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Abstract: Optimal representative points (also called principal points) of scalar ran-

dom variables are known in several cases and asymptotically optimal representa-

tive points are known for all densities, as the number of the points increases to

infinity. When random quantities are uniformly distributed over a bounded two

dimensional region, the centers of regular hexagons as representative points are

asymptotically optimal. So far asymptotically optimal representative points of

non-uniform multivariate distributions are not reported. Here, we give a method of

designing representative points for non-uniform bivariate random vectors and show

that the proposed method is asymptotically optimal. Examples of simulations with

Gaussian, Pearson Type VII and Laplacian density functions are considered.
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1. Introduction

This paper considers the problem of discretizing a continuous random vector.
This has applications in all digital systems, in designing optimal sizes and shapes
of clothes or protection masks, and in cluster analysis (see Hartigan (1975)). A
general discretizer forms a finite partition of the set of values of a random quantity
and chooses a point in each region to minimize the mean square error. These
points are called representative points in Fang and Wang (1994) and Fang, Yuan
and Bentler (1994), principal points in Flury (1990) and quantization points in
engineering. Representative points are coded for processing or transmission in
digital systems, and clothes or protection masks of sizes or shapes described by
principal points are mass-produced. Optimal scalar discretizers are known for
several densities and certain numbers of representative points (Tarpey (1994)).
Also, for a large class of densities asymptotically optimal scalar discretizers are
known (Cambanis and Gerr (1983)).

When a two-dimensional random vector is uniformly distributed over the
unit square, Neumann (1982) showed that an asymptotically optimal discretizer
corresponds to the tessellation of regular hexagons with representative points
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at their centers. But general procedures of finding optimal or asymptotically
optimal representative points of non-uniform distributions in two or higher di-
mensions are unknown even for Gaussian or Laplacian distributions. A lot of
work has been done on designing discretizers to reduce mean square error. Flury
(1990) obtained optimal representative points of several different sizes for bivari-
ate normal distributions. When a random vector has an elliptical distribution,
Tarpey, Li and Flury (1995) showed that optimal representative points or prin-
cipal points exist in the linear subspace spanned by principal components of the
covariance matrix of the random vector. Fischer and Dicharry (1984) generated
discretizers of sizes 8, 16 and 32 for Gaussian, Laplacian and Gamma distribu-
tions by using the Monte Carlo simulation method proposed by Linde, Buzo and
Gray (see Fischer and Dicharry (1984) and the references therein). One draw-
back of simulation algorithms is that errors are random. Fang and Wang (1994)
used a number-theoretic (quasi Monte Carlo) method to generate representa-
tive points of sizes 3, . . . , 32, for two or higher dimensional distributions such
as Gaussian and symmetric multivariate Pearson Type VII distributions. For a
two dimensional Gaussian distribution and sizes 8, 16 and 32, Fang and Wang’s
number-theoretic method yields slightly lower (deterministic) mean square er-
rors than those of simulation algorithms (see Fang and Wang (1994)). The same
quasi Monte Carlo method was also considered in Fang, Yuan and Bentler (1994).
However, asymptotic properties of the number-theoretic method are not reported.

In this paper, we present a discretizing method for bivariate random vectors
with a finite second moment. We first properly partition the set of values of
a random vector into disjoint subregions, then decompose each subregion into
regular hexagons. The number of subregions grows to infinity with the size of
discretizer but at a slower rate, and the number of hexagons in each subregion
is determined by an auxiliary positive density. It is shown that centers of these
hexagons, as representative points, are asymptotically optimal for a proper choice
of the auxiliary density function. Examples with Gaussian, Pearson Type VII
and Laplacian distributions are considered.

2. Results and Examples

Let X = (X1,X2) be a random vector distributed over a region D in R2

according to a known probability density function p(x), x ∈ D. For a fixed
positive integer N , consider a partition of D into N disjoint subregions Di,N , i =
1, . . . , N : D =

⋃N
i=1 Di,N , select a representative point xi,N from each region

Di,N and define the discretizer function

QN (x) =
N∑

i=1

xi,N1Di,N
(x), x ∈ D,
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where 1Di,N
(·) denotes the indicator function of the set Di,N . The discretizer

QN (·) maps (or rounds off) every point in Di,N to the representative point xi,N .
Here, the random vector X = (X1,X2) is assumed to have finite second mo-
ment: E‖X‖2 < ∞, where ‖x‖ = (x2

1 + x2
2)

1/2 is the Euclidean norm, and the
performance of a discretizer is measured by the mean square error (mse)

e2(QN , p) ≡ E‖X − QN (X)‖2 =
∫

D
‖x − QN (x)‖2p(x)dx

=
N∑

i=1

∫
Di,N

‖x − xi,N‖2p(x)dx. (2.1)

A minimizer Qo
N of e2(QN , p) over all discretizers QN with N representative

points is called an optimal discretizer.
A simple argument shows that for N fixed representative points {xi,N}N

i=1,
the best possible partition is the Voronoi partition, namely, each Di,N is the
set of points closer to xi,N than to any other representative points. Thus, once
the best possible representative points are specified, an optimal discretizer Qo

N

is fully determined. However, in two and higher dimensions, it turns out to
be too complicated to find the optimal representative points even for simple
bivariate densities and small N . Therefore, an asymptotic approach is considered
to circumvent the difficulties of fixed sizes. A sequence of discretizers {Q∗

N} is
asymptotically optimal for a density p if

lim
N→∞

e2(Q∗
N , p)/ inf

QN

e2(QN , p) = 1, (2.2)

where the infinimum is taken over all discretizers with N representative points.
Zador (1982) examined the denominator of (2.2) in arbitrary dimensions and
obtained its limiting behavior, but the approach was not constructive. In the
two dimensional case, this limiting behavior becomes

lim
N→∞

N inf
QN

e2(QN , p) =
5
√

3
54

{
∫

D
p1/2(x)dx}2. (2.3)

From (2.2) and (2.3), it follows that a sequence of discretizers {Q∗
N} is asymp-

totically optimal if and only if

lim
N→∞

Ne2(Q∗
N , p) =

5
√

3
54

{
∫

D
p1/2(x)dx}2. (2.4)

In the following, without loss of generality, we state our procedure for bi-
variate random vectors distributed in a bounded region D. If D is unbounded,
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by the assumption of finite second moment, one can always choose a bounded
region DN such as a circle or square, so that

N

∫
D\DN

‖x‖2p(x)dx → 0.

Then one works with the bounded domain DN . Asymptotically, the contribution
to the distortion error from the unbounded region D \ DN is of a higher order
than N−1. More naturally, one can select the region DN so that the value of
Prob (X ∈ D \ DN ) =

∫
D\DN

p(x)dx is relatively small.

Specifically, we proceed as follows.

Partition of the Region D. For a positive density function g(x) on D and
each fixed N , partition D into m(N) subregions Πk,N , k = 1, . . . ,m(N), in such
a way that the following conditions are satisfied.

Condition 1. m(N) → ∞ and m(N)/N → 0 as N → ∞.

Condition 2. For all N ,

m(N) min
1≤k≤m(N)

∫
Πk,N

g(x)dx ≥ c,

where c is a positive constant.

Condition 3. Each Πk,N , k = 1, . . . ,m(N), contains nk,N = �N ∫
Πk,N

g(x)dx	
full regular hexagons with radius dk,N , where

d2
k,N =

2
3
√

3
| Πk,N | /(N

∫
Πk,N

g(x)dx), (2.5)

�·	 denotes the integer part, and | A | stands for the area of the region A.

Condition 4. For k = 1, . . . ,m(N), let Hk,N be the union of the hexagons in
Condition 3 and Tk,N be the set of their centers; then

sup
x∈Πk,N

‖x − Tk,N‖ ≤ adk,N

for some constant a, where ‖x−A‖ = infy∈A ‖x− y‖ is the distance of the point
x to the set A.

According to Conditions 1-4, each subregion Πk,N is essentially tessellated
into a number (equal to �N ∫

Πk,N
g(x)dx	) of regular hexagons. In consideration

of computing the integral
∫
Πk,N

g(x)dx, one should choose Πk,N such that g(x)
varies little in Πk,N and can be integrated easily. Condition 1 implies that the
number of subregions tends to infinity with N but at a slower rate, for instance,
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m(N) = log(N),
√

N , etc. Condition 2 excludes trivial subregions, and is fulfilled
for instance, if for every k,

∫
Πk,N

g(x)dx = 1/m(N). Condition 3 says no matter
what particular shape each Πk,N takes, it should contain about nk,N full regular
hexagons each with radius dk,N satisfying the compatibility condition

nk,N × {area of each hexagon} = nk,N(3
√

3/2)d2
k,N

= | Πk,N |
�N ∫

Πk,N
g(x)dx	

N
∫
Πk,N

g(x)dx
∼= | Πk,N | (2.6)

within a negligible margin. If there is enough space for only one array of hexagons,
the centers of these hexagons are uniformly spaced. Condition 4 excludes par-
titions with subregions having elongated sides, and is satisfied, for example, by
squares, circles, rectangles whose sides are not too long or too short, etc.

Design of the Discretizer. Consider the discretizer QN ′,g(·) with representa-
tive points

⋃m(N)
k=1 Tk,N , each of which represents a corresponding hexagon, where

the second subscript indicates the dependence of the discretizer on the density
function g. For the values of X falling in the boundary areas Πk,N \Hk,N , choose
the closest points in Tk,N as their representative points. This discretizer has a
total number of N ′ = n1,N + · · · + nm(N),N ≤ N representative points, which is
generally smaller than N . In fact, by Condition 3,

N − N ′ =
m(N)∑
k=1

{N
∫
Πk,N

g(x)dx − �N
∫
Πk,N

g(x)dx	} ≤ m(N). (2.7)

To obtain a discretizer QN,g(·) with N representative points, one can select N−N ′

additional points in the boundary region
⋃m(N)

k=1 (Πk,N \Hk,N ), appropriately, and
have them represent their nearest neighborhood areas in the boundary region.

In view of the partition of D and the design of discretizer above, it is clear
that in each region Hk,N we employ regular hexagonal partition with the size
or the number of hexagons determined by the density function g. The hexagons
are the nearest neighborhoods of the representative points (centers of hexagons).
Thus, they form a Voronoi partition with exceptions near the boundary. There
is some flexibility in the boundary regions. The discretizers QN ′,g(·) and QN,g(·)
actually provide two different ways to deal with the boundary regions. It is
shown that QN ′,g(·) is asymptotically optimal, even though it generally uses
fewer points than QN,g(·). Since, clearly, e2(QN,g(·), p) ≤ e2(QN ′,g(·), p), the
results for QN ′,g(·) also hold for QN,g(·) and are stated in the following.

Theorem. Under Conditions 1-4, the following are true.



564 YINGCAI SU

i) If the density functions p(x) and g(x) are continuous and the function
p(x)/g(x) is Riemann integrable, then

lim
N→∞

Ne2(QN,g(·), p) =
5
√

3
54

∫
D

p(x)
g(x)

dx. (2.8)

ii) If p(x) is continuous and p1/2(x) is Riemann integrable, then the sequence
{QN,go(·)}, where

go(x) = p1/2(x)/
∫

D
p1/2(u)du, (2.9)

is asymptotically optimal.

Remarks. It is clear that when the random vector X is uniformly distributed
over a bounded region D, go is uniform and thus an asymptotically optimal dis-
cretizer corresponds to the regular hexagonal tessellation of D plus some bound-
ary pieces. However, it is also not clear how to choose the number m(N) for
small N , though asymptotically the only requirement is that m(N)/N → 0. For
an unbounded region D and a small size N of discretization, the errors come
from two different sources: the error of truncation of D and the discretizing er-
ror. It is also not clear how to truncate D in the best possible way for a small
N . Asymptotically, the truncation error of D is negligible. The density func-
tion go(x) in (2.9) is called the asymptotically optimal discretizing density and
QN,go(·) achieves the asymptotically optimal constant 5

√
3{∫D

√
p(x)dx}2/54.

Next we consider two spherically symmetric distributions, Gaussian and
Pearson Type VII, and a diagonally symmetric distribution, the Laplacian. All
three examples have an unbounded region D = R2. We truncate D by making
N

∫
D\DN

‖x‖2p(x)dx or Prob(X ∈ D \ DN ) =
∫
D\DN

p(x)dx relatively small.
For each of these cases, we take N = 8, 16, 32, 64 and 128 and run 15, 000

simulations. We partition the plane into circularly symmetric strips for Gaus-
sian and Pearson Type VII distributions, and diagonally symmetric strips for the
Laplacian distribution, for convenience of computations. The numbers of points
in these strips are taken to be the numbers of hexagons one would conveniently
place in the corresponding regions. These numbers of points then in turn deter-
mine the sizes of the strips through the density go(x). The mse values of the
discretizer QN,go(·) are compared with those of the Monte Carlo method (Fischer
and Dicharry (1984)), those of Fang and Wang (1994), and the asymptotically
optimal mean square error, namely, the asymptotically optimal constant ÷N . We
found that for N = 8, 16 and 32, QN,go(·) can achieve a similar performance as
that of the Monte Carlo algorithm and that of Fang and Wang’s method, and
for N = 64 and 128, QN,go(·) matches the asymptotically optimal performance,
as illustrated in the following. Note the comparison of our results with those of
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Fang and Wang are more reliable than with those of the Monte Carlo method,
due to the error of the Monte Carlo simulation.

Example 1. Gaussian distribution. Here, the density function of the random
vector is

p(x) = (2πσ2)−1 exp{−‖x‖2/(2σ2)}, x ∈ R2,

and the asymptotically optimal discretizing density is

go(x) = (4πσ2)−1 exp{−‖x‖2/(4σ2)}, x ∈ R2.

For this distribution, we partition R2 into m + 1 circular disks centered at the
origin. Their radii 0 = r0 < r1 < · · · < rm < rm+1 = ∞ are determined by

∫
ri−1<‖x‖<ri

go(x)dx = ai, i = 1, . . . ,m + 1,

where ai > 0 and
∑m+1

i=1 ai = 1, which yields

ri = 2σ{− log(1 −
i∑

k=1

ak)}1/2, i = 1, . . . ,m + 1. (2.10)

We work with the finite region DN = {x : ‖x‖ ≤ rm}, where rm is determined
by properly choosing the value of am+1. It is straightforward to verify that

N

∫
D\DN

‖x‖2p(x)dx = 2σ2N(1 − 2 log(am+1))a2
m+1.

We choose a number of discretizing sizes, N = 8, 16, 32, 64, 128, and for conve-
nience, take σ = 1; then the corresponding asymptotically optimal constant is
4.030665.

When N = 8, we choose m = 1. The eight points are the centers of eight
regular hexagons and are located symmetrically about the origin in the circle
‖x‖ < r1, as shown in Figure 1 (a). The radius r1 is determined by (2.10) with
a1 = 1 − a2. The radius d of each hexagon satisfies the following compatibility
condition

number of points × area of of each hexagon

= number of points × 3
√

3
2 d2 ≈ area of the circle ‖x‖ < r1 (= πr2

1),

namely, d ≈ .38878r1. We tried a number of values for a2 and found that a small
mse is obtained if a2 = .32. The corresponding mse is .388509 while the Monte
Carlo algorithm gives a value .406 and Fang and Wang’s method gives .400536.

When N = 16, we take m = 2 and put four points in the first circle ‖x‖ < r1

and twelve points along the edge of a hexagon in the disk ‖x‖ > r1. The radius
r1 is as in (2.10) with a1 = 4/16 = .25. We tried a number of values for a3
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and found that a3 = .31 gives a relatively small mse (a2 = .44). The design
of representative points is shown in Figure 1 (b) and has mse = .226. This is
about one percent higher than the .216 of the Monte Carlo algorithm and the
.213588 of Fang and Wang’s method. We found that for this design of discretizer,
if a3 ∈ [.37, .5], the corresponding mse is higher than .226 by about 8 × 10−3.
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Figure 1.

When N = 32 we select m = 3, with 7 points in the circle ‖x‖ < r1, 12 in the
disk r1 < ‖x‖ < r2 and 13 in the disk ‖x‖ > r2, where ri, i = 1, 2 are determined
by (2.10) with a1 = 7/32 = .21875 and a2 = 12/32 = .375. We choose a4 = .128
(a3 = 1 − a1 − a2 − a4 = .27825) which gives a smaller value of mse than other
choices. Those 7 points in the circle ‖x‖ < r1 are at the centers of 7 regular
hexagons; each of them has a radius d1 = .4156r1. The 12 points in the disk
r1 < ‖x‖ < r2 and 12 of the points in ‖x‖ > r2 are placed along the edge of
a hexagon, and the last point in ‖x‖ > r2 is in the first quadrant, as shown in
Figure 1 (c). The corresponding value of mse is .117405 compared with .1138
for the Monte Carlo algorithm, .113112 for Fang and Wang’s method and the
asymptotically optimal mse = .1259583. For this design of discretizer, we also
tried other values of a4 and found that when a4 ∈ [.121, .134] the corresponding
values of mse are higher than .1174 by a margin of 9 × 10−5.
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As shown in Figure 1 (d), when N = 64 we take m = 4, with 19 points
in the circle ‖x‖ < r1, 17 in the disk r1 < ‖x‖ < r2, 16 in r2 < ‖x‖ < r3

and finally 12 in the region ‖x‖ > r3, where ri, i = 1, 2, 3 are as in (2.10) with
a1 = 19/64 = .296875, a2 = 17/64 = .265625 and a3 = 16/64 = .25. We take a5

to be .028 and thus a4 = 1−a1−a2−a3−a5 = .1595. The 19 points in the circle
‖x‖ < r1 are at the centers of 19 regular hexagons, each of which has a radius
d1 = .252r1. The rest of the points are placed along the edge of a hexagon in the
corresponding disks. The mse is .062686 while the asymptotically optimal mse
= .06297914. For this design of representative points, we tried other values for
a5 and found that when a5 ∈ [.018, .046], the corresponding values of mse are
higher than .062686 by a margin of 4 × 10−4.

Table 1. Values of mean square errors for the Gaussian distribution.

Sizes N 8 16 32 64 128
Monte Carlo method .406 .216 .1138 ∼ ∼
Fang and Wang’s method .4005 .2136 .1131 ∼ ∼
Asymp. optimal const. ÷N .5038 .252 .1259 .062979 .03149
QN,go(·) .3886 .226 .1174 .062686 .03143

When N = 128, we use m = 6, with 19 points in the circle ‖x‖ < r1, 18
in the disk r1 < ‖x‖ < r2, 24 in each of the disks ri < ‖x‖ < ri+1, i = 2, 3, 4,
18 in r5 < ‖x‖ < r6, and finally one point in the region ‖x‖ > r6, as shown in
Figure 1 (e), where ri, i = 1, . . . , 6 satisfy (2.10) with a1 = 19/128 = .1484375,
a2 = 18/128 = .140625, a3 = a4 = a5 = 24/128 = .1875. Here, we use a7 = .031
(a6 = .1174375). The 19 points are the centers of 19 regular hexagons with
radius d1 = .252r1. All other points are located along the edge of a hexagon in
the corresponding regions. The mse for this design is .031429 compared with
the value .03149 for the asymptotically optimal mse. For this discretizer, we
found that if the value of a7 is in [.024, .039], the corresponding values of mse

are higher than .031429 by a margin of 9 × 10−5. The available values of mean
square errors for all methods referred to above are in Table 1, with ∼ indicating
“not available”.

Example 2. Pearson Type VII distribution. Here we consider the density func-
tion

p(x) =
Γ(λ)

Γ(λ − s/2)
(πµ)−s/2(1 + ‖x‖2/µ)−λ, x ∈ R2.

This was treated by Fang and Wang (1994) for s = 2, µ = 4 and λ = 15. For
these parameter values, the asymptotically optimal discretizing density is

go(x) =
13
8π

(1 + ‖x‖2/4)−15/2, x ∈ R2,
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and the asymptotically optimal constant is .6678025.
We choose a number of discretizing sizes, N = 8, 16, 32, 64 and 128, and

partition R2 into m + 1 disks centered at origin. Their radii 0 = r0 < r1 < · · · <

rm+1 = ∞ are determined by
∫

ri−1<‖x‖<ri

go(x)dx = ai, i = 1, . . . ,m + 1,

where ai > 0 and
∑m+1

i=1 ai = 1, which means

ri = 2{(1 −
i∑

k=1

ak)−2/13 − 1}1/2, i = 1, . . . ,m + 1. (2.11)

Since this distribution is also circularly symmetric about the origin, though
it does not have independent components, we design the discretizing points as in
Example 1 for the sizes N = 8, 16, 32, 64 and 128, as shown in Figure 2 (a)-(e),
respectively. Here we truncate the infinite region R2 by choosing a relatively
small am+1.
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When N = 8 we choose m = 1. The radius r1 is determined by (2.11) with
a1 = 1 − a2. The eight points in the circle ‖x‖ < r1 are the centers of eight
regular hexagons which are located symmetrically about the origin, as shown in
Figure 2 (a). The radius d1 of each hexagon is d1 = .4156r1. We tried a number
of values for a2 and found that a small mse is obtained if a2 = .4. The mean
square error is found to be .062596 while Fang and Wang’s method gives a value
of .064588.

When N = 16 we take m = 2. The radius r1 is as in (2.11) with a1 = 4/16 =
.25. We tried a number of values for a3 (a2 = 1 − 4/16 − a3) and found that a
good choice is a3 = .35 or a2 = .4. The 4 points in the circle ‖x‖ < r1 are placed
at the centers of 4 regular hexagons, and 12 in the second region r1 < ‖x‖ < r2

are placed along the edge of a hexagon. The design of discretizer has a value of
mse = .037053 compared with .035172 for Fang and Wang’s method. We also
found that if a3 falls in [.26, .42], the corresponding values of mse are higher than
.37053 by about 2 × 10−3.

When N = 32 we select m = 3, with 7 points in the circle ‖x‖ < r1 and
12 in the disk r1 < ‖x‖ < r2, where ri, i = 1, 2 are determined by (2.11) with
a1 = 7/32 = .21875 and a2 = 12/32 = .375. The remaining 13 points are placed
in the disk ‖x‖ > r2, with 12 on the edge of a hexagon and one in the first
quadrant. We choose a4 = .145 or a3 = 1 − 7/32 − 12/32 − a4 = .17625, which
gives a smaller value of mse than other choices. The corresponding value of
mse is .018995 compared with .018572 for Fang and Wang’s method. For other
choices of a4, we found that if a4 is chosen from the interval [.133, .158], the
corresponding values of mse are higher than .018995 by about 5 × 10−5.

Table 2. Values of mean square errors for the Pearson Type VII distribution.

Sizes N 8 16 32 64 128
Fang and Wang’s method .0616 .0352 .0186 ∼ ∼
Asymp. optimal const. ÷N .0835 .0417 .0209 .0104 .005217
QN,go(·) .0626 .03705 .0189 .0102 .005174

When N = 64 we take a relatively small m = 3, with 19 points in the circle
‖x‖ < r1, 30 in the disk r1 < ‖x‖ < r2, and 15 in ‖x‖ > r2, where ri, i = 1, 2 are
as in (2.11) with a1 = 19/64 = .296875 and a2 = 30/64 = .46875. The 19 points
in the circle ‖x‖ < r1 are at the centers of 19 regular hexagons, each of which
has a radius d1 = .252r1, the 30 points in the second region are placed along the
edges of two hexagons and the 15 points in the third region are along the edge
of a hexagon, as shown in Figure 2 (d). We use a4 = .08 (a3 = .1543375). The
corresponding mse is .010218 while the asymptotically optimal mse = .010434.
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We found that if a4 ∈ [.07, .09], the mse is higher than .010218 by a margin of
4 × 10−4.

As shown in Figure 2 (e), when N = 128 we use m = 5, with 37 points in the
circle ‖x‖ < r1, 42 in the disk r1 < ‖x‖ < r2, 24 in r2 < ‖x‖ < r3 and 25 in the
region ‖x‖ > r3, where ri, i = 1, 2, 3 satisfy (2.11) with a1 = 37/128 = .2890625,
a2 = 42/128 = .328125 and a3 = 24/128 = .1875. The 37 points are the centers
of 37 regular hexagons with radius d1 = .18r1. The 42 points in the second region
are located along the edges of two hexagons and the remaining points are also
along the edges of hexagons in the corresponding regions. Here, we use a5 = .07
(a4 = .1207242). The mse for this design is .005174 compared with the value
.005217 for the asymptotically optimal mse. We found that if a5 ∈ [.064, .087],
the values of mse are higher than .005174 by about 3×10−5. The available values
of mean square errors for the methods referred to above are listed in Table 2,
with ∼ indicating “not available”.

Example 3. Laplacian distribution. In this example, the random vector is
assumed to have a density

p(x) =
λµ

4
exp{−λ | x1 | −µ | x2 |)}, x ∈ R2.

The corresponding optimal discretizing density is

go(x) =
λµ

16
exp{−1

2
(λ | x1 | +µ | x2 |)}, x ∈ R2,

and the asymptotically optimal constant is 160/(9
√

3λµ).
This distribution with λ = µ =

√
2 is treated in Fischer and Dicharry (1984)

by use of the Monte Carlo method. Here, we also take λ = µ =
√

2, which
yields the value 5.132032 for the asymptotically optimal constant. We select a
number of discretizing sizes, N = 8, 16, 32, 64 and 128. In a similar fashion to
the previous example, for a fixed size N , we partition R2 into m + 1 diamond
shaped disks ρi−1 <

√
2(| x1 | + | x2 |) < ρi, i = 1, . . . ,m + 1, centered at the

origin. Their radii 0 = ρ0 < ρ1 < · · · < ρm+1 = ∞ are determined by
∫

ρi−1<
√

2(|x1|+|x2|)<ρi

go(x)dx = ai, i = 1, . . . ,m + 1,

where ai > 0 and satisfy
∑m+1

i=1 ai = 1. After some calculations, we find

1 − (1 + ρi/2) exp{−ρi/2} =
i∑

k=1

ak, i = 1, . . . ,m + 1. (2.12)
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When N = 8, we choose m = 1, and the radius ρ1 is determined by (2.12)
with a1 = 1 − a2. The N = 8 points in the region

√
2(| x1 | + | x2 |) < ρ1 are

the centers of eight regular hexagons and are located symmetrically about the
origin, as shown in Figure 3 (a). The radius d1 of each hexagon is d1 = .219ρ1

which ensures the following compatibility condition

number of points × area of each hexagon = number of points × (3
√

3d2
1/2)

≈ area of the diamond
√

2(| x1 | + | x2 |) ≤ ρ1 (= ρ2
1).

For this design, we tried a number of values of a1 and found that a small mean
square error mse = .454649 is achieved at a1 = .58, or a2 = .42, while the Monte
Carlo algorithm gives the value .47.
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(a) N = 8 (b) N = 16 (c) N = 32

(d) N = 64 (e) N = 128

Figure 3.

When N = 16 we take m = 2, with 4 points in the region
√

2(| x1 | + | x2 |)
< ρ1 and being the centers of the regular hexagons with d1 = .31ρ1. The ρ1 is
determined by (2.12) with a1 = 4/16 = .25. Ten of the 12 remaining points are
placed along the next diamond disk and two of them are placed on the horizontal
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axis, as shown in Figure 3 (b). The a2 is chosen to be .4 and the corresponding
mse = .259273 compares with .264 for the Monte Carlo algorithm.

Table 3. Values of mean square errors for the Laplacian distribution.

Sizes N 8 16 32 64 128
Monte Carlo method .47 .264 .1434 ∼ ∼
Asymp. optimal const. ÷N .6415 .3208 .1604 .0802 .040094
QN,go(·) .4547 .2593 .1503 .0806 .040716

When N = 32 we select m = 3, with 9 points in the region
√

2(| x1 |
+ | x2 |) < ρ1, 10 in the disk ρ1 <

√
2(| x1 | + | x2 |) < ρ2 and 13 in√

2(| x1 | + | x2 |) > ρ2, where ρi, i = 1, 2 are determined by (2.12) with
a1 = 9/32 = .28125 and a2 = 10/32 = .3125. Those 9 points in the first region
are the centers of 9 regular hexagons, each of which has a radius d1 = .2ρ1.
The 10 points in the second region correspond to the centers of 10 hexagons, as
shown in Figure 3 (c). When a4 is .164, the value of mse is .150285 compared
with .1434 for the Monte Carlo algorithm. Here, the asymptotically optimal mse

is .160375. We tried other values for a4 and found that when a4 ∈ [.158, .17], the
corresponding values of mse are above .150285 by about 7 × 10−5.

When N = 64 we take m = 4 with 14 points in the region
√

2(|x1|+|x2|) < ρ1,
18 in the band ρ1 <

√
2(|x1|+ |x2|) < ρ2, and 20 in ρ2 <

√
2(| x1 | + | x2 |) < ρ3,

where ρi, i = 1, 2, 3 are as in (2.12) with a1 = 14/64 = .21875, a2 = 18/64 =
.28125 and a3 = .3125. The 12 remaining points are placed approximately along
a hexagon in the region

√
2(| x1 | + | x2 |) > ρ3 with two points on the horizontal

axis. The 14 points in the first region correspond to the centers of 14 hexagons
in a square, after rotation by π/4 to form a diamond. The next 18 points are
rotated (by π/4) versions of centers of 18 hexagons along the edge of a square.
The 20 points in the third region are chosen similarly, as shown in Figure 3 (d).
We take a5 = .062. The corresponding mse is .080581 while the asymptotically
optimal mse = .080188. We found that when a5 ∈ [.055, .069], the corresponding
values of mse are larger than .080581 by about 2 × 10−4.

As shown in Figure 3 (e), when N = 128, we use m = 5 with 22 points in the
first region

√
2(| x1 | + | x2 |) < ρ1, 24 in the diamond disk ρ1 <

√
2(| x1 | + |

x2 |) < ρ2, 27 in ρ2 <
√

2(| x1 | + | x2 |) < ρ3, 27 in ρ3 <
√

2(| x1 | + | x2 |) < ρ4,
and 28 in ρ4 <

√
2(| x1 | + | x2 |) < ρ5, where ρi, i = 1, . . . , 5, satisfy (2.12)

with a1 = 22/128 = .171875, a2 = 24/128 = .1875, a3 = 27/128 = .2109375 and
a4 = 27/128 = .2109375. The points in the corresponding region are formed in
a similar way as in the case of N = 64. When a6 (a5 = .14375) is chosen to be
.075, the mse for this design is .040716, compared with the value .040094 for the
asymptotically optimal mse. We found that when a6 ∈ [.068, .086], the values of
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mse are larger than .040716 by about 8 × 10−5. The available values of mean
square errors for all methods referred to above are shown in Table 3.

Comments. The procedure of designing representative points presented in the
paper is asymptotically optimal for every bivariate random vector with a finite
second moment. The main idea is to take the centers of regular hexagons in
a region as representative points, where the sizes of these regular hexagons are
determined by a properly selected density. But for generalization to higher di-
mensions, other methods such as the number-theoretic and Monte Carlo methods
seem more flexible.

3. Proof of the Theorem

Since e2(QN ′,g(·), p) ≥ e2(QN,g(·), p), it suffices to prove the theorem for
QN ′,g(·).

The mean square error of QN ′,g(·) can be written as

e2(QN ′,g(·), p) =
m(N)∑
k=1

∫
Πk,N

‖x − QN ′(x)‖2p(x)dx.

By the Mean Value Theorem of integrals, we can pull out the density function
p(x) from the integral, and then split Πk,N into Hk,N and Πk,N \ Hk,N , namely,

e2(QN ′,g(·), p) =
m(N)∑
k=1

p(x∗
k)

∫
Hk,N

‖x − QN ′(x)‖2dx

+
m(N)∑
k=1

p(x∗
k)

∫
Πk,N\Hk,N

‖x − QN ′(x)‖2dx ≡ δ2
N + ε2

N (3.1)

where x∗
k ∈ Πk,N .

Use the fact that the integral of ‖x‖2 over a regular hexagon centered at
the origin with radius d equals (5

√
3/8)d4. Then

∫
Πk,N

g(x)dx =| Πk,N | g(x∗∗
k ),

where x∗∗
k ∈ Πk,N , implies

δ2
N =

m(N)∑
k=1

p(x∗
k)nk,N

5
√

3
8

d4
k,N

=
5
√

3
8

m(N)∑
k=1

p(x∗
k)nk,N{ 2

3
√

3
| Πk,N | /(N

∫
Πk,N

g)}2

=
5
√

3
54N

m(N)∑
k=1

p(x∗
k)

g(x∗∗
k )

| Πk,N | nk,N

N
∫
Πk,N

g
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=
5
√

3
54N

m(N)∑
k=1

p(x∗
k)

g(x∗∗
k )

| Πk,N | {1 −
N

∫
Πk,N

g − �N ∫
Πk,N

g	
N

∫
Πk,N

g
}

=
5
√

3
54N

{
m(N)∑
k=1

p(x∗
k)

g(x∗∗
k )

| Πk,N | −
m(N)∑
k=1

p(x∗
k)

g(x∗∗
k )

| Πk,N |
N

∫
Πk,N

g − �N ∫
Πk,N

g	
N

∫
Πk,N

g
}

≡ δ2
1,N − δ2

2,N . (3.2)

Riemann integration of the function p/g yields

lim
N→∞

Nδ2
1,N =

5
√

3
54

∫
D

p(x)
g(x)

dx. (3.3)

Using Condition 2 and noticing that 0 ≤ N
∫
Πk,N

g − �N ∫
Πk,N

g	 ≤ 1, we
have

Nδ2
2,N ≤ 5

√
3

54c
m(N)

N

m(N)∑
k=1

p(x∗
k)

g(x∗∗
k )

| Πk,N | .

Thus

lim sup
N→∞

Nδ2
2,N ≤ 5

√
3

54c

∫
D

p

g
(x)dx lim

N→∞
m(N)

N
= 0. (3.4)

For the second term ε2
N in (3.1), observe that the area of each hexagon in

Hk,N is (3
√

3/2)d2
k,N and, by (2.5),

| Hk,N |= nk,N
3
√

3
2

d2
k,N =

�N ∫
Πk,N g	

N
∫
Πk,N g

| Πk,N | .

From Conditions 4 and 2, we obtain

ε2
N ≤ a2

m(N)∑
k=1

p(x∗
k)d

2
k,N | Πk,N \ Hk,N |

=
2a2

3
√

3

m(N)∑
k=1

p(x∗
k)

| Πk,N |
N

∫
Πk,N

g
(| Πk,N | −�N ∫

Πk,N g	
N

∫
Πk,N g

| Πk,N |)

=
2a2

3
√

3
1
N

m(N)∑
k=1

p(x∗
k)

g(x∗∗
k )

| Πk,N |
(N

∫
Πk,N

g − �N ∫
Πk,N

g	)
N

∫
Πk,N

g

= const. δ2
2,N , (3.5)

which, together with (3.4), yields

lim sup
N→∞

Nε2
N = 0. (3.6)

Result i) follows from (3.1)–(3.6), and result ii) follows from (2.4) and result i).
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