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Abstract: This paper considers the problem of testing for umbrella alternatives

in the one-way layout when survival data are subject to random right censorship.

Testing procedures based on two-sample weighted logrank statistics are suggested

for both cases when the peak of the umbrella is known or unknown. The Pitman

efficacy of the peak-known umbrella test is derived. A class of Lehmann and scale

alternatives for which the peak-known umbrella test is optimal in the sense of Pit-

man efficacy is then obtained under the assumption of equal censorship. Moreover,

the results of a Monte Carlo study to investigate the level and power performances

of the proposed umbrella tests are presented. Finally, application of the proposed

procedures to an appropriate data set is illustrated.
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1. Introduction

Dose-response studies are frequently used to assess the relative treatment
effects of increasing dose levels of a substance in animal experiments or clinical
trials, where the response of interest is, for instance, time to tumor occurrence or
the prolonged survival time of patients with a particular disease. These studies
may lead to randomly right-censored data, since they may be terminated at
preassigned times, subjects who randomly enter a study may be lost to follow-up
randomly, or death may be due to a competing risk which is not of interest.

For the ith sample (i = 1, . . . , k), let Ti1, ..., Tini be independent and iden-
tically distributed (i.i.d.) random variables each with a continuous distribution
function Fi, and let Ci1, . . . , Cini be i.i.d. random variables each with a continuous
distribution function Gi, where Cij is the censoring time associated with the sur-
vival time Tij. Suppose that the k samples are mutually independent and that the
Tij and Cij are also mutually independent. In such a setting, we actually observe
only Xij =minimum{Tij, Cij} and the indicator of censorship δij = I{Tij ≤ Cij},
j = 1, . . . , ni, i = 1, . . . , k. Let Si = 1 − Fi, i = 1, . . . , k. When increasing dose
levels may lead to a larger or at least equal efficacy, Liu, Green, Wolf and Crowley
(1993) proposed a generalization of the Jonckheere (1954)-Terpstra (1952) test
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for H0 : (S1 = · · · = Sk) against the ordered alternatives H1O : (S1 ≤ · · · ≤ Sk,
with at least one strict inequality) (Barlow, Bartholomew, Bremner and Brunk
(1972)) based on two-sample weighted logrank statistics.

However, monotonicity of dose-response relationships is far from univer-
sal. For example, medical therapies often become counter-productive at high
doses. In such cases, an increasing dose-response relationship with a down-
turn in response at high doses is anticipated. The corresponding up-down or-
dering of the treatment effects is referred to as an umbrella pattern (Mack
and Wolfe (1981)) and the point that separates the treatment effects into the
two different ordering groups is called the peak of the umbrella. In this pa-
per we are concerned with testing procedures against the umbrella alternative
H1U : (S1 ≤ · · · ≤ Sp ≥ · · · ≥ Sk, for some p, with at least one strict inequality)
when randomly right-censored data are involved.

In Section 2 we propose a generalization of the Mack-Wolfe (1981) test for
peak-known umbrella alternatives based on the two-sample weighted logrank
statistics. Two special cases are investigated in detail: the umbrella version
of logrank test (Mantel (1966)), and the umbrella Peto-Prentice-Wilcoxon test
(Peto and Peto (1972), Prentice (1978)). In Section 3 the Pitman efficacy for the
peak-known umbrella tests is derived. The class of Lehmann and scale umbrella
alternatives, for which the peak-known umbrella tests are optimal in the sense of
Pitman efficacy, is then obtained. In Section 4 a generalized Chen-Wolfe (1990)
test is suggested for peak-unknown umbrella alternatives with censored data.
Section 5 contains a numerical example and in Section 6 we present the results of
a simulation investigation of the level and power performances of the proposed
tests for a variety of umbrella pattern treatment effects configurations. The final
section contains some suggestions for future work.

2. Peak-Known Umbrella Test

Define, for j = 1, . . . , ni, i = 1, . . . , k, simple counting processes Dij(t) =
I{Xij ≤ t, δij = 1} with associated at-risk processes Yij(t) = I{Xij > t}. Let
Di(t) =

∑ni
j=1 Dij(t) and Yi(t) =

∑ni
j=1 Yij(t) for i = 1, . . . , k. Using the counting

process formulation, the two-sample weighted logrank statistic for testing H0 :
S1 = S2 against H1 : S1 < S2 with right-censored data is written as

U =
∫

W (t)
Y1(t)Y2(t)

Y1(t) + Y2(t)

{dD1(t)
Y1(t)

− dD2(t)
Y2(t)

}
, (2.1)

where
∫

denotes the integration from zero to infinity. Harrington and Fleming
(1982) suggested use of W (t) = {Ŝ(t−)}ρ{1−Ŝ(t−)}γ for ρ, γ ≥ 0, where Ŝ(t−) is
the Kaplan-Meier (1958) survival estimate based on the pooled samples from pop-
ulations 1 and 2. Note that taking ρ = γ = 0 produces the logrank statistic and
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setting ρ = 1 and γ = 0 yields the Peto-Prentice-Wilcoxon statistic. Let Mij(t) =
Dij(t)−

∫ t
0 Yij(s)dΛi(s) and Mi(t) =

∑ni
j=1 Mij(t) = Di(t)−

∫ t
0 Yi(s)dΛi(s), where

Λi(s) is the cumulative hazard function for Tij for j = 1, . . . , ni, i = 1, . . . , k. Ac-
cording to the martingale-based analysis of censored data established by Aalen
(1978) and Gill (1980), the two-sample weighted logrank statistic can also be
written as

U =
∫

V1(t)dM1(t) −
∫

V2(t)dM2(t) +
∫

K(t)d{Λ1(t) − Λ2(t)}, (2.2)

where K(t) = W (t)Y1(t)Y2(t)/[Y1(t) + Y2(t)] and Vi(t) = K(t)/Yi(t), i = 1, 2.
Suppose that, as n1 + n2 → ∞, Yi(t)/ni

p→πi(t), uniformly in t, i = 1, 2. Apply-
ing the Martingale Central Limit Theorem (see, for example, Theorem 6.2.1 in
Fleming and Harrington (1991)), it can be seen that, under H0,

(n1 + n2)−1/2U
d→N(0, σ2),

where σ2 =
∫
[ν1(t)+ ν2(t)][1−∆Λ(t)]dΛ(t), νi(t) is the limit of V 2

i (t)Yi(t)/(n1 +
n2), i = 1, 2, and ∆Λ(t) = Λ(t) − Λ(t−). A consistent estimate of σ2 (see, for
example, Lemma 4.3.1 in Gill (1980)) is then given by V̂ar (U)/(n1 + n2), where

V̂ar (U)=
∫

[V 2
1 (t)Y1(t)+V 2

2 (t)Y2(t)]
{
1−∆D1(t)+∆D2(t)−1

Y1(t)+Y2(t)−1

}d[D1(t)+D2(t)]
Y1(t)+Y2(t)

,

with ∆Di(t) = Di(t)−Di(t−), i = 1, 2. So, a two-sample weighted logrank test is

obtained which rejects H0 in favor of H1 if U/
√

V̂ar (U) ≥ z(α), where z(α) is the
upper αth percentile of a standard normal distribution. Note that, as n1 + n2 →
∞, if W (t)

p→w(t), then (n1+n2)−1K(t)
p→w(t)λ1λ2π1(t)π2(t)/[λ1π1(t)+λ2π2(t)].

Suppose that, under the stochastic ordering alternative H1 : S1(t) < S2(t) for all
t, ∫

w(t)
λ1λ2π1(t)π2(t)

λ1π1(t) + λ2π2(t)
d{Λ1(t) − Λ2(t)} > 0.

Then

(n1 + n2)−1/2
∫

K(t)d{Λ1(t) − Λ2(t)} p→∞, as n1 + n2 → ∞.

Hence, the two-sample weighted logrank test is consistent under the stochastic
ordering alternative (see, for example, Theorem 7.3.2 in Fleming and Harrington
(1991)).

When the peak of the umbrella alternative, p, is known, and we have right-
censored data, we consider a generalization of the Mack-Wolfe (1981) umbrella
test statistic, namely,

Ap =
p∑

i=2

U
(1)
i +

k−1∑
j=p

U
(2)
j , (2.3)
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where U
(1)
i is the two-sample weighted logrank statistic comparing the ith sample

with the combined samples of 1 through i−1, and U
(2)
j is the two-sample weighted

logrank statistic comparing the jth sample with the combined samples of j + 1
through k. In the rest of the paper, for simplicity, the notation (t) in all the
functions of time t will be deleted. Let D

(1)
i =

∑i
u=1 Du, Y

(1)
i =

∑i
u=1 Yu,

D
(2)
j =

∑k
v=j Dv and Y

(2)
j =

∑k
v=j Yv for i, j = 1, . . . , k. Since the U

(1)
i and U

(2)
j

are two-sample weighted logrank statistics, from (2.1) they can be expressed as

U
(1)
i =

∫
W

(1)
i

YiY
(1)
i−1

Y
(1)
i

{dD
(1)
i−1

Y
(1)
i−1

− dDi

Yi

}
, i = 2, . . . , p

and

U
(2)
j =

∫
W

(2)
j

YjY
(2)
j+1

Y
(2)
j

{dD
(2)
j+1

Y
(2)
j+1

− dDj

Yj

}
, j = p, . . . , k − 1

where W
(1)
i and W

(2)
j are the weight functions based on the first i samples and

the last (k − j + 1) samples, respectively. Recalling the independent zero-mean
martingales Mi = Di −

∫
YidΛi, i = 1, . . . , k, the U

(1)
i and U

(2)
j can also be

expressed as

U
(1)
i =

∫
W

(1)
i

Yi

Y
(1)
i

d
i−1∑
u=1

Mu −
∫

W
(1)
i

Y
(1)
i−1

Y
(1)
i

dMi

+
∫

W
(1)
i

YiY
(1)
i−1

Y
(1)
i

{
i−1∑
u=1

YudΛu

Y
(1)
i−1

− dΛi

}
, i = 2, . . . , p (2.4)

and

U
(2)
j =

∫
W

(2)
j

Yj

Y
(2)
j

d
k∑

u=j+1

Mu −
∫

W
(2)
j

Y
(2)
j+1

Y
(2)
j

dMj

+
∫

W
(2)
j

YiY
(2)
j+1

Y
(2)
j

{
k∑

u=j+1
YudΛu

Y
(2)
j+1

−dΛj

}
, j = p, . . . , k−1. (2.5)

Introducing the U
(1)
i and U

(2)
j in (2.4) and (2.5), respectively, into (2.3), we have,

after some algebraic manipulation,

Ap =
k∑

i=1

∫
V

(p)
i dMi +

k∑
i=1

∫
K

(p)
i dΛi, (2.6)
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where, for i = 1, . . . , k,

V
(p)
i =




p∑
u=i+1

{W (1)
u Yu/Y

(1)
u } − W

(1)
i Y

(1)
i−1/Y

(1)
i , if 1 ≤ i ≤ p − 1,

−W
(1)
p Y

(1)
p−1/Y

(1)
p − W

(2)
p Y

(2)
p+1/Y

(2)
p , if i = p,

i−1∑
u=p

{W (2)
u Yu/Y

(2)
u } − W

(2)
i Y

(2)
i+1/Y

(2)
i , if p + 1 ≤ i ≤ k,

(2.7)

and K
(p)
i = V

(p)
i Yi, with Y

(1)
0 = Y

(2)
k+1 = 0. Let N =

∑k
i=1 ni. Since Var (Mi) =

E{Yi(1−∆Λ)dΛ}, i = 1, . . . , k, according to properties of the martingales (see, for
instance, Corollary 2.3.2 and Theorem 2.4.4 in Fleming and Harrington (1991)),
we have, under H0,

Var (Ap) =
k∑

i=1

E

∫
{V (p)

i }2Yi(1 − ∆Λ)dΛ.

Suppose that, as N → ∞, Yi/ni
p→πi for i = 1, . . . , k. We observe

{V (p)
i }2Yi/N

p→ν
(p)
i , for i = 1, . . . , k, (2.8)

where the ν
(p)
i are nonnegative, left continuous with right-hand limits, and

σ2
p =

k∑
i=1

∫
ν

(p)
i (1 − ∆Λ)dΛ < ∞. (2.9)

As an extension of Corollary 7.2.1 in Fleming and Harrington (1991), we obtain
that, under H0,

N−1/2Ap
d→N(0, σ2

p), as N → ∞.

An appealing estimator of σ2
p is then given by V̂ar , (Ap)/N , where

V̂ar (Ap) =
k∑

i=1

∫
{V (p)

i }2Yi

{
1 − ∆D − 1

Y − 1

}dD

Y
(2.10)

with Y =
∑k

i=1 Yi, D =
∑k

i=1 Di and ∆D(t) = D(t) − D(t−). In fact, it can be
verified, along the lines of the proof of Lemma 4.3.1 (Gill (1980)), that V̂ar (Ap)/N
provides a consistent estimator of σ2

p.

Note that large values of U
(1)
i in (2.3) indicate that the survival time of the ith

group is longer than that of the previous combined groups {1, . . . , i−1}. Similarly,
large values of U

(2)
j provide evidence for the better survival of the jth group than

that of the following combined groups {j + 1, . . . , k}. Therefore, we propose the
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umbrella test which rejects H0 in favor of Hp
1U : (S1 ≤ · · · ≤ Sp ≥ · · · ≥ Sk with

at least one strict inequality) if

A∗
p = Ap

/√
V̂ar (Ap) ≥ z(α), (2.11)

where z(α) is, again, the upper αth percentile of a standard normal distribution.
If, as N → ∞, the weight functions employed in the U

(1)
i and U

(2)
j in (2.4)

and (2.5), respectively, converge in probability to w(·) or w, then K
(p)
i /N

p→κ
(p)
i ,

where

κ
(p)
i

wλiπi
=




p∑
u=i+1

{
λuπu

/ u∑
s=1

λsπs

}
−

i−1∑
u=1

λuπu

/ i∑
s=1

λsπs, if 1 ≤ i ≤ p − 1,

−
p−1∑
u=1

λuπu

/ p∑
s=1

λsπs−
k∑

u=p+1

λuπu

/ k∑
s=p

λsπs, if i = p,

i−1∑
u=p

{
λuπu

/ k∑
s=1

λsπs

}
−

k∑
u=i+1

λuπu

/ k∑
s=i

λsπs, if p + 1 ≤ i ≤ k.

(2.12)
Suppose that, under the stochastic ordering alternative Hp

1U : (S1 ≤ · · · ≤ Sp ≥
· · · ≥ Sk, with at least one strict inequality),

∑k
i=1

∫
κ

(p)
i dΛi > 0. We then

observe that N−1/2 ∑k
i=1

∫
K

(p)
i dΛi

p→∞, as N → ∞. Therefore, the test based
on A∗

p at (2.11) is consistent under H1U .

Remark 1. When the survivals of the treatment groups are expected to decrease
up to a certain point and then increase with further doses, the umbrella alter-
native with increasing dosages of interest is Hp

2U : (S1 ≥ · · · ≥ Sp ≤ · · · ≤ Sk,
with at least one strict inequality). For this setting, we suggest rejection of H0

in favor of Hp
2U if

A∗
p = Ap

/√
V̂ar (Ap) ≤ −z(α),

Note that the ordered test proposed in Liu, Green, Wolf and Crowley (1993)
compares the statistic (A∗

1)
2 with the upper αth percentile of a chi-squared dis-

tribution with one degree of freedom. This ordered test is, in fact, suitable for
testing against the alternative hypothesis H1 : (S1 ≤ · · · ≤ Sk or S1 ≥ · · · ≥ Sk,
each with at least one strict inequality).

3. Asymptotic Relative Efficiency for the Peak-Known Setting

Consider contiguous alternatives, where the absolutely continuous distri-
bution functions FNi can depend on N and sup0≤t≤∞ |FNi(t) − F (t)| → 0 as
N → ∞, i = 1, . . . , k, for some absolutely continuous distribution function F . Let
ΛNi(t) be the cumulative hazard function associated with FNi(t). Suppose that
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√
N{dΛNi/dΛ−1} → γi and

∫ |γi|dΛ < ∞ for i = 1, . . . , k. Note that, under the
contiguous alternatives, the mean of N−1/2Ap (see (2.6)) is µ =

∑k
i=1

∫
κ

(p)
i γidΛ,

where the κ
(p)
i are given in (2.12). Moreover, the Martingale Central Limit

Theorem implies N−1/2Ap
d→N(µ, σ2

p), as N → ∞, where σ2
p is stated in (2.9).

Since the test based on the statistic A∗
p is consistent under H1U , the statistic

with the higher power against H1U should have the large value of the parameter
|∑k

i=1

∫
κ

(p)
i γidΛ|/{σ2

p}1/2. Therefore, the Pitman efficacy of the test based on
A∗

p is given by

e(A∗
p) =

{ k∑
i=1

∫
κ

(p)
i γidΛ

}2

σ2
p

. (3.1)

Let λ
(1)
i =

∑i
u=1 λu and λ

(2)
j =

∑k
v=j λv, i, j = 1, . . . , k. With the further

assumption of equal censorship, that is, G1 = · · · = Gk = G, we obtain the
following equations:

k∑
i=1

∫
κ

(p)
i γidΛ =

p∑
i=2

λi

λ
(1)
i

i−1∑
u=1

λu

∫
w(γu−γi)ḠdF +

k−1∑
j=p

λj

λ
(2)
j

k∑
v=j+1

λv

∫
w(γv−γj)ḠdF

and

σ2
p =

{ p∑
i=2

λiλ
(1)
i−1

λ
(1)
i

+
k−1∑
j=p

λjλ
(2)
j+1

λ
(2)
j

+
2λpλ

(1)
p−1λ

(2)
p+1

λ
(1)
p λ

(2)
p

} ∫
w2ḠdF. (3.2)

To evaluate the Pitman efficacy in (3.1), we consider two special umbrella
alternatives: Lehmann alternatives, corresponding to the proportional hazards
model; and scale alternatives, corresponding to location shifts in log survival
times. Note that, under the Lehmann alternative

SNi = S1−θi/
√

N , i = 1, . . . , k,

and under the scale alternative

SNi = S(te−θi/
√

N ), i = 1, . . . , k,

where θ1 ≤ · · · ≤ θp ≥ · · · ≥ θk for some p, 1 ≤ p ≤ k, with at least one strict
inequality. We have γi = −θi for the Lehmann alternative and γi = −θi(1 −
tS′
S + tS′′

S′ ) for the scale alternative for i = 1, . . . , k, where S′ and S′′ represent
the first and second derivatives of the survival function S. Let λ0 = λk+1 = 0.
We observe that
k∑

i=1

∫
κ

(p)
i γidΛ =

{ p∑
i=2

λi

λ
(1)
i

i−1∑
u=1

λu(θi − θu) +
k−1∑
j=p

λj

λ
(2)
j

k∑
v=j+1

λv(θj − θv)
} ∫

ϕḠdF
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which, after some algebraic manipulation, can be further simplied as

k∑
i=1

∫
κ

(p)
i γidΛ =

{ k∑
i=1

C
(p)
i θi

} ∫
ϕḠdF.

Here

C
(p)
i =




λi{λ(1)
i−1/λ

(1)
i } −

p∑
u=i+1

{λu/λ(1)
u }, if 1 ≤ i ≤ p − 1,

λp{λ(1)
p−1/λ

(1)
p + λ

(2)
p+1/λ

(2)
p }, if i = p,

λi{λ(2)
i+1/λ

(2)
i } −

i−1∑
u=p

{λu/λ(2)
u }, if p + 1 ≤ i ≤ k,

with ϕ = w for the Lehmann alternative and ϕ = w(1 − tS′
S + tS′′

S′ ) for the
scale alternative. Hence, the asympototic relative efficiencies of the weighted lo-
grank peak-known umbrella tests are the same as those reported in Liu, Green,
Wolf and Crowley (1993) for ordered alternatives. Note that the maximum of
{∫ ϕḠdF}2/

∫
w2ḠdF occurs at w(t) = 1 for the Lehmann alternative, and at

w(t) = {1 − tS′(t)
S(t) + tS′′(t)

S′(t) } for the scale alternative. It demonstrates that the
logrank umbrella test is optimal for detecting proportional hazards. Moreover,
since the Cauchy-Schwarz inequality implies that {∑k

i=1 C
(p)
i θi}2 attains its max-

imum when θi = aC
(p)
i + b for constants a and b, we have the class of Lehmann

and scale alternatives, {θi = aC
(p)
i + b for any constants a and b}, for which the

test based on A∗
P has maximum Pitman efficacy.

4. Peak-Unknown Umbrella Tests

As noted in Chen and Wolfe (1990), if the peak of the umbrella is unknown
the alternative H1U can be viewed as a union of k individual umbrella alternatives
(Hp

1U ) with the peak p at group 1, . . . , k, respectively. This way of viewing H1U

leads to a natural extension for the peak-unknown setting to the test procedure
which rejects H0 for large values of

A∗
max = max{A∗

1, . . . , A
∗
k},

where A∗
p, p = 1, . . . , k, are given by equation (2.11).

Note that, under H0, for any nonzero constants a1, . . . , ak, we have

k∑
p=1

apAp =
k∑

i=1

∫ { k∑
p=1

apV
(p)
i

}
dMi,

where the V
(p)
i are specified in equation (2.7). Since conditions (2.8) and (2.9)

also hold for
∑k

p=1 apAp, where the V
(p)
i in (2.8) and (2.9) are now replaced by
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∑k
p=1 apV

(p)
i , the Martingale Central Limit Theorem and Cramer-Wold device

imply that, under H0, the asymptotic distribution of (A∗
1, . . . , A

∗
k) is a multivari-

ate normal distribution. Moreover, note that

Cov (Ap, Aq) =
k∑

i=1

E

∫
V

(p)
i V

(q)
i Yi(1 − ∆Λ)dΛ, p �= q = 1, . . . , k.

Therefore, we have

(A∗
1, . . . , A

∗
k)

d→N(0,R), as N → ∞,

where R = (σpq/
√

σ2
pσ

2
q), σpq =

∑k
i=1

∫
ν

(pq)
i (1−∆Λ)dΛ, σ2

p is given in (2.9), and

ν
(pq)
i is the limit of V

(p)
i V

(q)
i Yi/N , p �= q = 1, . . . , k. Consistent estimators for

the σpq are then given by ˆCov (Ap, Aq)/N , where

ˆCov (Ap, Aq) =
k∑

i=1

∫
V

(p)
i V

(q)
j Yi{1 − ∆D − 1

Y − 1

}dD

Y
, p �= q = 1, . . . , k.

A consistent estimator for R is further obtained as

R̂ =
(

ˆCov (Ap, Aq)
/√

V̂ar (Ap)V̂ar (Aq)
)
,

where V̂ar (Ap) is given by equation (2.10).
Let (Z1, . . . , Zk) be a random vector which has a k-variate normal distri-

bution with zero mean vector and correlation matrix R̂, and let zmax(k, α) be
the upper αth percentile of the distribution of max(Z1, . . . , Zk). We obtain an
approximate level α test for the umbrella alternative H1U by rejecting H0 if

A∗
max ≥ zmax(k, α). (4.1)

For any z and k ≤ 7, the probability P{max(Z1, . . . , Zk) ≤ z} can be
computed using a program for calculating multivariate normal probabilities
(Schervish (1984)). Therefore, the critical value zmax(k, α) can be found such
that P{max(Z1, . . . , Zk) ≥ zmax(k, α)} = α.

On the other hand, we find the limit of V
(p)
i Vi(q)Yi/N , namely, ν

(pq)
i , under

the assumption of a common censoring distribution. The σpq values, for p < q,
are then obtained in the following:

σpq =
{ p−1∑

i=1

λi

[ p∑
u=i+1

λu

λ
(1)
u

− λ
(1)
i−1

λ
(1)
i
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(1)
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(1)
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λ
(1)
i

]
−λp
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λ
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+
λ

(2)
p+1

λ
(2)
p

][ q∑
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λv
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(1)
v

− λ
(1)
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λ
(1)
p

]

+
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(2)
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i

][ q∑
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i
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−λq
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− λ
(2)
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][λ
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+
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+
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i=q+1
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(2)
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w2ḠdF.
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For this setting, we compute the σpq/
√

σ2
pσ

2
q values for the case of equal sample

sizes, where the values of the σ2
p are given in (3.3), and we compute (k ≤ 7) or

simulate (k > 7) the critical values zmax(k, α) from the k-variate normal dis-
tribution with known correlation matrix R. The critical values zmax(k, α), for
the case of common censoring distribution, equal sample sizes, k = 2(1)10 and
α = .01, .05 and .10, are then reported in Table 1. We recommend use of these
critical values for situations where the sample sizes are equal and the assump-
tion of common censoring distribution is tenable. Otherwise, we can obtain the
estimated correlation matrix R̂ from the data, and compute or simulate the crit-
ical value zmax(k, α) from this k-variate normal distribution with (estimated)
correlation matrix R̂.

Table 1. Values of zmax(k, a) for common censoring distribution and equal
sample sizes.

k

α 2 3 4 5 6 7 8 9 10

0.01 2.58 2.66 2.80 2.89 2.89 2.92 2.99 3.01 3.04
0.05 1.96 2.10 2.23 2.28 2.34 2.37 2.38 2.39 2.40
0.10 1.65 1.80 1.92 1.99 2.03 2.07 2.08 2.09 2.10

Suppose that the umbrella alternative H1U is Hp
1U for some p = 1, . . . , k.

Note that the power of the test based on A∗
max is

1 − P{A∗
max < zmax(k, α) | H1U} = 1 − P{A∗

i < zmax(k, α), i = 1, . . . , k | Hp
1U}

> 1 − P{A∗
p < zmax(k, α) | Hp

1U}.

Therefore, the test base on A∗
max is consistent under the alternative H1U if each

peak-known test based on A∗
p is consistent under the relevant umbrella alternative

Hp
1U .

Remark 2. When survival in the treatment groups is expected to decrease up
to a certain point and then increase with further doses, the appropriate peak-
unknown umbrella test would reject the null hypothesis H0 in favor of the al-
ternative H2U : (S1 ≥ · · · ≥ Sp ≤ · · · ≤ Sk, for some p, with at least one
strict inequality) for small values of A∗

min = min{A∗
1, . . . , A

∗
k} or for large values

of max{−A∗
1, . . . ,−A∗

k}. Note that, under H0, the asymptotic distribution of
(−A∗

1, . . . ,−A∗
k) is the same as that of (A∗

1, . . . , A
∗
k). Therefore, for this setting,

we suggest rejection of H0 in favor of H2U if

max{−A∗
1, . . . ,−A∗

k} ≥ zmax(k, α). (4.2)
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5. An Example

Homburger and Treger (1970) studied the carcinogenic effect of transplanta-
tion of combined injection sites from previous animal hosts receiving injections
of a large dose (500 µg) of a weaker carcinogen, benz[α]-anthracene (BA) in tri-
caprylin (glycerol trioctanoate), has on tumor growth in the secondary recipients.
In particular, they were interested in possible differences in carcinogenic effects
relative to the length of time elapsed between the original injections in the host
and the site transfers to the transplant recipients.

A group of 40 C57BL/6 J male mice were given subcutaneous injection of
500 µg of BA. Injection-site transfers (from pooling individual sites of these 40
animal) were tranplanted into 10 additional host C57BL/6 J male mice at periods
of 8, 12, 16, and 24 weeks after the original injection into the 40 donor mice. In
addition, a control group of 50 animals were also injected directly with 500 µg
of BA, which was then left in situ. The measurement of record for each study
group was the time (after the initial transplants or injection, in the case of the
control group) at which a tumor was first palpated. For those animals which did
not develop tumors, the time recorded is the number of weeks between the initial
transplants (or injection for the control group) and the end of the study when
animals were sacrificed and autopsied (or death for those which died without
tumors). Thus, those animals with no incidence of tumors yield censored data
for this study. The Kaplan-Meier (1958) estimates of the survival (tumor free)
functions for the five studied groups of animals are presented in Figure 1 and the
relevant summary statistics for testing against the umbrella alternative H2U are
reported in Table 2.

We observe, from Table 2, that the Peto-Prentice-Wilcoxon peak-unknown
umbrella test claims that the survivals have an umbrella pattern with the
peak possibly at the third group of injection sites transferred after 12 weeks
(max{−A∗

1, . . . ,−A∗
5} = −A∗

3 > zmax(5, 0.01)), while the logrank peak-unknown
umbrella test concludes that the survivals of the five groups follow an ordered
pattern (max{−A∗

1, . . . ,−A∗
5} = −A∗

5 > zmax(5, 0.01)). Note that the logrank
test is optimal for the proportional hazards model. However, the Kaplan-Meier
estimates, in Figure 1, indicate that these five groups may not have proportional
hazards. In fact, the Kaplan-Meier estimates suggest an early occurring hazard
differences. Therefore, based on the Peto-Prentice-Wilcoxon test, we conclude
that, when compared to the tumor times in the control group, there is an ac-
celerated appearance of tumors when the injection sites were transferred into a
new host 8 and 12 weeks after the subcutaneous injection of 500 µg of BA, but
the accelerated carcinogenesis was less pronounced when the carcinogen was left
in the first host for more than 16 weeks. One conjecture for this umbrella pat-
tern, made by Homburger and Treger (1970), is that the immunological defenses
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of the original host suppressed the growth potential of transformed cells when
these remained within the original host, thereby reducing its carcinogenic effect.

%
T
um

orfree

Weeks after carcinogen injection

Figure 1. Kaplan-Meier estimates for the injection sites-transfer data.

Table 2. Umbrella test statistics for the injection sites-transfer data.

Peak (p) 1 2 3 4 5
(a) Logrank

Ap 6.4897 −8.3364 −14.1065 −9.6509 −12.2950
V̂ar (Ap) 10.1162 8.1379 6.8822 6.1737 4.9324

A∗
p 2.0404 −2.9223 −5.3772 −3.8841 −5.5360

R̂ 1.0000 0.2998 0.1520 −0.1325 −0.7539
1.0000 0.5836 0.4819 0.0811

1.0000 0.6812 0.3272
1.0000 0.6783

(zmax(5, 0.01) = 2.7937) 1.0000

(b) Peto-Prentice-Wilcoxon
Ap 5.8745 −7.4349 −12.4541 −9.1673 −10.9051

V̂ar (Ap) 6.9137 5.3020 4.8431 4.7738 4.0232
A∗

p 2.2342 −3.2289 −5.6592 −4.1957 −5.4369
R̂ 1.0000 0.2848 0.1151 −0.1721 −0.8027

1.0000 0.6625 0.5486 0.1260
1.0000 0.7528 0.3836

1.0000 0.7122
(zmax(5, 0.01) = 2.8369) 1.0000
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6. Monte Carlo Study

To examine the relative level and power performances of the umbrella tests
based on A∗

p and A∗
max for umbrella alternatives when observations are subject to

random right-censorship and sample sizes are varied from small to moderate, we
conducted a Monte Carlo study. We considered k = 4 populations with sample
sizes n1 = · · · = nk = n = 10, 20 and 30 in the level study and with n = 30 in
the power study.

Exponential and lognormal distributions were considered as survival time
distributions and the uniform distribution over (0, R) was used as the censoring
distribution. Appropriate uniform, normal and exponential variates were gen-
erated by using the IMSL routines RNUN, RNNOR and RNEXP, respectively.
Exponential-transformed normal variates then give the necessary lognormal vari-
ates. In the level study, the standard exponential distribution and the lognormal
distribution with zero normal mean and normal standard deviation σ = 1/2
were considered. In the power study, we used exponential distributions with
various values of the scale parameters (θi’s) and lognormal distributions with
normal standard deviation σ = 1/2 but different values of the normal means
(θi’s). A variety of R values, corresponding to probabilities of censorship 0.10,
0.30 and 0.50, were considered in the level study. The corresponding uniform
distributions for probabilities of censorship 0.10 and 0.30 were then employed as
censoring distributions in the power study as well. For example, when survival
time distribution is the standard exponential and p = 0.1, R = 9.901. For the
lognormal distribution with zero normal mean and normal standard deviation
σ = 1/2, R = 3.756 corresponds to p = 0.3. Note that the censoring probabilities
were fixed for each population in the level study, while they may be different
for the populations involved in the power study due to different survival time
distributions.

For each of these settings, we used the critical values in Table 1 and employed
5,000 replications to obtain the level or power estimates under the nominal level
α = 0.05. Therefore, the maximum standard error for the power estimates
is about 0.007 (≈ √

(0.5)(0.5)/5000). In fact, the standard error for the level
estimates is less than 0.003 (≈ √

(0.05)(0.95)/5000). The level estimates are
presented in Table 3 and the power estimates are reported in Tables 4 and 5.
Note that the results in Table 5 provide information about how the peak-“known”
umbrella test performs when it corresponds to the wrong peak.

It is evident, upon examination of Table 3, that the logrank and Peto-
Prentice-Wilcoxon umbrella tests hold their levels reasonably well when the com-
mon sample size is at least 20 and the degree of censoring is light (the correspond-
ing probability of censorship is 0.1) or moderate (the associated probability of
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censorship is 0.3). The power study reported in Table 4 shows that the logrank
test is superior to the Peto-Prentice-Wilcoxon test for Lehmann alternatives,
while the Peto-Prentice-Wilcoxon test is more efficient than the logrank test for
scale alternatives. This is not surprising since exponential distributions preserve
the proportional hazards, but the hazards are far from being proportional for
lognormal distributions. The results for the peak-known umbrella tests, in par-
ticular, coincide with those obtained from comparing their asymptotic relative
efficiencies, as presented in Liu, Green, Wolf and Crowley (1993).

Table 3. Level estimates for nominal level α = 0.05, uniform censoring and
n1 = · · · = n4 = n.

Peak-known Peak-unknown
Censoring —————————— ——————————

n probability LR P-P-W G-W LR P-P-W G-W

(a) Exponential

10 0.1 0.046 0.045 0.044 0.045 0.040- 0.041-
0.3 0.043- 0.042- 0.043- 0.042- 0.036- 0.035-
0.5 0.044 0.043- 0.041- 0.041- 0.035- 0.035-

20 0.1 0.045 0.045 0.045 0.046 0.044 0.044
0.3 0.044 0.044 0.046 0.045 0.044 0.045
0.5 0.047 0.047 0.045 0.042- 0.040- 0.040-

30 0.1 0.052 0.049 0.049 0.048 0.046 0.045
0.3 0.048 0.049 0.051 0.045 0.046 0.045
0.5 0.048 0.050 0.048 0.044 0.045 0.045

(b) Lognormal

10 0.1 0.046 0.044 0.046 0.044 0.035- 0.037-
0.3 0.044 0.043- 0.044 0.047 0.037- 0.037-
0.5 0.043- 0.042- 0.043- 0.045 0.039- 0.036-

20 0.1 0.044 0.045 0.045 0.046 0.045 0.044
0.3 0.047 0.046 0.045 0.045 0.043- 0.045
0.5 0.048 0.049 0.048 0.042- 0.041- 0.040-

30 0.1 0.052 0.049 0.049 0.048 0.046 0.045
0.3 0.048 0.049 0.051 0.048 0.044 0.045
0.5 0.051 0.050 0.048 0.046 0.047 0.046

Exponential: f(t) = exp(−t)
Lognormal: f(t) =

√
2/(t

√
π)} exp{−2(log t)2}
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Table 4. Power estimates for k = 4, nominal level α = 0.05, uniform censoring
distribution U(0, R), and n1 = · · · = n4 = 30.

Ordered test Peak-known Peak-unknown
Parameters ——————— ——————— ———————

θ1 θ2 θ3 θ4 R LR P-P-W LR P-P-W LR P-P-W

(a) Exponential

1 1 1.5 2 9.901 0.790 0.697 0.790 0.697 0.588 0.479
3.185 0.663 0.609 0.663 0.609 0.421 0.370

1 1.5 1.5 2 9.901 0.738 0.661 0.738 0.661 0.503 0.429
3.185 0.620 0.586 0.620 0.586 0.398 0.364

1 1.5 2 1 9.901 0.200 0.184 0.876 0.805 0.768 0.663
3.185 0.168 0.160 0.764 0.709 0.615 0.555

1 1.5 2 1.5 9.901 0.606 0.564 0.697 0.616 0.613 0.522
3.185 0.512 0.473 0.581 0.523 0.477 0.435

1.5 2 1.5 1 9.901 0.001 0.001 0.683 0.605 0.598 0.508
3.185 0.002 0.005 0.570 0.515 0.465 0.420

1.5 2 1 1 9.901 0.000 0.000 0.640 0.527 0.570 0.475
3.185 0.001 0.001 0.488 0.433 0.429 0.380

2 1.5 1.5 1 9.901 0.000 0.000 0.739 0.672 0.529 0.451
3.185 0.000 0.001 0.620 0.577 0.395 0.363

2 1.5 1 1 9.901 0.000 0.000 0.791 0.697 0.583 0.457
3.185 0.000 0.000 0.647 0.546 0.405 0.360

(b) Lognormal

0 0 0.2 0.4 11.219 0.838 0.874 0.838 0.874 0.655 0.698
3.576 0.766 0.800 0.766 0.800 0.563 0.604

0 0.2 0.2 0.4 11.219 0.799 0.849 0.799 0.849 0.611 0.680
3.576 0.721 0.774 0.721 0.774 0.517 0.576

0 0.2 0.4 0 11.219 0.243 0.262 0.931 0.946 0.839 0.873
3.576 0.225 0.243 0.891 0.915 0.766 0.803

0 0.2 0.4 0.2 11.219 0.634 0.706 0.799 0.835 0.710 0.761
3.576 0.568 0.625 0.739 0.769 0.625 0.674

0.2 0.4 0.2 0 11.219 0.002 0.003 0.807 0.843 0.702 0.750
3.576 0.003 0.002 0.736 0.771 0.618 0.654

0.2 0.4 0 0 11.219 0.000 0.000 0.753 0.766 0.653 0.682
3.576 0.001 0.001 0.663 0.679 0.552 0.591

0.4 0.2 0.2 0 11.219 0.000 0.000 0.793 0.846 0.597 0.676
3.576 0.000 0.000 0.730 0.787 0.516 0.577

0.4 0.2 0 0 11.219 0.000 0.000 0.831 0.871 0.646 0.693
3.576 0.000 0.000 0.771 0.805 0.564 0.607

Exponential: fi(t) = (1/θi) exp{−t/θi}
Lognormal: fi(t) = {√2/(t

√
π)} exp{−2(log t − θi)2)}
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Table 5. Power estimates for k = 4, nominal level α = 0.05, uniform censoring
distribution U(0, R), and n1 = · · · = n4 = 30.

A∗
2 A∗

3 A∗
max

Parameters ——————— ——————— ———————
θ1 θ2 θ3 θ4 R LR P-P-W LR P-P-W LR P-P-W

(a) Exponential

1 1 2 1.5 9.901 0.008 0.009 0.642 0.554 0.563 0.456
3.185 0.011 0.010 0.477 0.424 0.421 0.370

1 1.5 2 1.5 9.901 0.199 0.182 0.697 0.616 0.613 0.522
3.185 0.180 0.165 0.581 0.523 0.477 0.435

1 1.5 2 1 9.901 0.559 0.518 0.876 0.805 0.768 0.663
3.185 0.490 0.454 0.764 0.709 0.615 0.555

(b) Lognormal

0 0 0.4 0.2 11.219 0.010 0.011 0.739 0.757 0.661 0.693
3.756 0.011 0.011 0.657 0.680 0.575 0.602

0 0.2 0.4 0.2 11.219 0.200 0.219 0.799 0.835 0.710 0.761
3.756 0.191 0.210 0.739 0.769 0.625 0.674

0 0.2 0.4 0 11.219 0.548 0.635 0.931 0.946 0.839 0.873
3.756 0.514 0.567 0.891 0.915 0.766 0.803

Exponential: fi(t) = (1/θi) exp{−t/θi}
Lognormal: fi(t) = {√2/(t

√
π)} exp{−2(log t − θi)2}

We observe from the simulation results that the test based on A∗
p has excel-

lent power against umbrella pattern treatment effects when the peak is correctly
chosen. However, we also see, from Table 4 , that the power of the ordered test
based on A∗

k drops sharply when there is a downturn in the umbrella. Similarly
we observe, from Table 5, that the power of the peak-known umbrella test de-
clines when the peak is incorrectly selected. In these cases, the peak-unknown
test based on A∗

max is more powerful than the peak-known umbrella test with
incorrect peak. Note that, across all situations considered in the power study,
the test based on A∗

max has at least 50 percent (60 percent, in the case of n = 30)
of the power of the test based on A∗

p.

7. Conclusion

Testing procedures based on weighted logrank statistics are considered for
testing against umbrella alternatives when the peak of the umbrella is known or
unknown. The test based on A∗

max also provides a reasonable estimation of the
location of the peak group in those problems involving peak-unknown umbrella
pattern treatment effects, since if the null hypothesis is rejected and A∗

max = A∗
p̂,
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then we may estimate the unknown peak group to be at p̂. The question of
how accurate is the point estimation and a possible interval estimation of the
unknown peak group will then deserve a future study. Simpson and Margolin
(1986) point out that dose-response relationships may be subject to downturns at
high doses so test procedures with partial information about the umbrella peak
are of interest in dose-response studies. This issue will be addressed in a separate
article.
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