from Harville (1974, Eqn. 2) and Cox and Reid (1987,
Eqn. 10) that for the normal mixed linear model given by (2), the residual like-
lihood for ψ is proportional to the CPL. It then follows from Theorem A.3 that
the expression for the asymptotic bias for the REML estimator of ψ, ψ̂REML, is
bψ̂REML

(ψ) .= 0.
For recent results on the asymptotic distribution of the REML of variance

components one may refer to the work of Jiang (1996).
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