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EMPIRICAL EXPONENTIAL FAMILY LIKELIHOOD

USING SEVERAL MOMENT CONDITIONS

S. A. Corcoran∗

University of Oxford

Abstract: We consider nonparametric likelihoods for the mean of an unknown distri-

bution using estimating equations for moments of order one and greater. Although

empirical likelihood is the same regardless of the number of estimating equations

used, use of two or more such estimating equations with the empirical exponential

family gives a likelihood that agrees with empirical likelihood to third order. We

show that the empirical exponential family using an arbitrary number of moments

is a least favorable family. Simulations indicate that empirical exponential fam-

ily using estimating equations for moments of order one and greater is very close

to empirical likelihood and that a Wald statistic constructed using the empirical

exponential family gives good coverage.

Key words and phrases: Empirical exponential family, empirical likelihood, estimat-

ing equation, least favorable family, nonparametric likelihood, nuisance parameter.

1. Introduction

We consider the construction of a likelihood for a scalar mean θ from an
unknown distribution F using two nonparametric approaches: empirical likeli-
hood (Owen (1988)) and empirical exponential family likelihood (Efron (1981),
DiCiccio and Romano (1990), Davison, Hinkley and Worton (1992)).

We first review a general method of constructing nonparametric likelihoods.
Consider maximum likelihood estimation of a distribution F having mean θ,
restricting attention to multinomial distribution functions Fp supported on the
sample and having probabilities {pi} (in Section 5 we show that this does not
make the problem artificially easier). The nonparametric likelihood is L (θ) =∏
pi, where, p = {pi} satisfies EFp (X) = θ. Its normed version is L̄ (θ) =

L (θ)/L
(
θ̂
)

=
∏

(pi/p̂i), where, in addition to the constraint on p, p̂ satisfies

EFp̂
(X) = θ̂. The nonparametric maximum likelihood estimate of F is the

empirical distribution function F̂ , which places probability mass {n−1} on each
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of the sample points. Thus p̂ = {n−1}, the nonparametric maximum likelihood
estimate of θ is θ̂ = X̄, and a normed nonparametric log likelihood for θ is

� (θ) = log L̄ (θ) =
n∑

i=1

log (npi) . (1.1)

We require that Fp has mean θ and that p = {pi} is a probability distribution,
implying the following constraints on the {pi},

EFp (X) =
∑

piXi = θ, (1.2)∑
pi = 1. (1.3)

The forward Kullback-Leibler discrepancy measure (Kullback and Leibler (1951))
between discrete distributions {pi} and {qi} is Df =

∑
qi log(qi/pi). The empiri-

cal likelihood method uses probabilities pi which minimize the forward Kullback–
Leibler discrepancy measure between probabilities pi consistent with F having
mean θ, and probabilities qi = n−1 consistent with F having mean θ̂ = X̄ . The
use of this discrepancy measure means that �E = −nDf , so that minimum dis-
crepancy between Fp and Fp̂ maximizes �E , the empirical log likelihood. The
solution of the minimization problem is pi = n−1{1 + αθ(Xi − θ)}−1 where we
may determine the “tilt” parameter αθ for each value of θ from (1.2); see Section
2. The probabilities {pi} are subject to two constraints, which means that we
have (n−2) nuisance parameters and only n sample values. Hence it is surprising
that empirical likelihood parallels many aspects of parametric likelihood, for in-
stance, χ2 asymptotics of the likelihood ratio. Further discussion and references
are given by Davison and Hinkley (1997, Chapter 10).

The empirical exponential family likelihood �EEF is a related nonparamet-
ric likelihood. The likelihood itself is given by (1.1), where the probabilities
{pi} are given by (1.2) and (1.3). However, the empirical exponential family
likelihood uses probabilities {pi} that minimize the backward Kullback–Leibler
discrepancy measure between {pi} and {n−1}, i.e., Db =

∑
pi log(npi), leading

to pi ∝ eαθ(Xi−θ); see Section 3.
It may be shown that �E(θ)−�EEF (θ) = Op(n−1) as the sample size n→ ∞.

This asymptotic order of agreement ensures that empirical and empirical expo-
nential family likelihoods share second-order properties. DiCiccio and Romano
(1989) show that one-sided confidence limits for parameters that are smooth func-
tions of vector means constructed using either empirical or empirical exponential
family likelihood have coverage error O(n−1/2), and that two-sided limits have
error O(n−1); these equal the parametric error rates. DiCiccio and Romano also
develop third-order expansions for nonparametric confidence limits for a scalar
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mean. These results indicate that one-sided empirical likelihood confidence limits
may be corrected to O(n−3/2) and that the empirical likelihood ratio admits a
Bartlett correction, giving two-sided confidence limits with error O(n−2) (DiCic-
cio, Hall and Romano (1991)); neither of these last two results holds for �EEF (θ)
(Jing and Wood (1996)).

In this paper we consider constructing these two nonparametric likelihoods
using estimating equations for moments of order one and greater, generalizing
the above framework where the constraint (1.2) may be written as the single
equation

∑
pi(Xi − θ) = 0. It may seem strange to introduce moments of order

two and higher as nuisance parameters when we wish to construct a likelihood for
the mean θ. Consider constructing the empirical exponential family likelihood
using two estimating equations for the first two moments. As we will show in
Section 3, this gives probabilities pi ∝ eη1(Xi−θ)+η2(Xi−θ)2 that take account of
both the linear and quadratic effects of the sample. This paper examines the
form of two nonparametric likelihoods when we attempt to take account of such
higher-order sample effects in the hope of getting better large-sample properties.

We do not consider the case when higher-order moments are known to depend
on the mean θ, such as a mean-variance relationship of the form V ar(X) =
θ2 = E(X)2. The construction of empirical likelihood which makes efficient use
of extra estimating equations for this situation has been discussed by Qin and
Lawless (1994).

We show that use of estimating equations for moments of order one and
greater leaves empirical likelihood unchanged, and that if we use two or more
moments about the mean in constructing empirical exponential family likelihood
then the result agrees with empirical likelihood to third-order. This ensures that
the resulting empirical exponential family likelihood shares all the asymptotic
properties of empirical likelihood established in the literature so far. We present
empirical evidence in Section 6, and discuss the generality of our results in Sec-
tion 7.

2. Empirical Likelihood

The motivation for empirical likelihood (Owen (1988, 1990, 1991)) for a
scalar mean θ starts from minimization of the forward Kullback–Leibler discrep-
ancy between two distributions. This measures the discrepancy between a multi-
nomial distribution placing mass pi on the observed sample values X1, . . . ,Xn

and the empirical distribution function which places probability mass n−1 on
each of the Xi. The distributions {n−1} and {pi} correspond to nonparametric
maximum likelihood estimates of F̂θ̂(x) =

∏
(n−1 1{Xi≤x}) with mean θ̂ = X̄ , and

F̂θ(x) =
∏

(pi 1{Xi≤x}) with mean θ. We have constraints that the probabilities
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pi sum to one, and that the mean
∑
piXi is equal to θ, where θ is the parameter

value at which we wish to construct the likelihood. The constraints on {n−1} are
automatically satisfied since

∑
n−1 = 1,

∑
n−1Xi = X̄ . Hence we minimize

−
n∑

i=1

1
n

log(npi) + β
( n∑

i=1

pi − 1
)

+ α
{ n∑

i=1

pi(Xi − θ)
}
, (2.1)

where α and β are Lagrange multipliers. The empirical likelihood for θ is

�E (θ) = �E {θ (αθ)} = −
n∑

i=1

log {1 + αθ (Xi − θ)}

and the “tilt” parameter αθ is determined by

n∑
i=1

(Xi − θ)
1 + αθ(Xi − θ)

= 0. (2.2)

Consider including extra information by accounting for higher sample mo-
ments using estimating equations. Suppose µr is the rth population moment
about the mean. We construct a joint likelihood �(θ, µ2, . . . , µq), and then profile
out µ2, . . . , µq to obtain �q(θ). The usual empirical likelihood is thus �E = �1.
However it is clear that maximizing �(θ, µ2, . . . , µq) over µ2, . . . , µq will give �E(θ)
also, because we are simply imposing additional restrictions on the log likelihood
and then maximizing over them. Hence the empirical likelihood for the mean is
unchanged by including estimating equations for higher moments.

3. Empirical Exponential Family Likelihood

The empirical exponential family likelihood arises from considering the back-
ward Kullback–Leibler discrepancy between n−1 and pi. The Lagrangian is

−
n∑

i=1

pi log(npi) + β
( n∑

i=1

pi − 1
)

+ α
{ n∑

i=1

pi(Xi − θ)
}
, (3.1)

where α and β are again Lagrange multipliers. A simple calculation shows that

pi(αθ) =
eαθ(Xi−θ)∑
eαθ(Xj−θ)

(3.2)

and the empirical exponential family log likelihood is

�EEF,1 (θ) = �EEF,1 {θ (αθ)} = αθ

n∑
i=1

(Xi − θ) − n log
( 1
n

n∑
i=1

eαθ(Xj−θ)
)
.
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We drop the subscript EEF and consider the construction of a profile likeli-
hood analogous to that in Section 2, i.e., adding the q − 1 estimating equations∑
pi{(Xi − θ)r − µr} = 0 for r = 2, . . . , q. If Zi denotes the q × 1 vector whose

rth element is Y r
i − µr = (Xi − θ)r − µr, say, then the moment constraints

may be expressed as
∑
Zipi = 0. On adding these to

∑
pi = 1 and modifying

(3.1) accordingly, we find that pi(η) = eη
T Zi/

∑
eη

T Zj , and the corresponding log
likelihood is �(θ, µ2, . . . , µq) = ηT ∑n

i=1 Zi − n log
(

1
n

∑n
j=1 e

ηT Zj

)
. As µ2, . . . , µq

cancel from pi(η), the log likelihood depends only on θ and η. So if Yi is a q × 1
vector with rth element Y r

i , then pi(η) = eη
T Yi/

∑
eη

T Yj with log likelihood

�q(θ) = ηT
n∑

i=1

Yi − n log
( 1
n

n∑
j=1

eη
T Yj

)
. (3.3)

The tilt parameters η are determined by maximizing �q(θ) subject to
∑

(Xi −
θ)pi(η) = 0.

What value has this? Empirical exponential family likelihood with just one
moment condition is much easier to compute than empirical likelihood, because
the score equations satisfied by αθ are the same as those for a log-linear model in
which a vector of n zeros is regressed on the vector Y 1 whose ith component is
Xi−θ, with no constant in the model. As this calculation is readily performed in
any package that can fit a Poisson regression model, with no special programming,
�1(θ) and statistics computed from such a fit are simpler to obtain than are
corresponding quantities for empirical likelihood. It does not seem possible to
squeeze �q with q = 2, . . . into this framework, but as our simulations show,
there would be no small-sample gain to doing so, as despite the good theoretical
properties of �E, it gives worse coverage than a simple statistic based on �1.

4. Empirical Exponential Family Expansion

In this section we outline an asymptotic expansion of (3.3), the empirical ex-
ponential family log likelihood for a scalar mean constructed using q estimating
equations for the first q moments about the mean. By comparing this expansion
to the corresponding expression for empirical likelihood we show that the empir-
ical exponential family log likelihood for q ≥ 2 agrees with that for empirical log
likelihood to third order. We use the convention that repeated indices a, b, . . .
are summed over, from 1 to q.

The Lagrangian for determining the tilt parameters η in (3.3) is

L = ηT
n∑

i=1

Yi − n log
( 1
n

n∑
j=1

eη
T Yj

)
+ λ

∑
Y 1

i e
ηT Yi = C1 − nC2 + λC3, (4.1)
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say. We determine η in terms of θ by equating the derivatives of L to zero. Hence
inversion of ∂L/∂ηr = 0 implies that

ηada,r +
1
2
ηaηbe1(a, b, r) +

1
6
ηaηbηce2(a, b, c, r)

= λ
(
mr+1 + ηama+r+1 +

1
2
ηaηbma+b+r+1 +

1
6
ηaηbηcma+b+c+r+1

)
, (4.2)

where ma = n−1∑
i(Xi − θ)a, da,r = ma+r −mamr, and

e1(a, b, r) =ma+b+r − 2mamb+r + 2mambmr −ma+bmr,

e2(a, b, c, r) =ma+b+c+r − 3mamb+c+r + 6mambmc+r − 3ma+bmc+r

−6mambmcmr + 3mamb+cmr + 3ma+bmcmr −ma+b+cmr.

In order to simplify the asymptotic expansions, we set θ = X̄ + n−1/2ψ, so that
ψ = Op(1) and m1 = n−1∑(Xi − θ) = −n−1/2ψ. Then

n−1/2ψ = ηama+1 +
1
2
ηaηbma+b+1 +

1
6
ηaηbηcma+b+c+1 +Op(n−2). (4.3)

Hence, ηa = Op(n−1/2), and (4.2) gives λ = Op(n−1/2), since ma = Op(1) for
a ≥ 2. We now solve (4.2) and (4.3) to obtain expansions for ηa; it is nontrivial
to collect powers of n−1/2 as m1 = Op(n−1/2) but ma = Op(1) for a ≥ 2. The
expressions for the ηa given below differ according to the number, q, of estimating
equations used, but they all have error Op(n−2). If q = 1 we have

η1 = n−1/2ψ/m2 − n−1ψ2m3/(2m3
2) + n−3/2ψ3(3m2

3 −m2m4)/(6m5
2).

If q = 2 we have

η1 = n−1/2ψ/m2 − n−1ψ2m3/m
3
2

+n−3/2ψ
3(5m3

2m
2
3+6m4

3−2m4
2m4−9m2m

2
3m4+2m2

2m
2
4+m2

2m3m5)
3m5

2(m
3
2+m2

3−m2m4)
,

η2 = n−1ψ2/(2m2
2) + n−3/2ψ

3(4m2m3m4 − 2m3
2m3 − 3m3

3 −m2
2m5)

3m5
2(m

3
2 +m2

3 −m2m4)
.

For q ≥ 3 we have

η1 = n−1/2ψ/m2 − n−1ψ2m3/m
3
2 + n−3/2ψ3(2m2

3 −m2m4)/m5
2,

η2 = n−1ψ2/(2m2
2) − n−3/2ψ3m3/m

4
2,

η3 = n−3/2ψ3/(3m3
2), and ηz = 0 for z ≥ 4.
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We now expand the log likelihood (3.3) for θ and insert the above expansions
for ηa. The resulting expansion depends on q. Omitting the details we find that

�1(θ) = −ψ2/(2m2) + n−1/2ψ3m3/(3m3
2) + n−1ψ4(m3

2 − 3m2
3 +m2m4)/(8m5

2)

+Op(n−3/2),

�q(θ) = −ψ2/(2m2) + n−1/2ψ3m3/(3m3
2) + n−1ψ4(m4m2 − 2m2

3)/(4m
5
2)

+Op(n−3/2), q ≥ 2. (4.4)

Rearrangement of equation (7.5) of Davison, Hinkley and Worton (1992) reveals
that empirical likelihood �E(θ) has the same expansion as (4.4). Hence �E(θ) −
�q(θ) = Op(n−3/2) for q ≥ 2, but �E(θ)− �1(θ) = Op(n−1). Thus, for q ≥ 2, �q(θ)
has the same third-order asymptotic properties as �E(θ), although the expressions
for the tilt parameters η are different for q = 2 and q ≥ 3.

An intuitive interpretation of this result is as follows. Consider the simplest
non-trivial case, where n = 3 and X1 < X2 < X3; the probabilities lie on the
simplex p1 + p2 + p3 = 1 with pi ≥ 0. If the contours of the function

∑
log pi are

inscribed on the simplex, then as θ passes from X1 to X3, both �E(θ) and �1(θ)
correspond to paths from (1, 0, 0) to (0, 0, 1) that pass through the centre (1

3 ,
1
3 ,

1
3).

Under mild conditions the same is true of any multinomial distribution with a
single tilting parameter that starts at p1 = 1 and finishes at p3 = 1. Imposition
of the constraint

∑
piXi = θ means that the probabilities move on a line on

the simplex, and this line intersects with both �E(θ) and �1(θ). The argument
in Section 2 shows that �E(θ) is the highest point on this line, by definition,
while �1(θ) < �E(θ). Adding the additional “tilt” parameter η2 corresponding
to the second moment equation (Xi − θ)2 − µ2 perturbs �1(θ) to another point
�2(θ), which is sufficiently close to �E(θ) to share its third-order properties. In
this particular case �2(θ) = �E(θ), though this will not be true for larger n. It
is tempting to believe that addition of q estimating equations makes �E(θ) and
�q(θ) agree to order q + 2, but a proof of this using the techniques above would
be very tedious.

5. Least Favorable Family Interpretation

We consider the interpretation of empirical and empirical exponential fam-
ily likelihoods as least favorable families (Stein (1956)). The problem of con-
structing a nonparametric likelihood is infinite-dimensional because an infinite
number of distributions have the required parameter value. Both empirical like-
lihood and the standard formulation of empirical exponential family likelihood
(DiCiccio and Romano (1990)) restrict consideration to multinomial distribu-
tions {pi} supported on the observed sample. If we use a single estimating
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equation
∑
pi(Xi − θ) = 0 this reduces the problem to a one-dimensional sub-

family, indexed by the tilt parameter α — see (2.2) and (3.2). If, for a par-
ticular nonparametric likelihood �, we have EF̂n

(−∂2�/∂θ2
)

= n/σ̂2, where
σ̂2 = n−1∑(Xi − X̄)2, then the Cramér–Rao variance lower bound for estimat-
ing θ is the same as that obtained for a parametric family. Hence the reduction
of the infinite-dimensional problem of nonparametric estimation of the mean to
a one-dimensional subfamily has not been made artificially easier; we call such
a (sub-)family “least favorable”. Further discussion is given by DiCiccio and
Romano (1990) and Efron and Tibshirani (1993).

In the case of empirical likelihood we have �(θ)= −∑n
i=1 log {1 + α (Xi − θ)},

and a little calculation gives ∂�/∂θ = nα and ∂2�/∂θ2 = n∂α/∂θ. Differentiating
(2.2) with respect to θ yields

∂α

∂θ
=

[
α
∑ Xi − θ

{1 + α (Xi − θ)}2 − n

] [∑ (Xi − θ)2

{1 + α (Xi − θ)}2

]−1

.

If we take expectation of minus the second derivative of the log likelihood under
the empirical distribution function F̂n, so that α̂ = 0 and θ̂ = X̄, we obtain
n/σ̂2. Hence empirical likelihood is a least favorable family indexed by the tilt
parameter α.

We now outline the proof that the empirical exponential family for a scalar
mean θ constructed using q estimating equations for the first q moments about
the mean is a least favorable family indexed by η1, . . . , ηq. Using (3.3) it is easy
to show that

EF̂n

(
−∂

2�q(θ)
∂θ2

)
= n φ̂T D̂φ̂, (5.1)

where φ̂ is the q-vector (φ̂a) with φa = ∂ηa/∂θ, D̂ is the q × q-matrix with
elements (d̂a,b) = (m̂a+b − m̂am̂b) and the circumflexes indicate evaluation at the
maximum likelihood point η̂ = 0, λ̂ = 0, θ̂ = X̄. We now derive equations for
φ̂a. Differentiation of (4.1) with respect to {ηa} and λ gives us q + 1 equations
involving η and λ. Further differentiating these q+1 equations with respect to θ
gives us q + 1 equations involving {φa} and ξ, where ξ = ∂λ/∂θ. Finally setting
η̂ = 0, λ̂ = 0, θ̂ = X̄ we will have a system of q + 1 equations for φ̂a and ξ̂. In
matrix form, we find (

−D̂ ê

êT 0

)(
φ̂

ξ̂

)
=

(
0
1

)
, (5.2)

where ê = (m̂2, . . . , m̂q+1)T . We now solve (5.2) for φ̂ and substitute the result
into (5.1), obtaining

EF̂n

(
−∂

2�q(θ)
∂θ2

)
= n

(
êT D̂−1ê

)−1
. (5.3)
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To complete the argument we need to evaluate the scalar ẑq = êT D̂−1ê, where
here and more generally the subscript q indicates that we are considering the
empirical exponential family constructed using q estimating equations. For q = 1,
the case considered by DiCiccio and Romano (1990), we have D̂ = m̂2−m̂2

1 = m̂2

and ê = m̂2 so that ẑ1 = m̂2 = σ̂2. Hence the empirical exponential family is
least favorable for q = 1. For general q it is possible to show that

ẑq+1 = ẑq + ŷ−1
q+1(âq − m̂q+2)2, (5.4)

where x̂T
q = (m̂q+2, m̂q+3 − m̂2m̂q+1, . . . , m̂2q+1 − m̂qm̂q+1), ŷq+1 = m̂2q+2 −

m̂2
q+1 − x̂T

q D̂
−1
q x̂q, and âq = x̂T

q D̂
−1
q êq. Partition D̂q, êq and x̂q as follows

D̂q =

(
m̂2 ûT

q−1

ûq−1 Ŵq−1

)
, ûT

q−1 =(m̂3, . . . , m̂q+1), êTq =
(
m̂2, û

T
q−1

)
, x̂T

q =
(
m̂q+2, ŝ

T
q−1

)
,

where Ŵq−1 is the (q−1)×(q−1)-submatrix of D̂q induced by the partition, and
ŝT
q−1 = (m̂q+3−m̂2m̂q+1, . . . , m̂2q+1−m̂qm̂q+1). If we invert the partitioned D̂q we

find âq = m̂q+2. Hence using (5.4) we have ẑq+1 = ẑq, and so ẑq = ẑ1 = m̂2 = σ̂2

and (5.3) reduces to n/σ̂2. Thus the empirical exponential family for a scalar
mean θ constructed using q estimating equations is least favorable.

6. Simulations

Suppose the parameter of interest is a scalar mean θ. To compare the cov-
erage accuracy of empirical and empirical exponential family likelihood statis-
tics we simulated 50,000 samples from a number of distributions; only those
for the N(0, 1) and logN(0, 1) are reported here. We constructed two-sided
confidence intervals for the mean with various nominal coverage levels α as in-
dicated in Tables 1 and 2. We estimated the actual coverages for eight non-
parametric likelihood statistics, all of which have an asymptotic χ2

1 distribution
with error O(n−1), or O(n−2) for those statistics admitting a Bartlett correc-
tion. The first five statistics are:(1) the log empirical likelihood ratio statistic,
W = −2�E(θ); (2) its Bartlett corrected version W ′ = W/(1 + b̂/n), where
b̂ = m̂4/(2m̂2

2) − m̂3
2/(3m̂2

3) is a
√
n-consistent estimate of the Bartlett factor

b (DiCiccio, Hall and Romano (1991)); and empirical exponential family log like-
lihood ratio statistics for q = 1, 2, 3, i.e., (3) X = −2�1(θ); (4) Y = −2�2(θ); and
(5) Z = −2�3(θ).

The remaining three statistics are Wald statistics constructed using a robust
“sandwich” estimate of variance of the tilt parameters η. Such a statistic repre-
sents the nonparametric analogue of the parametric Wald statistic recommended
in the presence of possible model misspecification — see Kent (1982) and White
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(1982). The tilt parameters for either empirical or empirical exponential family
likelihood for the mean θ are determined by the score equation∑

pi (η) (Xi − θ) = 0. (6.1)

Table 1. Coverage results for confidence intervals for the mean of the N(0, 1)
distribution.

α = 0.85 α = 0.90 α = 0.95
n = 8 n = 15 n = 8 n = 15 n = 8 n = 15

W 77.38 81.66 82.49 86.68 88.14 92.20
W ′ 79.87 83.26 84.59 88.05 89.74 93.17
X 76.29 80.75 81.19 85.78 86.70 91.17
Y 77.34 81.61 82.43 86.61 88.05 92.13
Z 77.38 81.65 82.48 86.68 88.14 92.20
CE 73.91 78.21 78.71 83.07 84.22 88.32
C1 81.53 84.55 87.34 89.90 93.91 95.39
C2 73.68 80.91 77.96 85.40 83.00 90.49

Table 2. Coverage results for confidence intervals for the mean: Log N(0, 1)
distribution.

α = 0.85 α = 0.90 α = 0.95
n = 40 n = 60 n = 40 n = 60 n = 40 n = 60

W 78.56 80.10 84.14 85.46 90.18 91.37
W ′ 79.86 81.28 85.21 86.41 91.03 92.05
X 77.93 79.54 83.41 84.78 89.38 90.67
Y 78.55 80.10 84.13 85.46 90.10 91.29
Z 78.56 80.12 84.15 85.47 90.17 91.36
CE 76.60 78.34 81.20 83.11 86.36 88.18
C1 80.94 82.00 87.07 87.87 93.15 93.71
C2 80.25 81.95 84.84 86.54 89.75 90.99

Let η̂ = η̂(θ) be the value of η solving (6.1) for given θ. We may inte-
grate the score with respect to η and define a log likelihood for θ by �(θ) =∑

(Xi − θ)
∫
pi (η) dη =

∑
�i, where �i is the log likelihood contribution from Xi.

Since there is a unique solution η̂(θ) for each θ, there is a q–1 correspondence
between the q tilt parameters η and the parameter of interest θ and we may
specify a test for θ in terms of a test for the tilt parameters η. Thus if

A=
( ∂�
∂η

)2
=
∑(∂�i

∂η

)2
=
∑

(Xi−θ)2 pi (η)
2, B=− ∂2�

∂η∂ηT
=
∑

(Xi−θ) ∂pi (η)
∂η

,

a robust estimate of the variance of η̂ is (B̂Â−1B̂)−1, where the circumflexes
on A, B denote evaluation at η̂, and C = η̂T

(
B̂Â−1B̂

)
η̂ is a Wald statistic
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with an approximate χ2
1 distribution. The last three statistics are: (6) a Wald

statistic CE for empirical likelihood, using pi (η) = n−1 {1 + η (Xi − θ)}−1; (7)
a Wald statistic C1 for empirical exponential family likelihood for q = 1, using
pi (η) ∝ eη(Xi−θ); and (8) a Wald statistic C2 for empirical exponential family
likelihood for q = 2, using pi (η) ∝ eη1(Xi−θ)+η2(Xi−θ)2.

Tables 1 and 2 show that the empirical coverages of empirical exponential
family log likelihood ratio statistics Y and Z for q = 2 and q = 3 are extremely
close to that of the empirical log likelihood ratio W , as we may expect from the
asymptotic results of Section 4. Further simulations, here unreported, show that
the distribution of the empirical exponential family log likelihood ratios becomes
increasingly close to that of the empirical log likelihood ratio W as we increase
q, the number of estimating equations used; the distributions are already very
close for q = 2 and q = 3.

The robust Wald statistics are included for comparison with the correspond-
ing likelihood ratios. We have seen that the asymptotic expansions of empirical
likelihood and empirical exponential family likelihood are in close agreement and
the results in Tables 1 and 2 indicate that the small-sample performance of the
likelihood ratio statistics is equally close. This agreement does not extend, how-
ever, to the Wald statistics. The statistic C1 for the empirical exponential family
for q = 1 is uniformly the best performing statistic; however, the robust Wald
statistics for empirical likelihood and the empirical exponential family for q = 2
perform poorly.

7. Conclusions

We discussed in Section 5 how the construction of both empirical likeli-
hood and empirical exponential family likelihood involves the reduction of the
infinite-dimensional problem of nonparametric estimation of a likelihood for the
mean of an underlying distribution F to a finite-dimensional one by considering
multinomial distributions supported on the sample. In this section we show how
empirical likelihood and empirical exponential family likelihood may be placed in
the same general framework. If our sample is X = {X1, . . . ,Xn} and a multino-
mial distribution supported on that sample is {pi}, we estimate the distribution
function F of X by F̂p (x) =

∏
pi 1{Xi≤x}. If the parameter of interest is the

mean θ, we require that {pi} satisfies (1.2), and a nonparametric likelihood for θ
is then L(θ) =

∏
pi(θ). Normalizing L(θ), we define a generalized empirical log

likelihood by

�gen (θ) = log {L (θ)} − log
{
L(θ̂)

}
=
∑

log {npi (θ)} , (7.1)

where {pi(θ)} are defined as the solutions of (1.2). We need further informa-
tion about the probabilities {pi} to determine such a solution. Empirical like-
lihood uses a one-dimensional subfamily pi(α) = n−1{1 + α(Xi − θ)}−1 which
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ensures that the probabilities are uniquely determined for every θ in the range
min{Xi} < θ < max{Xi} and a solution to (1.2) exists in this range. A moti-
vation for using this subfamily is that such a family {pi} minimizes the forward
Kullback–Leibler discrepancy −∑n−1 log(npi) between two multinomial distri-
butions which are solutions of (1.2), {pi} at the value θ and {n−1} at the value
θ̂. This procedure normalizes the log likelihood in a similar fashion to the way
the normed parametric log likelihood compares the log likelihood value at θ with
the maximum likelihood value at θ̂. This is an attractive choice of discrepancy
measure since the maximum likelihood estimate is a natural estimate for pa-
rameters which minimize the Kullback–Leibler discrepancy when the underlying
distribution is unknown (Akaike (1973)). Similarly, the empirical exponential
family likelihood is obtained using the backward Kullback–Leibler discrepancy
−∑ pi log(npi). Akaike (1985) discusses the choice of direction of the Kullback–
Leibler discrepancy in parametric problems.

Although the Kullback–Leibler discrepancy is an attractive choice for ob-
taining probabilities {pi}, it is also an essentially arbitrary choice. Indeed, the
form of the empirical exponential family probabilities used in the papers by Efron
(1981), DiCiccio and Romano (1990) and Davison, Hinkley and Worton (1992),
pi ∝ eα(Xi−θ), is given a priori as a reasonable choice and is not motivated as
minimizing the backward Kullback–Leibler discrepancy.

We have used empirical likelihood as a baseline for asymptotic comparison
because the literature shows that it has attractive theoretical properties. How-
ever, its small-sample performance has not been shown to be optimal, and indeed
a simple robust Wald statistic constructed using the empirical exponential family
likelihood consistently gave better empirical coverage than other nonparametric
likelihood statistics.
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